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Featured Application: Navigation for a service robot with facial and gender recognition capabilities
in an indoor environment with static and dynamic obstacles.

Abstract: This paper investigates the use of an autonomous service robot in an indoor complex
environment, such as a hospital ward or a retirement home. This type of service robot not only needs
to plan and find paths around obstacles, but must also interact with caregivers or patients. This
study presents a type of service robot that combines the image from a 3D depth camera with infrared
sensors, and the inputs from multiple sonar sensors in an Adaptive Neuro-Fuzzy Inference System
(ANFIS)-based approach in path planning. In personal contacts, facial features are used to perform
person recognition in order to discriminate between staff, patients, or a stranger. In the case of staff,
the service robot can perform a follow-me function if requested. The robot can also use an additional
feature which is to classify the person’s gender. The purpose of facial and gender recognition includes
helping to present choices for suitable destinations to the user. Experiments were done in cramped
but open spaces, as well as confined passages scenarios, and in almost all cases, the autonomous
robots were able to reach their destinations.
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1. Introduction

Today’s workers in care-taking facilities have their hands full taking care of patients, thus require
help for everyday routines. There are many branches of investigation into using machines to help out
with daily routines in the health-care industry, such as gesture recognition [1], or pedestrian movement
prediction [2]. We choose to investigation helpful tasks, such as delivering proper medicines to target
patients, or helping to carry heavy loads in follow-me mode, performed by an autonomous robot
with face and gender recognition abilities. For these purposes, this paper presents a tri-wheeled
autonomous service robot equipped with a camera, an RGB-Depth (RGB is acronym for Red, Green,
and Blue) sensor, and sonar sensors. It has built-in facial recognition ability, ability to separate staff or
patients from visitors, and it can also distinguish the gender of a visitor for record-keeping purposes.
By recognizing staff, it can offer the staff functions not available to patients or visitors, such as the
follow-me function. By recognizing patients, it can help dispense the proper medication to each
individual patient. A possible scenario for this robot could be using it to dispense medicine to selected
patients who may be walking around the hallways. In navigation, it can avoid static as well as dynamic
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obstacles while moving toward its objective, using a dual-level Adaptive Neuro-Fuzzy Inference
System (ANFIS)-based fuzzy controller. It uses a depth-map to detect obstacles ahead, then uses image
processing techniques to extract information as input into an ANFIS-based fuzzy system for analysis in
order for the service to be able to avoid obstacles. The robot also incorporates sonar information using
another ANFIS-based fuzzy system when it determines that depth-map information is insufficient.

In 1998, Yamauchi and Schultz [3] proposed an idea to include extra distance sensors on robots,
such as laser distance sensors and ultrasound distance sensors. The distance sensors can aid in
detecting surrounding objects or obstacles in real time so that the robot can locate or correct itself
using known map data. However, the high costs of the precision sensors make them unsuitable for
popular use. Even though ultrasonic sensors are relatively cheap by comparison, their deviation of
errors is wider and they have detection blind spots; the detection distance is only proportional to the
volume of the sound generator. Prahlad [4] proposed a driver-less car that has face detection and
tracking capabilities. Similarly, we added onto our architecture the ability to perform face and gender
recognition. Correa [5] proposed the development of a sensing system in an indoor environment,
allowing the robot to have autonomous navigation and the ability for identification of its environment.
His proposed system consisted of two parts: The first part is a reactive navigation system where the
robot uses the RGB-Depth sensor to receive depth information and uses the arrangement of obstacles as
the basis to determine the path to avoid the obstacles indoors; the second part uses an artificial neural
network to identify different configurations of the environment. Csaba [6] introduced an improved
version based on fuzzy rules. His system uses 16 rules, three inputs and one output, one Mamdani-type
fuzzy controller, and obtained acceptable results in real-time experiments. In 2016, Algredo-Badillo [7]
presented the possibility of a fuzzy control system, with the output from depth sensor as its input, for
an autonomous wheelchair as a possible design. In 2018, de Silva [8] and Jin et al. [9] show that fusion
of data from multiple sensors can perform better than a single sensor for a driver-less vehicle.

Our study builds an autonomous robot with a camera, a RGB-depth sensor, and sonar sensors.
Prior to moving, the robot scans the entire room with a pre-trained pedestrian classifier in order to
determine if a targetable person or persons exist that need to be tracked. If the robot locates its target
and moves toward the person, the person’s face is located and facial and gender recognitions would
be performed simultaneously in order to determine if the target person’s identity is in the database or
if the person is a stranger. While moving, the dual sensor inputs to the fuzzy-based real-time obstacle
avoidance system are used for path planning. The target person can then input target location and
follows the robot or activates the robot’s follow-me function instead. Using the follow-me function, the
robot can help carry heavy loads for the user. The flowchart of the system is shown below in Figure 1.
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2. Method

2.1. Facial Recognition

We used OpenCV’s LPBH (Local Binary Patterns Histogram) face recognizer method [10],
which uses Local Binary Patterns Histogram as descriptors. It has shown to work better than the
EigenFaces [11] or the FisherFaces [12] face recognizer methods under different environments and
lighting conditions, and can reach an accuracy rate of more than 94% when 10 or more faces per person
are used during its training [13]. The training and testing datasets were taken from Aberdeen [14],
GUFD [15], and Utrecht ECVP [16]. Pictures of laboratory personnel were later insert into the training
dataset. The purpose of adding face and gender recognition is so that the robot can locate an assigned
target or targets, then performs its assigned tasks accordingly. The flowchart for face and gender
recognition is shown in Figure 2.
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2.2. Gender Recognition

In the gender identification part, the features with higher classification accuracy are selected from
LBP [17] and HOG (Histogram of Oriented Gradients) [18] of different scales, and then screened using
p-values before being combined. The advantage of this method is that it uses the differences between
LBP and HOG methods of calculation to increase the classification accuracy. Simple experiments show
that the results of combining both is higher than using either one alone. In addition, using the p-value
to filter can be used to pick out features that are more prominent, so that the number of classification
features required would be greatly reduced, and the time required for training or testing could also
be improved.

After p-value is used to filter the statistical values of the texture features of HOG and LBP, the
more robust features in the training samples are used to train a SVM (Support Vector Machine) [19]
model, which is used as the basis for the classification of the test samples. The training and testing
data were taken from the same online databases for facial recognition. We compared the accuracy rates
of LBP, HOG, and LPB + HOG + p-value filtering. The results are shown below in Table 1. The rate of
success of HOG + LBP + p-value filtering has reached 92.6%.

Table 1. Comparison of Gender Classification Accuracy Using Different Features.

Feature (s) Classification Accuracy Feature Points

LBP 91.8862% 2891
HOG 90.0464% 1548

LBP + HOG + p-value 92.6829% 1365
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2.3. Object Segmentation

Object segmentation is performed using map from the depth sensor. An example of depth map
vs. standard RGB camera is shown below in Figure 3.
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At this range, generally the obstacles tend to be at the bottom of the depth image. In order to
speed up the process, we extract the regions of interest (ROI) from the entire image by disregarding the
depth information from above the middle of the height of the image. This is also to avoid the effects of
lighting from above. In Correa’s paper [5], he listed eight possible scenarios for obstacle arrangement;
where the scene is divided into five parts, and if any of the space is occupied by an obstacle then it is
marked, as shown in Figure 5. For example, the obstacle arrangement in Figure 4c is the scenario of
Figure 5d.
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Figure 5. Correa’s eight obstacles scenarios. (a) No obstacle; (b) One obstacle at the far right; (c) Two
obstacles at the right, separated by a gap; (d) One obstacle at the far left; (e) Two obstacles at the left,
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In the most likely cases are cases (f–h), scenarios where the robot uses Correa’s method randomly
move left or right, and can easily make the wrong decision. So instead of detecting obstacle arrangement
first before moving, we decided that the robot should actively seek gaps between obstacles while moving
in order to find the largest gap and judge if there is a chance to pass through. Figure 6 shows the various
gaps detected using this method. The proposed method would be more proactive than that proposed
by Correa.
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2.4. Robot Movements in the Presence of Obstacles

There are five possible commands for the robots to move: forward, toward left, toward right,
pause, and turn around. Forward command is issued when fuzzy analysis of the obstacles shows that
there is a gap in the middle that is passable. There is a necessary initial condition for the robot to move
forward: that within its depth sensor’s field-of-view, at least one passable gap exists. If this initial
condition does not exist, then the robot can turn around, move forward a little, then turn around again
in order to increase its field-of-view. The turn towards left command is issued if the fuzzy analysis of
the obstacles determines that there is a gap wide enough to pass and the center of the gap is toward
the left of the depth map, but it is not a hard right, rather at an angle that causes the robot to move
toward the center of the gap; similarly for the turn towards right command. The turnaround command
is issued when fuzzy analysis determines that there is no gap wide enough to pass through. The pause
command is issued if additional information from the sonar is required. The flowchart for obstacle
avoidance is shown below in Figure 7.
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2.5. ANFIS-Based Fuzzy System

ANFIS is the acronym for Adaptive Neuro-Fuzzy Inference System. An ANFIS [20] system
structure for two variables and two rules is shown in Figure 8, where

Rule 1: If input x is A1 and input y is B1,
Then f1 = p1x + q1y + r1.
Rule 2: If input x is A2 and input Y is B2,
Then f2 = p2x + q2y + r2.

Then the output f is a linear combine of weighted f1 and f2. In Figure 8, the first layer is input
layer, which contains the membership functions of variables. The second layer is the rule layer, which
gets fuzzy rules from the combinations of the membership function of each variable. The third layer is
the normalization layer, which normalizes the results from the previous layer. The fourth layer is the
inference layer. The fifth layer is output layer, which calculates the sum from previous layer’s output
values. De-fuzzification is then performed on the output.

In our system, there are two fuzzy systems, as shown in Figure 7, where the first system uses
depth map alone in determining whether a crossable gap exists between obstacles. In the second
system, where depth map alone is determined to be insufficient for accurate judgement of the closeness
of obstacles, the input from sonars are then used in addition to the depth map as inputs. In the
following subsections, we will discuss these two fuzzy systems.
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2.5.1. Fuzzy System Using Depth Map Alone

Because our RGB-Depth sensor is only accurate for obstacles up to 1.5 m away, there is a possibility
of mis-judging gap width, and that a crossable gap may be judged as not crossable. Therefore, this is
where the first fuzzy system is used to judge whether a gap is crossable. We use as input the value of
the depth map, and the absolute difference between the depth values of neighboring obstacles. COG
(Center of Gravity) is used as the de-fuzzification method. The 9 rules are shown in Table 2. The
threshold values of 400 and 700 were determined experimentally first.

Table 2. Fuzzy rules for using depth map alone.

1 When gap width is less than robot width, and the absolute depth difference between neighbors is less than
400, then output LOW.

2 When gap value is less than robot width, and the absolute depth difference between neighbors is between 400
and 700, then output LOW.

3 When gap value is less than robot width, and the absolute depth difference between neighbors is greater than
700, then output LOW.

4 When gap value is around robot width, and the absolute depth difference between neighbors is less than 400,
then output LOW.

5 When gap value is around robot width, and the absolute depth difference between neighbors is between 400
and 700, then output LOW.

6 When gap value is around robot width, and the absolute depth difference between neighbors is greater than
700, then output HIGH.

7 When gap value is greater than robot width, and the absolute depth difference between neighbors is less than
400, then output HIGH.

8 When gap value is greater than robot width, and the absolute depth difference between neighbors is between
400 and 700, then output HIGH.

9 When gap value is greater than robot value, and the absolute depth difference between neighbors is greater
than 700, then output HIGH.

An example using these rules is shown in Figure 9, where the gap value is 241, around the robot’s
width, and the depth difference between neighbors is 663; the 9 rows in Figure 9 represent inputs and
outputs for each of the 9 fuzzy rules. The bottom right graph is the visualization for the final output.
The red lines for the input columns are visual representation of the input values.
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2.5.2. Combining Sensors

One drawback using the depth map is the problem that if the obstacles are too low and too close
to the robot, then they are undetectable by using the depth map alone. In this case, the sonars will be
activated as aid in obstacle-avoidance. However, judging how much weight should be given to the
depth map or the sonar map in order to yield the optimal map so as to find the largest available gap is
a problem. It requires solving the weights in Equation (1) at each instance of decision making:

(Result Map) = Wd * (Depth Map) + Ws * (Normalized Sonar Map) (1)

The field of research of combining sonar map with other sensors, such as depth map, is still an
area that requires exploration [21,22]. The sonar map can only be used for obstacles that are close,
so using the sonar map alone may cause the robot to spin continuously in order to acquire more
information. Because of this, our research uses the depth map to move the robot until it moves too
close to the gap or obstacles and determines that additional information would be required, then it
activates the sonar system in order to acquire the sonar map. There are eight sonar sensors installed in
a semi-circular fashion, as illustrated in Figure 10.
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Figure 10. Placement of sonar sensors near our robot’s base.

However, the leftmost and rightmost sensors are not used because they seem to cause erroneous
decisions. The sonar signals are first normalized between 0 and 1.0, and it is determined that signal
strength less than 0.4 indicates that obstacles are close, while greater than 0.6 indicates that obstacles
are far away. If each of the six sonar signals are used as individual fuzzy inputs, then the system
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would become overly complicated. Therefore, in order to reduce the number of fuzzy rules, the signals
for the left three sensors are averaged into a single input, and the signals for the right three sensors
are averaged into another single input. This would effectively reduce the number of fuzzy rules.
We designed a total of 8 fuzzy rules for combining the sensors. They are listed in Table 3.

Table 3. Fuzzy rules for combining sensors.

1 If the gap within depth map is greater than robot width, and the left sonar input is high, and the right sonar
input is high, then Wd = 1.0 Ws = 0.0.

2 If the gap within depth map is greater than robot width, and the left sonar input is high, and the right sonar
input is low, then Wd = Ws = 0.5.

3 If the gap within depth map is greater than robot width, and the left sonar input is low, and the right sonar
input is high, then Wd = Ws = 0.5.

4 If the gap within depth map is greater than robot width, and the left sonar input is low, and the right sonar
input is low, then Wd = Ws = 0.5.

5 If the gap within depth map is less than robot width, and the left sonar input is low, and the right sonar input
is low then, Wd = 0.0, Ws = 0.5.

6 If the gap within depth map is less than robot width, and the left sonar input is high, and the right sonar
input is low then, Wd = Ws = 0.5.

7 If the gap within depth map is less than robot width, and the left sonar input is low, and the right sonar input
is low then, Wd = Ws = 0.5.

8 If the gap within depth map is less than robot width, and the left sonar input is high, and the right sonar
input is high then, Wd = Ws = 0.5.

An example of using these rules as shown in Figure 11, where gap width is around the robot’s
width, the normalized and averaged value for left sonar is 0.259, and the normalized and averaged
value for right sonar is 0.729. The eight rows in Figure 11 represents the inputs and outputs for the
8 rules. The red lines are symbolic representations of the input values.
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Figure 12 shows the paths the robot takes when decisions are made based on using fuzzy rules to
combine sonar map and depth map versus using only the sonar map alone. In situations like this, we
can see the advantage of combining the inputs of sensors.



Appl. Sci. 2019, 9, 491 10 of 16

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 16 

 
Figure 12. The path our robot takes when using sonars alone vs. combining sensors. 

3. Experiment 

3.1. Setup 

The experimental robot is shown in Figure 13, with camera and RGB-Depth sensor on its top 
and middle, respectively. The sonar sensors are located below. Its width is 381 mm, and it has a swing 
radius of 26.7 cm. Its software is running on a laptop located in the middle. 

 
Figure 13. The experimental robot. 

The experiments are divided into 2 subsections. The first is the face recognition plus gender 
determination. The second subsection is to test the obstacle avoidance capability of the robot. This 
particular subsection is further divided into situations when the obstacles are static, and when the 
obstacles are moving (e.g., pedestrians). These experiments were performed in real-time. These 
experiments were performed in an area of about 7 meters by 3 meters, with office chairs as obstacles.  

3.2. Face and Gender Recognition 

In the first experiment, the robot is placed a little distance away from the human person. The 
robot would adjust its orientation and distance to the human person so as to place the human face, 
detected using Viola’s method [23], square in the middle of its field-of-view, and tracked using the 
KLT feature tracker [24]. The training sample included 400 male photos and 300 female photos. The 
test samples included 265 male photos and 227 female photos. The correct gender recognition rate 
was 92.6829%. Later, 10 photos of each laboratory personnel were added to the training set, and the 
robot was able to perform on-line face recognition during the test, and recognize the human persons 

Obstacle Robot

Sonar Alone

Sonar +
Depth Map

Figure 12. The path our robot takes when using sonars alone vs. combining sensors.

3. Experiment

3.1. Setup

The experimental robot is shown in Figure 13, with camera and RGB-Depth sensor on its top and
middle, respectively. The sonar sensors are located below. Its width is 381 mm, and it has a swing
radius of 26.7 cm. Its software is running on a laptop located in the middle.
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Figure 13. The experimental robot.

The experiments are divided into 2 subsections. The first is the face recognition plus gender
determination. The second subsection is to test the obstacle avoidance capability of the robot. This
particular subsection is further divided into situations when the obstacles are static, and when the
obstacles are moving (e.g., pedestrians). These experiments were performed in real-time. These
experiments were performed in an area of about 7 m by 3 m, with office chairs as obstacles.

3.2. Face and Gender Recognition

In the first experiment, the robot is placed a little distance away from the human person. The
robot would adjust its orientation and distance to the human person so as to place the human face,
detected using Viola’s method [23], square in the middle of its field-of-view, and tracked using the
KLT feature tracker [24]. The training sample included 400 male photos and 300 female photos. The
test samples included 265 male photos and 227 female photos. The correct gender recognition rate
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was 92.6829%. Later, 10 photos of each laboratory personnel were added to the training set, and the
robot was able to perform on-line face recognition during the test, and recognize the human persons in
front as laboratory personnel and correctly classified their gender. After recognition and classification,
choices for destinations are then presented to the user via the monitor based on the result, including
a Follow-Me choice for lab workers. Examples of classification results are shown in Figure 14.
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3.3. Obstacles Avoidance

3.3.1. Static Obstacle Avoidance

In the static obstacles experiment, the testing site is a hallway. The obstacles are placed along the
hallway, as shown in Figure 15.
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Figure 15. Static obstacles for the robot.

Sufficient gaps are left between the obstacles so that the robot should be able to reach its final
destination. The following plot, Figure 16, shows the path the robot took. The robot’s position was
recorded at an interval of every 10 s.
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Figure 16. The path the robot took with positions taken at 10 s interval.

There are a total of 17 possible scenarios designed along the path that we think that the robot
would need to make critical decisions about whether to incorporate sonar sensors in its decisions. The
following figure, Figure 17, shows where each of the 17 scenarios, T1–T17, took place, and Table 4
shows the input values and the robot’s decisions for the 17 scenarios.
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Table 4. Sensors Inputs and Decision for Scenarios T1–T17.

Scenario Left Obstacle
Depth Value

Right
Obstacle

Depth Value

Gap
Normalized to
Robot Width

Left Sonar
Normalized

Right Sonar
Normalized

Final
Decision

T1 N/A 317 1.41 1 1 Forward
T2 97.6 10,000 1.67 0.2 1 Right Turn
T3 N/A 106.3 1.20 0.8 0.44 Left Turn
T4 N/A N/A 0.0 0.22 0.22 Forward
T5 128.9 N/A 0.0 0.2 0.62 Right Turn
T6 122.1 125.6 1.64 0.4 0.4 Forward
T7 139.9 176.3 1.56 0.58 0.66 Forward
T8 272.2 N/A 2.24 0.4 0.36 Forward
T9 N/A N/A 0.0 0.3 0.22 Forward
T10 N/A 188.8 1.67 1 0.5 Forward
T11 163.0 160.3 1.05 0.5 0.38 Forward
T12 100.1 N/A 1.33 0.08 0.13 Right Turn
T13 193.1 1000.0 0.84 0.4 1 Right Turn
T14 163.5 196.4 0.83 0.54 0.4 Forward
T15 N/A N/A 0.0 0.04 0.22 Forward
T16 N/A N/A 0.0 0.22 0.22 Forward
T17 115.9 N/A 1.13 0.22 0.42 Right Turn

Figure 18 shows the fuzzy inputs and outputs at T1–T17.
Table 5 below illustrates the comparisons between our method, Correa’s method [3], and Csaba’s

method [4], using single-point analysis at each scenario point. Success is defined as being able to
avoid collision.

Table 5. Comparisons between Correa, Csaba, and our proposed method on T1–T17 scenarios.

Scenario Correa Csaba Our Method

T1 Fail! Success Success
T2 Fail! Fail! Success
T3 Fail! Success Success
T4 Success Success Success
T5 Fail! Fail! Success
T6 Fail! Fail! Success
T7 Success Success Success
T8 Success Success Success
T9 Success Success Success
T10 Fail! Success Success
T11 Success Success Success
T12 Fail! Success Success
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Table 5. Cont.

Scenario Correa Csaba Our Method

T13 Fail! Fail! Success
T14 Fail! Success Success
T15 Fail! Success Success
T16 Success Success Success
T17 Fail! Success Success
T1 Success Success Success
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3.3.2. Dynamic Obstacle Avoidance

Eleven scenarios were setup using one or two moving obstacles for this experiment. The obstacles
are to simulate pedestrians in a service environment, and none was the robot’s target. Table 6 illustrates
these scenarios.
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Table 6. Eleven scenarios for dynamic moving obstacles.

Scenario # Scenario

1 Single Obstacle Moving Towards the Robot
2 Single Obstacle Moving Fast from Right of the Robot
3 Single Obstacle Moving Slow from Right of the Robot
4 Single Obstacle Moving Fast from Left of the Robot
5 Single Obstacle Moving Slow from Left of the Robot
6 Dual Obstacles Moving Towards the Robot Then Separates
7 Dual Obstacles Moving From Left and Right of the Robot Then Crisscross
8 Dual Obstacles Moving From Left of the Robot At The Same Speed
9 Dual Obstacles Moving From Left of the Robot At Different Speeds

10 Dual Obstacles Moving From Right of the Robot At The Same Speed
11 Dual Obstacles Moving From Right of the Robot At Different Speeds

Figure 19 illustrates how the robot responded at each of these scenarios. The red line represents
the path of the robot, the blue line represents the path of the first obstacle, and orange line represents
the path of the second obstacle. Each dot represents sampled locations taken between fixed time
intervals. In each of these scenarios, except for the third, the robot was able to pass through the
obstacles and reach the other side. In the third scenario, the robot was able to avoid collision by
turning around.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 16 
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Figure 19. The paths of the moving obstacles (blue, orange) and the robot (red) for the 11 scenarios.
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4. Discussion and Conclusions

In this paper, we presented a service robot with face recognition and gender classification abilities,
with accuracy reaching 92.68%. The service robot can perform different tasks based on the classification
results, such as activating the Follow-Me function for laboratory staff only. Possible uses of the robots
including delivering medicines to target patients, assist visitors to find patients, and other tasks. We
also developed a dual-level ANFIS-based fuzzy obstacle-avoidance system based on the inputs from
two different types of sensors: RGB-Depth and sonars. It is found that the obstacle-avoidance capability
using both types of sensors surpasses the performance of using just a single type sensor. We performed
the experiment testing the obstacle avoidance capability of the robot under both static and dynamic
environments and found that the robot can successfully maneuver around obstacles in almost all cases.
In the future, we hope to improve the robot’s navigation abilities by including advanced path planning
using indoor maps of the environment, or different hardware configurations for other purposes.
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