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Abstract: To reduce the radar cross section at microwave frequencies, it is necessary to implement
electromagnetic (EM) absorbing devices/materials to decrease the strength of reflected waves.
In addition, EM absorbers also find their applications at higher spectrum such as THz and optical
frequencies. As an atomic-thick two-dimensional (2D) material, graphene has been widely used in
the development of EM devices. The conductivity of graphene can be electrostatically or chemically
tuned from microwave to optical light frequencies, enabling the design of reconfigurable graphene
EM absorbers. Meanwhile, the derivatives of graphene such as reduced graphene oxide (rGO) also
demonstrate excellent wave absorbing properties when mixed with other materials. In this article,
the research progress of graphene and its derivatives based EM absorbers are introduced and the
future development of graphene EM absorbing devices are also discussed.
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1. Introduction

Graphene is a two-dimensional (2D) material exhibiting an ambipolar electrical field effect [1].
For a long time in history, 2D materials with single-atom thickness like graphene were theoretically
predicted as thermaldynamically unstable due to the strong thermal fluctuations. In 2004, Andrei Geim
and Kostya Novoselov from University of Manchester experimentally proved the existence of graphene
with samples achieved with the scotch tape method [1]. Since then, a series of 2D materials such as
hBN [2] and silicene [3] were also synthesized. On one hand, the ultrahigh carrier mobility of graphene,
far beyond any other semiconductors, makes it an ideal channel material for the development of
high-speed field-effect transistors [4]. On the other hand, the strong electrical field effect of graphene
can be implemented to realize reconfigurable electromagnetic (EM) devices [5–7].

According to Kubo’s formula, the conductivity of graphene (σs), consisting of both intraband and
interband terms, is calculated as [8]

σs = σintra + σinter, (1)

where

σintra =
e2kBT

πh̄2(jω− 2τ)
×

 |EF|
kBT

+ 2ln(e
−

EF
kBT + 1)

 , (2)

σinter =
e2

4πh̄
× ln

(
2|EF| − (ω− 2jΓ) h̄
2|EF|+ (ω− 2jΓ) h̄

)
. (3)
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e is the elementary electron charge, kB is the Boltzmann constant, T is the temperature, h̄ is the reduced
Planck’s constant, ω is the angular frequency, Γ is the carrier scattering rate and EF is the chemical
potential. For frequency below 10 THz, the intraband term dominates, hence σtotal ≈ σintra. The chemical
potential EF can be tuned through chemical or electrostatic doping. The electrostatic doping is achieved
by sandwiching a dielectric layer between graphene and a conductive (e.g., metal) electrode. When the
bias voltage is applied between graphene and the electrode, the carriers (i.e., holes or electrons) are
injected into (or extracted from) graphene, resulting in a varying σs against the variation of bias voltage.
It is noted that a strong electric field in the range of V/nm is usually required in electrostatic doping,
resulting in a dielectric layer with thickness varying from several to at most a few hundred nanometers
under a practical bias voltage.

Over the past decade, grasphene-based waveguide modulators operating at optical frequencies
have been reported [9–11]. In addition, graphene-based beem-steering devices operating at
mid-infrared frequency have also been proposed, demonstrating effective control over the reflection
angle of the incident wave [12,13]. Moreover, graphene and its derivatives such as reduced graphene
oxide (rGO) have also been utilized along with other materials to realize EM absorbers with fixed
wave absorption and operation frequencies [14–19]. Meanwhile, graphene-based reconfigurable
EM absorbers have also been proposed, paving the way for the development of smart EM
absorbing materials. [20–31]. Generally, there are two types of graphene EM absorbers, namely,
quarter-wavelength absorber and metasurface absorber. As they exhibit different EM absorption
performance, the graphene-based quarter-wavelength and metasurface absorbers are introduced
separately in this work.

2. Graphene-Based Quarter-Wavelength Absorbers

Quarter-wavelength absorber is a type of EM absorbing material/device with a thickness of λ/4
or N · λ/4, where λ is the wavelength in the material and N is a positive integer. The most famous
quarter-wavelength absorbers are Salisbury screen [32], Jaumann [33] and Dällenbach absorbers [34].
Although their physical geometries are different from each other, they share an identical wave absorbing
mechanism during the operation.

2.1. Graphene-Based Salisbury and Jaumann Absorbers

In the 1940s, Winfield W. Salisbury invented an absorbent structure, known as Salisbury screen,
to reduce the radar cross section of EM waves. However, the work was not patented until 1952 due to
the security requirements in World War II [32]. The EM absorber consists of a thin resistive layer, a low
loss/lossless dielectric spacer and a metallic ground [32]. The resistive layer splits the incidence into
reflected and transmitted signals. The metallic ground acts as a perfect reflector that fully reflects the
transmitted signal. The thickness of spacer is carefully selected so that destructive wave interference
can be achieved between the reflections from resistive sheet and metallic ground. For a spacer with
thickness d = M · λ/4 where M is a positive odd integer, the reflected waves exhibit a phase difference
of M · λ/2 and cancel each other when their amplitude matches. This configuration is also known as a
Fabry–Perot resonator, which operates within a narrow frequency range near the resonant frequency.

According to the transmission line theory, the input admittance (Y1,in) of Salisbury screen under
normal incidence for both transverse electric (TE) and transverse magnetic (TM) polarized waves
is [35]:

Y1,in = Ys − jYd cot (βdd) , (4)

where Ys = 1/σs, βd = ω
√

εr/c, εr is the relative permittivity of the dielectric spacer, c is speed light,
Yd =

√
εr/Z0 and Z0 =

√
µ0/ε0 is the free space impedance. To enhance the operation bandwidth

of Salisbury screen, a few resistive layer/spacer pairs can also be stacked on the top of each other
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to realize the Jaumann absorber, as shown in Figure 1a,b. For a Jaumann screen consisting of N
quarter-wavelength-thick layers, the corresponding input admittance can be calculated as [35]

Yi,in = Ys + Yd
Yi−1,in + jYd tan (βdd)
Yd + jYi−1,in tan (βdd)

(i = 1, 2, ..., N). (5)

Thus, the reflection coefficient (Γr) can be achieved as

Γr =
Zin − Z0

Zin + Z0
, (6)

and the reflectance (R) can be represented as R = Γ2
r . Hence, the absorption (A) is

A = 1− R− T, (7)

where T is the transmittance. Since the metallic ground fully reflects the signal through the resistive
layer(s) and results in zero transmittance (i.e., T = 0), Equation (7) can be rewritten as

A = 1− R. (8)

That means the wave is either absorbed or reflected in the Salisbury screen and Jaumann absorbers.
For Zin = Z0, perfect absorption is achieved as R = 0 and A = 1. Hence, in practice, engineers always
would like to reduce the value of R for absorbers with metallic ground. At microwave frequencies,
the return loss (dB), defined as

RL = −20 log |Γr|, (9)

is often preferred over R to describe the reflection of a device. For absorbers with metallic ground,
the effective wave absorption is frequently defined as RL ≤ −10 dB, which means that more than 90%
of the signal energy is absorbed.

In 2013, theoretical exploration results on the graphene-based tunable Salisbury screen [36] and
Jaumann [37] absorbers operating at THz frequencies were reported. The next year, experimental
results of graphene-based transparent Salisbury screen and Jaumann absorbers operating at millimeter
wave frequency were presented by Wu et al. [35]. As shown in Figure 1c, their graphene is synthesized
on the Cu/SiO2/Si wafers with over 90% monolayer coverage utilizing chemical vapour deposition
(CVD) approach. This is followed by coating a layer of poly (methyl methacrylate) (PMMA) on
the top of graphene. Then, the substrate is etched away in the aqueous ammonium persulfate
solution, leaving only floating graphene-PMMA films that can be washed in de-ionized water and
transferred onto arbitrary substrate. Finally, the PMMA is removed with acetone, leaving only
graphene on the new substrate. To reduce the sheet resistance (Rs) of the graphene, they utilize
multilayer graphene in the absorber by stacking the graphene-PMMA film on the top of monolayer
graphene synthesized on Cu/SiO2/Si and repeating the etch-and-transfer step. As the thickness of
multilayer graphene is negligible, the differences between mono- and multilayer graphene in this
work is reflected by the transmittance of optical light, as shown in Figure 1d. The Salisbury screen
absorber, utilizing d = 1.3 mm and εr = 3.8 quartz spacer, resonates at a fundamental frequency
near 29.6 GHz. The corresponding reflection loss varies with the number of stacked graphene layers
at the 5th harmonic frequency as shown in Figure 1e. To enhance its operation bandwidth, a few
graphene/quartz pairs are also stacked on the top of each other to realize the Jaumann absorber and
the n = 5 device demonstrates effective wave absorption over a wide frequency range (125–165 GHz),
as shown in Figure 1f . Except increasing the number of graphene layers, Jeong et al. also proposed
a graphene-based Salisbury screen for THz frequencies, where chemical doping is implemented to
reduce the sheet resistance of their multilayer graphene [38]. As the millimeter thick dielectric spacers
are used in the Salisbury and Jaumann absorbers mentioned above, it is difficult to apply electrostatic
doping to the graphene layer. Hence, these absorbers operate with fixed absorption and frequencies.
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Figure 1. (a) schematic of a N-unit Jaumann absorber and the corresponding transmission-line model;
(b) images of graphene–quartz samples with bilayer (2 L) and trilayer (3 L) graphene as well as one
to four stacked samples over the metallic ground; (c) fabrication procedure of a 2 L graphene–quartz
sample; (d) UV-Vis spectra of the bare quartz and 1 L–4 L graphene–quartz samples; (e) measured
absorption spectra of graphene Salisbury screens with bare quartz and 1 L–4 L graphene–quartz
samples; (f) measured absorption spectra of graphene Jaumann absorbers with N = 1–5; reprinted with
permission from Ref. [35].

To achieve a tunable Salisbury screen, ionic liquid (or gel) is utilized to provide more effective gate
control over the traditional dielectric gates in a graphene capacitor structure as shown in Figure 2a,b.
For the ionic liquid sandwiched between two graphene/dielectric layers, when a bias voltage is
applied, the electrons inside the liquid tend to move and accumulate on the anode graphene layer.
The ions with positive charges, on the other hand, move in the opposite way and accumulate on
the cathode graphene layer. Thus, the graphene layers on both sides are doped and Rs can vary
significantly when a small bias voltage is applied. The thickness of ionic liquid is usually within
a few tens of micrometers (e.g., 50 µm) and a bias voltage as low as ±3.5 V can be used for effective
control [39]. By replacing the resistive layer with flexible graphene capacitor, tunable Salisbury screen
absorbers operating at microwave [39] and THz [40] frequencies have been experimentally investigated.
Under normal incidence, the graphene Salisbury screen in [39] demonstrates tunable wave absorption
between 3 dB to 60 dB at 10.5 GHz while the bias voltage varies between 0 V to −1.5 V, as shown in
Figure 2c. In Ref. [40] , one of the graphene electrodes is replaced by the gold ground and a 20 µm thick
porous membrane with ionic liquid soaked inside is sandwiched between the electrodes. Thanks to the
reduced thickness of the dielectric spacer (i.e., porous membrane), switchable absorption performance
is achieved at 2.83 THz under an incident angle of 30◦ when the bias voltage varies between 0 V to 2 V,
as shown in Figure 2d,e. In addition, the ionic liquid can also be used in a top-gate biased absorber
operating at infrared frequencies, as shown in Figure 2c [41]. The device demonstrates a maximum
normalized differential reflectance (i.e., ∆R/R) of 0.042, where R is the reflectance at EF = 0 and ∆R is
the reflectance variation when EF 6= 0. This graphene Salisbury screen demonstrates poor absorbing
performance at infrared frequencies due to the Drude-like behavior of free electrons in graphene [42].

Although the tunable graphene Salisbury screen absorbers have demonstrated excellent switching
performance at microwave and THz frequencies, the volatile ionic liquid used for electrostatic doping
has to be properly packaged to avoid evaporation. In fact, as an important figure of the ionic liquid
based absorbers, the device life has not been systematically investigated. Hence, there is still a long
way to go until the packaging technology of ionic liquid is improved for a long life Salisbury screen.
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Figure 2. (a) schematic of a graphene capacitor with ionic liquid (or gel) and two graphene electrodes;
(b) image of a graphene capacitor; (c) measured reflection spectra of the graphene capacitor based
tunable Salisbury screen under various bias voltages, reprinted with permission from [39]; (d) schematic
of ionic liquid based graphene Salisbury screen; (e) image of the flexible graphene capacitor based
tunable Salisbury screen coated on the surface of a cylindrical object; (f) measured reflection spectra
of the flexible Salisbury screen under various bias voltages, reprinted with permission from [40];
(g) schematic of the graphene Salisbury screen with ionic gel based top gate; (h) measured (dotted line)
and simulated (solid line) normalized differential reflectance ∆R/R vs. frequency under various bias
voltages, where R is the reflectance of the device when EF = 0 and ∆R is the reflectance variation from
R when EF 6= 0, reprinted with permission from [41].

2.2. Graphene and Its Derivatives-Based Dällenbach Absorbers

Unlike the Salisbury and Jaumann screens that require resistive layer and low loss/lossless
dielectric spacer over a metallic ground, the Dällenbach absorber utilizes a lossy homogeneous material
with complex relative permittivity εr = ε′ − jε′′ and permeability µr = µ′ − jµ′′ above the metallic
layer [34]. The EM wave absorption of Dällenbach layer can also be illustrated with the transmission
line theory. The corresponding input impedance for normal incidence is derived as
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Zin = Z0

√
µr

εr
tanh

[
j
(

2π f d
c
√

µrεr

)]
. (10)

Hence, the absorption and return loss can also be calculated with Equations (8) and (9).
In addition to the wave cancellation at the interface when d = M · λ/4, the Dällenbach absorber

also exhibits magnetic and/or electrical conduction loss that enhance the EM wave absorption
performance such as peak absorption rate and effective absorption bandwidth. The corresponding
magnetic and electrical loss can be determined by the magnetic (δm = µ′′/µ′) and electrical
(εm = ε′′/ε′) loss tangent. It is noted that both εr and µr play important roles in the EM wave
absorption. In order to characterize the matching between εr and µr, a factor |∆| is proposed [43]

|∆| = | sinh2 (K f d)−M|, (11)

where

K =

4π
√

µ′rε′r sin
(

δε + δm

2

)
c cos (δε) cos (δm)

, (12)

and

M =
4µ′rε′r cos (δe) cos (δm)

(µ′r cos (δe)− ε′r cos (δm))
2 +

[
tan

(
δm − δe

2

)]2

(µ′r cos (δe) + ε′r cos (δm))
2

. (13)

For matched impedance, |∆| approaches zero and excellent absorption is achieved. When |∆| is
away from zero, poor impedance matching is observed and the absorption performance is degraded.

To achieve a Dällenbach absorber, graphene and its derivatives such as rGO are often mixed with
non-magnetic (i.e., µ′ ≈ 0 and µ′′ ≈ 1) [44–46] or magnetic [47] materials to form lossy composites.
In 2011, Bai et al. investigated the microwave absorbing properties of rGO/poly-(ethylene oxide)
(PEO) composites based Dällenbach layer [44]. Due to the high electrical conduction loss and other
losses result from dielectric relaxation, interface scattering, etc. as well as the wave cancellation at the
material/air interface, excellent microwave absorption performance is achieved. For a thickness of
1.8 mm, the material demonstrates a minimum RL (RLmin) of −38.8 dB at 16.4 GHz with more than
4.1 GHz effective absorption bandwidth (13.9–18+ GHz).

In 2012, the microwave absorption of composites consist of rGO and nitrile butadiene rubber
(NBR) were conducted by Singh et al. [45]. The non-magnetic rGO/NBR Dällenbach absorber exhibits
a RLmin as low as −57 dB and 4.5 GHz effective absorption bandwidth with a thickness of 3 mm.
The authors believe the multiple reflections inside the rGO/NBR composites as well as the ionic
conduction and dipolar relaxation caused by microwave/material interaction are the possible reasons
behind the enhanced peak absorption.

In 2013, Liu et al. synthesized the non-magnetic polypyrrole (PPy)/rGO/Co3O4 nanocomposites with
a three-step approach [46]. They explored the complex permittivity and permeability of the synthesized
PPy/rGO/Co3O4 nanocomposites and revealed that dielectric loss plays an important role in microwave
absorption. With a thickness of 2.5 mm, the Dällenbach absorber exhibits a broad effective absorption
bandwidth of more than 6.7 GHz (11.6–18+ GHz) and a RLmin of−33.5 dB at 13.8 GHz.

In 2015, Zhang et al. investigated the microwave absorbing performance of a Dällenbach absorber
with ultralight compressible graphene foam (GF) [48]. Figure 3a–d illustrate the cross-sectional SEM
images of uncompressed GF and GF under 30% (GF-30), 60% (GF-60) and 90% (GF-90) compressive
strains. Figure 3e depicts the schematic of corresponding Dällenbach absorber. The measured real
permittivity and loss tangent are shown in Figure 3f,g. Although the unstrained GF with 10 mm
thickness is required and the RLmin achieved is only −28 dB at 12.2 GHz, the material demonstrates
excellent broadband absorption over three different frequency bands, as shown in Figure 3h–j.
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Figure 3. The cross-sectional SEM images of (a) graphene foam (GF) and GF under (b) 30%; (c) 60%;
and (d) 90% compressive strains. The length of scale bar is 20 µm; (e) the schematic of GF Dällenbach
absorber. The measured electrical properties of GF-30, GF-60 and GF-90: (f) the real part of complex
permittivity; (g) the loss tangent. The measured return loss (RL) spectra of GF-30, GF-60 and GF-90 for
(h) 2–18 GHz; (i) 26.5–40 GHz and (j) 75–100 GHz, reprinted with permission from Ref. [48].

In 2016, Ameer et al. combined the magnetic NiFe2O4 nanoparticles and nanohybrids with
non-magnetic rGO sheets to realize a Dällenbach layer operating at low microwave frequencies [47].
The calculated RL demonstrates two absorption peaks within 1 MHz to 3 GHz (RLmin = 68 dB
at 1.11 GHz) and an effective operation bandwidth of 3 GHz or more under a thickness of 2 mm
only. In the same year, Han et al. reported their exploration results on rGO/Silicon oxycarbide
(SiOC) based EM absorbing material [49]. Figure 4a–f present the SEM images of the rGO/SiOC
ceramic. A remarkable RLmin = −69.3 dB is achieved at 10.55 GHz for a Dällenbach absorber with
thickness of 2.35 mm, as shown in Figure 4g. In addition, they also explore the temperature-dependent
complex permittvility of the rGO/SiOC composites from 293–673 K. It is noted that both ε′ and ε′′

increase when the temperature rises, as shown in Figure 4h,i, resulting in smaller RLmin and thinner
absorber thickness.

In 2017, a double-layer Dällenbach absorber consists of a matching layer (i.e., Co0.2Ni0.4Zn0.4Fe2O4)
on the top and a absorption layer (i.e., rGO) underneath was investigated [50]. The input impedance is
calculated as

Zin =

√
µ2

ε2

(√
µ1

ε1
tanh

[
j
(

2π f d1

c

)
√

µ1ε1

]
+

√
µ2

ε2
tanh

[
j
(

2π f d2

c

)
√

µ2ε2

])
√

µ2

ε2
+

√
µ1

ε1
tanh

[
j
(

2π f d1

c

)
√

µ1ε1

]
tanh

[
j
(

2π f d2

c

)
√

µ2ε2

] , (14)
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where µ1 and ε1 are the complex relative permeability and permittivity of absorption layer, and µ2

and ε2 are the complex relative permeability and permittivity of matching layer. d1 and d2 are the
thicknesses of absorption and matching layers, respectively. The corresponding RL is calculated with
Equations (6) and (9). A Peak absorption of −52.2 dB is achieved at 10 GHz for the proposed bilayer
Dällenbach absorber and the effective absorption bandwidth is as broad as 10 GHz (6.4–16.4 GHz) for
an overall material thickness of 4 mm (d1 = 1.4 mm and d2 = 2.6 mm).

Figure 4. The SEM images of (a) SiOC ceramic and (b) G/SiOC ceramic; (c) the calculated RL
spectra of Dällenbach absorber with G/SiOC synthesized under various amounts of graphene oxide.
The measured (d) real and (e) imaginary parts of complex permittivity under various temperatures,
reprinted with permission from Ref. [49].

Table 1 summarizes the performance of graphene or its derivatives based Dällenbach absorbers
as well as the corresponding absorber thickness. It is noted that the RL of most devices are calculated
utilizing the measured εr and/or µr rather than achieved from an actual S-parameter measurement.
Hence, the correction of the calculated RL heavily depends on the accuracy of the extracted εr and/or µr.
What is worse, as the input impedance of Dällenbach absorber given by Equation (10) is derived for
homogeneous material above the metallic layer, the homogeneity of composites can also affect the RL
and substituting the measured effective εr and/or µr into Equation (10) may not correctly predict the
input impedance of the absorber. Last but not least, the effect of incident angle is rarely investigated
for the graphene Dällenbach absorbers. As most of them operate at microwave frequencies aiming to
reduce the radar cross section for military applications, it is highly desired to achieve effective wave
absorption in a wide incident angle. Therefore, further experimental explorations are required to validate
the absorption performance of the graphene Dällenbach absorbers.
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Table 1. Microwave absorption properties of graphene and its derivatives based composites.
(BW: bandwidth; RL: return loss)

Year Ref. Type
BWmax tmax RLmin fmin tmin

(GHz) (mm) (dB) (GHz) (mm)

2018 [51] rGO/FeNi 5.6 (10.9–16.5) 2 −42.6 14.3 1.5
2018 [52] rGO/MWCNTs/ZnFe2O4 >2.3 (15.7–18+) 1 −22.2 17.4 1
2018 [53] Graphene/CoFeAl-LDH 7.36 (10.4–17.76) 2.5 −23.8 14.2 2.5
2017 [18] rGO/SiC >4.2 (8.2–12.4+) 3.7 −40.7 10.9 3.5
2017 [50] rGO/Co0.2Ni0.4Zn0.4Fe2O4 10 (6.4–16.4) 4 −52.2 13.5 4
2017 [54] rGO/CoFe2O4 5 (12.2–17.2) 2 −53.6 11.4 2.5
2017 [55] rGO/FeNi/CS 5 (13–18) 1.5 −45.2 15 1.5
2017 [56] rGO/ZnO >4.2 (8.2–12.4+) 4.8 −27.8 9.57 4.8
2017 [57] Graphene/NiO 4.24 (12.48–16.72) 1.7 −59.6 14.16 1.7
2016 [47] rGO/NiFe2O4 >3 (0.01–3+) 2 −68 1.11 2
2016 [49] Graphene/SiOC 3.9 (8.2–12.1) 2.65 −69.3 10.55 2.35
2016 [58] Graphene/PANI/TiO2 4.4 (12.2–16.6) 1.5 −45.4 14.4 1.5
2016 [59] Graphene/Fe3O4/Fe 6.2 (11.8–18) 2 −58 5.2 4.6
2015 [48] Graphene Foam >14 (4–18+) 10 −28 12.2 10
2015 [60] GNSs/rGO-CoFe2O4 >4.2 (8.2–12.4+) 2.5 −21.8 11.8 1.25
2015 [61] rGO/HGS 4.1 (13.1–17.2) 2 −46 10.9 2
2014 [62] rGO/FeNi 3.3 (11–14.3) 1.5 −32 12.4 1.5
2014 [63] Graphene/Fe3O4/SiO2/NiO 5.1 (12.4–17.5) 1.8 −51.5 14.6 1.8
2014 [64] rGO/ZnO 6.3 (11.7–18) 2.5 −25.95 10.2 3
2013 [46] rGO/PEDOT/Co3O4 3.1 (9.4–12.5) 2 −51.1 10.7 2
2013 [65] Graphene/Fe 4.4 (9.7–14.1) 2 −45 7.1 3
2013 [66] rGO/CuS/PVDF 3.8 (8.9–12.7) 2.5 −32.7 10.7 2.5
2013 [67] rGO/Fe3O4 2.8 (10.4–13.2) 2 −26.4 5.3 4
2013 [68] Graphene/Co3O4 >6.4 (11.6–18+) 2.5 −33.58 15.8 2.5
2013 [69] Graphene/Fe3O4 5 (10.8–15.8) 3 −40.3 7.04 5
2012 [45] rGO/NBR 4.5 (7.5–12) 3 −57 9.6 3
2012 [70] Graphene/PANI 5.6 (10.5–16.1) 2.5 −45.1 12.9 2.5
2012 [71] rGO/Fe3O4 4.9 (10.8–15.7) 2 −24 12.9 2
2011 [44] rGO/PEO >4.1 (13.9–18+) 1.8 −38.8 16.4 1.8

MWCNT: multiwall carbon nanotube; LDH: layered double hydroxide; CS: carbon spheres; SiOC:
silicon oxycarbide; PANI: polyaniline; GNS: graphene nanosheet; HGS: hollow glass spheres; PEDOT:
poly(3,4-ethylenedioxythiophene); PVDF: polyvinylidene fluoride; NBR: nitrile butadiene rubber; PEO: poly
(ethylene oxide).

2.3. Dielectric/Graphene Multilayer Absorbers

Finally, there are also quarter-wavelength absorbers based on dielectric/graphene structure
operating from THz to optical frequencies under wide absorption angle [72–77]. Unlike the Salisbury,
Jaumann and Dällenbach absorbers that require a metallic ground, the dielectric/graphene absorbers
utilize one or more kinds of dielectrics as well as graphene to achieve EM absorption, as shown in
Figure 5a–c. Slightly different from the absorbers with a metallic ground, the EM wave transmittance
(T) has to be considered in these devices and the absorption (A) is calculated with Equation (7).
Strong wave absorption is achieved when the transmittance is minimized and Fabry–Perot resonance
occurs. The absorption performance of dielectric/graphene absorbers can also be tuned by varying the
chemical potential of graphene [75–77]. No extra metallic electrodes are required in these devices as
the graphene layers act as optical transparent electrodes for self-biasing, as shown in Figure 5b,c.
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Figure 5. (a) schematic of THz absorber with graphene on the top and periodically stacked dielectric
layers with refractive indexes ns, na and nb respectively, reprinted with permission from Ref. [74];
(b) schematic of electromagnetic (EM) absorber operating at visible and near-infrared frequencies with
periodically stacked SiO2/graphene/Ta2O5 layers on poly (methyl methacrylate) (PMMA), reprinted
with permission from Ref. [77]; (c) schematic of THz absorber with GC(BA)N(AB)NCG′, where N is
the number of layers, G and G′ consist of stacked graphene/dielectric layers and A, B, C are dielectrics,
reprinted with permission from Ref. [75].

Although the simulation results of these devices demonstrate promising wave absorption
performance, there are a few challenges that have to be overcome before they can be used in reality.
First, the thickness of dielectric layers in each period has to be carefully designed so that the wave
experiences a quarter-wavelength path inside the material to ensure good wave cancellation at the
interfaces. Consider the devices are usually designed for THz to optical frequencies, the dielectric
thickness has to be carefully controlled otherwise the operation frequency can vary significantly from
the designed frequency. Second, the dielectric/graphene multilayer absorbers should be financially
competitive because there are also alternatives in the market. As these devices share an expensive
Complementary Metal Oxide Semiconductor (CMOS)-like top-down fabrication approach, obviously,
the most effective way to reduce the manufacturing cost is mass production. To make them financially
viable for the consumers, an international market is greatly desired. Finally, since these works
are all theoretical explorations, further experimental investigations are required to validate the
simulation results.

3. Graphene-Based Metasurface Absorbers

Metamaterials are artificial materials possessing characteristics not found in nature or difficult to
obtain naturally. Metamaterials are composed of carefully designed periodic sub-wavelength structures
and metasurfaces are two-dimensional metamaterials usually with sub-wavelength thickness. Over the
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past few decades, metasurfaces have attracted a great deal of attention due to its potential applications
in radar systems, wireless communications, etc. Metasurfaces are usually used to manipulate the EM
wave propagation such as EM wave absorbing [78,79] and shielding devices [80–82].

Recently, graphene has been proposed as a tunable material for metasurface design.
The graphene-based metasurface absorbers operates with different mechanisms including asymmetric
Fabry–Perot [78] and guided mode [83–85] resonances, hyperbolic-type dispersion [86], magnetic [87]
and plasmonic [88–91] resonances, etc. The operation frequency of graphene-based metasurface
absorbers can vary in a wide range from microwave [92] to optical frequencies [93] with nearly perfect
absorption. In addition, since the conductivity of graphene can be controlled by its chemical potential,
active graphene-based metasurface absorbers can be realized. The properties of metasurface strongly
depend on the design of unit cell. Generally, graphene are used as a continuous layer or patterned
structure in metasurface absorbers. On one hand, continuous graphene layer can be combined with
patterned metal [94–97] or dielectric layers [21,24,83,98–100] to couple the incident wave into resonant
mode. On the other hand, graphene can also be patterned into periodic unit cells to support a single [101]
or multiple resonant modes [26,102–104] for EM wave absorption. In some cases, both patterned
graphene and metallic structures are utilized in the unit cell design [105,106].

3.1. Multiband and Broadband Operation for Graphene Metasurface Absorbers

Similar to the Salisbury screen, most of the graphene metasurface absorbers also utilize metallic
ground that allow almost zero transmittance. Full-wave simulations have been widely used to estimate
the performance of graphene metasurface absorber. With carefully designed unit cell structures,
a couple of graphene metasurface absorbers with dual resonant modes within THz frequencies have
been theoretically investigated [26,107–109]. In 2016, a quad-band THz absorber utilizing a single
patterned graphene layer was presented by Masuminia et al. The symmetrical unit cell design
makes it insensitive to the polarization of EM waves and the simulation results demonstrate excellent
wave absorption under an incident angle between 0◦ to 40◦. The next year, Parvaz et al. proposed
a penta-band metasurface absorber composed of metallic rings and graphene sheets operating at
far-infrared frequencies, as shown in Figure 6a,b [110]. A transmission line model is derived and the
calculated results agree excellently with the results achieved from full wave simulations. The absorber
exhibits stable wave absorption while the incident angle varies between 0◦ to 75◦ for both TE and TM
polarized waves.

Figure 6. (a) schematic of penta-band graphene metasurface absorber; (b) the absorption spectra
achieved with full-wave simulation (green solid line) and equivalent circuit model (black dashed line),
reprinted with permission from Ref. [110].

It is noted that, for metasurfaces supporting multiple resonant modes, if the resonant frequencies
are designed close enough, the absorption peaks would partly overlap with each other and the device
tends to perform as a broadband absorber. For instance, Zhang et al. proposed a graphene metasurface
absorber utilizing unit cells consist of three metallic circular patches with different diameters, as shown
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in Figure 7a [111]. From the numerical simulation results, it is easy to see that the device resonates
at 33.68 THz, 35.90 THz and 39.65 THz, resulting in an enhanced effective absorption bandwidth
compared with the device with a single resonant mode. In addition, thanks to the symmetric circles
used in the unit cells, the metasurface also demonstrates polarization-insensitive performance over
31.2–37 THz with no less than 90% wave absorption (see Figure 7b). In addition, multiple resonant
modes can also be achieved by utilizing the polarization-insensitive dual electric LC (i.e., inductance
(L) and capacitance (C)) unit cells, as shown in Figure 7c [95]. Effective wave absorption is achieved
within 27.78 THz to 42.16 THz under a wide incident angle (see Figure 7d,e), corresponding to a
maximum fractional bandwidth of 41.12% at normal incidence.

Figure 7. (a) unit cell of broadband graphene metasurface absorber consisting of continuous graphene
and three circular metallic patches; (b) simulated absorption spectra with various azimuth angles
(ϕ), reprinted with permission from Ref. [111]; (c) schematic of a dual electric LC (i.e., inductance
(L) and capacitance (C)) unit cell; (d) the wave absorption vs. frequency and incident angles for
transverse magnetic (TM) polarized waves; (d) the wave absorption vs. frequency and incident angles
for transverse electric (TE) polarized waves, reprinted with permission from Ref. [95].

Moreover, it is also possible to achieve broadband THz absorption utilizing a single layer of
periodic graphene ribbons with gradient width [112], sinusoidally-patterned graphene sheets [113] and
square-patterned graphene [114]. Although asymmetric graphene sheets and ribbons are used for unit
cell designs, these absorbers demonstrate polarization-insensitive absorption and small performance
variation for incident angles between 0◦ to 30◦. In 2016, Agarwal et al. proposed a broadband absorber
with four gold helices buried in the dielectric for each unit cell. Graphene is placed on the top of the
metasurface [115] , as shown in Figure 8, to enhance the wave absorption and a relative absorption
bandwidth of 160% (i.e., for wavelength 200–1792 nm) is achieved. The symmetrical unit cell design
also guarantees polarization-independent wave absorption performance over near ultraviolet to near
infrared frequency.
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In addition, a couple of research groups have also designed broadband graphene metasurface
absorbers by stacking multiple metasurfaces resonating at different frequencies on the top of each
other [116–121]. In 2016, Huang et al. presented their experimental results on the metasurface printed on
a flexible substrate with graphene nano-flakes ink [122]. As shown in Figure 9a–e, the flexible absorber
can be easily coated on the surface of a cylindrical object. The measurement results demonstrate effective
microwave absorption from 10.4 GHz to 19.7 GHz, corresponding to a fractional bandwidth of 62%.

Figure 8. (a) schematic of graphene metasurface absorber with buried metallic helices; (b) the
simulated absorption spectra for left- and right-circular polarized waves, reprinted with permission
from Ref. [115].

Figure 9. (a) schematic of the unit cell; (b) image of the fabricated absorber; (c) absorber coated on the
surface of metallic cylinder; (d) SEM image of the printed graphene; (e) measurement results of the
graphene metasurface absorber, reprinted with permission from Ref. [122].

Recently, Ye et al. proposed a frequency selective surface (FSS) based metasurface absorber with a
patterned multilayer rGO sandwiched between two glass fiber layers, as shown in Figure 10a [123].
Two absorption peaks are generated in their device, demonstrating broadband wave absorption at
microwave frequencies. The measured RL exhibits a minimum of −46 dB at 9.1 GHz for d1 = 1.4 mm
and d2 = 2.2 mm. Meanwhile, the device demonstrates excellent microwave absorption (RL < 10 dB)
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over the whole measurement range (8–18 GHz), as shown in Figure 10b. The authors attribute
the advantage of using rGO-FSS to the polarization and conduction losses induced by abundant
micro-defects and hopping of charge carriers in their multilayer rGO, respectively.

Figure 10. (a) image of the fabricated flexible multilayer (reduced graphene oxide) rGO. The upper
inset illustrates the rGO based frequency selective surface (FSS) sandwiched between two dielectric
layers and the lower inset demonstrates the dimensional of a unpatterned multilayer rGO; (b) the
measured RL spectra without rGO (blue), with rGO in full coverage (black) and with rGO-FSS (red),
reprinted with permission from Ref. [123].

Although the operation of broadband graphene metasurface absorbers has been experimentally
demonstrated, the tunability of graphene conductivity has not been investigated in these experiments.
Due to the tunable sheet resistance of graphene, it is interesting to have a look at the explorations on
reconfigurable graphene metasurface absorbers as well.

3.2. Reconfigurability of Graphene Metasurface Absorbers

Thanks to the tunable conductivity of graphene, a large amount of theoretical investigations on
tunable graphene metasurface absorbers have been presented in the past few years. By combining
the continuous graphene layer with patterned metallic unit cell structures, EM wave absorbers with
reconfigurable operation frequency [20,29,31,124] or bandwidth [95,105] can be achieved. The devices
with two independently-tunable resonant frequencies at THz [125,126] and mid-infrared [127]
frequencies are also explored with full-wave simulations, demonstrating excellent stability on one
resonant frequency while the other frequency is tuned. In addition, by varying the chemical potential
of graphene, some metasurface absorbers also exhibit switching performance and operate as either fine
absorbers or reflectors [104,113,114,128,129]. It is worth mentioning that the thick dielectric layer in
the range of micrometers used in some of these theoretical calculations are impractical for electrostatic
doping [22,27,28,113]. Furthermore, in some works, the effects of interconnecting wires between unit
cells for the implementation of external bias voltage have not been taken into consideration, resulting
in great uncertainty in the actual performance of the absorbers [22,28,108,111,129–132].

Beside the theoretical explorations, Yi et al. have also presented their experimental results
on metasurface absorbers with square-patterned graphene on PET [133]. By utilizing samples with
different Rs or changing the number of graphene/PET layers, the mechanically reconfigurable absorber
utilizing tuning surface resistance (TSR) and stacking graphene metasurface (SGM) approaches
are experimentally investigated, as shown in Figure 11a–d. Although both TSR- and SGM-type
absorbers exhibit narrowband and poor microwave absorptions for normal incident waves, they exhibit
mechanically tunable resonant frequency from 12.5 GHz to 13.3 GHz and 12.3 GHz to 13.5 GHz,
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respectively. From the comparisons between simulation and experiment results, it is also noted that
the gaps resulting from imperfect stacking process increase the resonant frequency of the absorber.

Figure 11. (a) schematic of the multilayer metasurface absorber with square-patterned graphene;
(b) fabricated graphene metasurface absorber; (c) the measured absorption spectra for 1–3 stacked
square-patterned graphene layers as well as the simulation results with and without gap between
the layers; (d) the measured absorption spectra for a single square-patterned graphene layer but with
different graphene sheet resistances and the corresponding simulation results with and without gaps
between the layers, reprinted with permission from Ref. [133].

In addition, Chen et al. proposed a graphene metasurface absorber operating at microwave
frequencies as shown in Figure 12a,d [134]. They sandwich the electrolyte between two PVC supported
graphene FSSs and tend to vary the sheet resistance of graphene through electrostatic doping. Although
excellent agreement have been achieved between measurement and simulation results for samples
with Rs = 20, 50 and 70 Ω/sq under normal incidence, none of their samples exhibit reconfigurable
absorption performance that has been predicted by full-wave simulations. The authors attribute
the failure of their sample to the hot lamination process that reduces the gap between the graphene
layers. Recently, Jiang et al. presented their experimental results on a THz absorber utilizing patterned
graphene as unit cells [135]. A narrowband absorption from 1.7 THz to 1.97 THz is experimentally
achieved under a bias voltage of 30 V for normal incident wave. Due to the thick dielectric layer
(27 µm) used for electrostatic doping, the sample exhibits a small absorption performance variation
while the bias voltage varies from 0 V to 60 V.
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Figure 12. (a) image of the fabricated Type-A sample and measurement setup; (b) measured
and simulated absorption spectra of Type-A metasurface with various graphene sheet resistances;
(c) schematic of Type-B sample; (d) measured and simulated absorption spectra of Type-B metasurface
with various graphene sheet resistances, reprinted with permission from Ref. [134].

4. Conclusions and Outlook

In summary, this work introduces the implementation of graphene and its derivatives in
quarter-wavelength and metasurface absorbers for EM wave absorption. The experimental results
on narrowband graphene Salisbury screen with electrically tunable absorption strength have been
discussed. In addition, graphene or reduced graphene oxide can also be combined with other magnetic
or non-magnetic materials for broadband Dällenbach absorber design. The high permeability and/or
permittivity of the synthesized composites can help to keep the thickness of resulting microwave
Dällenbach absorbers within a few millimeters. However, since most of the theoretical investigations of
graphene Dällenbach absorbers are based on the measured complex permeability and/or permittivity,
further experimental investigations are requested to validate the theoretical results and the effects of
incident angles are also to be explored. In addition, while the theoretical explorations on graphene
metasurface absorber demonstrate promising reconfigurability, a limited number of experimental
investigations only demonstrate mechanically rather than electrically tunable absorption performance
due to the limitation of immature fabrication processes. The future research directions of graphene
metasurface absorbers include the developments of new design technologies to relax the requirements
of device fabrication and new manufacturing technologies to reduce the device cost. The former
direction tends to reduce the possibility of device failure caused by the immature fabrication process
and the latter direction aims to make graphene metasurface absorbers financially viable for industrial
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and military applications. Moreover, graphene may also be combined with other tunable materials
such as liquid crystal to realize reconfigurable multi-functional metasurfaces. With the development
of graphene synthesis and device fabrication technologies, the graphene metasurface absorbers with
reconfigurable absorption performance may play an important role in the development of smart EM
wave absorbing materials.
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