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Featured Application: Automatic summarization is widely used in the news area. Due to the
overload of news information, people are eager to have a tool to help them learn about the most
useful information in the shortest time. In addition, search engines also comprise one of the
applications. Automatic summarization based on query will help users find their content of interest
as soon as possible. There are also many other research fields like data mining, chat bot, narrative
generation, etc., having a strong connection to the summarization task.

Abstract: Recently, neural sequence-to-sequence models have made impressive progress in
abstractive document summarization. Unfortunately, as neural abstractive summarization research
is in a primitive stage, the performance of these models is still far from ideal. In this paper,
we propose a novel method called Neural Abstractive Summarization with Diverse Decoding
(NASDD). This method augments the standard attentional sequence-to-sequence model in two
aspects. First, we introduce a diversity-promoting beam search approach in the decoding process,
which alleviates the serious diversity issue caused by standard beam search and hence increases
the possibility of generating summary sequences that are more informative. Second, we creatively
utilize the attention mechanism combined with the key information of the input document as an
estimation of the salient information coverage, which aids in finding the optimal summary sequence.
We carry out the experimental evaluation with state-of-the-art methods on the CNN/Daily Mail
summarization dataset, and the results demonstrate the superiority of our proposed method.

Keywords: neural abstractive summarization; sequence-to-sequence neural model; beam search;
diverse decoding; optimal sequence selection

1. Introduction

Document summarization is the task of generating a condensed and coherent summary of
a document while retaining the salient information. There are two broad types of summarization:
extractive and abstractive. Extractive summarization systems generate summaries by extracting
sentences from the original documents, while abstractive summarization systems use words or
phrases that may not appear in the original document like the human-written summaries. Abstractive
summarization is considered to be much more difficult, for it involves sophisticated techniques like
natural language understanding, knowledge representation, natural language generation, etc.

Over the past few years, deep neural network approaches have shown encouraging results in
various natural language generation (NLG) tasks like machine translation [1–3], image captioning [4],
and abstractive summarization [5]. In particular, the attention-based sequence-to-sequence (seq2seq)
framework with recurrent neural networks (RNNs) [5–7] prevails at the task of abstractive
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summarization. While promising, these methods still fail to provide satisfactory performance when
faced with a long input sequence of multiple sentences, with a considerable gap with respect to
extractive approaches.

In this work, we study the key factors that keep abstractive models from achieving better
performance. The sequence-to-sequence framework consists of two parts: an encoder that processes
the input and a decoder that generates the output. There have been extensive works on the design
and alignment of the encoder, like the choice of the neural network structure [5–7], the specific design
of the attention mechanism [8–14], etc. In contrast, the decoding process, which directly affects the
results of the summarization task, has received relatively much less attention.

In the decoding stage, nearly all these seq2seq models use a heuristic algorithm called beam
search, which generates sequences word-by-word in a greedy left-to-right fashion while keeping
a fixed number (top N) of candidates at each time step. At the end of the beam search, the top sequence
with the highest conditional probability would be selected as the summary of the input document.
However, in practice, with the increasing length of generated sequences, candidate sequences expanded
from a single beam would gradually take up the positions of top N. As a result, the beam search
decoder always produces nearly identical sequences that only differ by several words in the endings.
Figure 1 shows an example of the outputs of the neural decoder applying the standard beam search
method. As the decoding process is in fact a process of iterative word prediction, the lack of diversity
of beam search means that this widely-applied method only covers a small portion of the search
space. Therefore, the standard beam search is not only a waste of computational resources, but more
importantly, eliminates the chance of generating more distinct and maybe better sequences for the
summarization systems.

Figure 1. Example from the CNN/Daily Mail test dataset showing the outputs of the standard beam
search decoder.

Another common weakness of previous works is the lack of an explicit method for estimating the
salient information preservation of the input document, as saliency is one of the core requests for the
summarization system [15,16]. During the whole process of generating the sequences, the only feature
that neural decoders rely on is the conditional probability of the trained language model, which may
result in the output summary being fluent in language, yet missing most of the salient points of the
original document.

In this paper, we study how to improve abstractive document summarization by focusing on
addressing the issues of decoding and propose a method called Neural Abstractive Summarization
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with Diverse Decoding (NASDD). In the process of decoding, the NASDD model introduces a new
objective and the middle-term grouping approach to discourage sequences from sharing common roots,
thus improving diversity. With the improvement of diversity, the selection of the optimal sequence
as the final summary becomes a problem. The standard beam search process selects the one with the
highest conditional probability, which does not make much sense because of the high similarity of
candidate sequences. The probability based on the trained language model is more of an estimation of
language fluency, and the participation of salient information of the input document is relatively limited.
To address this problem and inspired by the unsupervised keyword extraction method, we locate
salient points of the original document by such an approach. At each time step of the decoding
process, the neural decoder produces an attention vector. This vector indicates the participation of
every word in the document in this time step’s word prediction process. Using the attention vector
as a bridge to the input document and combining it with the scored words allow us to estimate the
salient information coverage. In sum, the probability values of the language model represent the
fluency, the connection between the generated words, and the original document reflects the saliency.
Our proposed selection method considers both factors to find the optimal summary sequence.

We conduct extensive experiments on the popular CNN/Daily Mail dataset. Experiments
show that our method outperforms state-of-the-art neural models in terms of both ROUGEscore
and diversity statistics.

The main contributions of this paper are as follows:

1. We introduce a Diversity-Promoting Beam Search approach (DPBS) in the sequence-to-sequence
neural model to generate multiple diversified candidate sequences for abstractive document
summarization. This search method covers a much larger search space than the standard beam
search, thus increasing the probability of generating better summary sequences.

2. We design a selection algorithm that considers extensive factors for the outputs of diverse beam
search to locate the optimal sequence. The essential part of this method is using the attention
mechanism as a bridge between the input document and the generated summary to estimate the
salient information preservation, providing a novel and viable approach for saliency estimation.

3. We combine these methods in a unified neural summarization system and achieve state-of-the-art
performance.

The paper is organized as follows. Section 2 introduces related works in abstractive document
summarization. Section 3 describes our method. Section 4 presents the experiments and discussion.
In Section 5, we conclude this paper.

2. Related Work

Early summarization works mostly focused on extractive methods with human-engineered features,
for example parts of speech [17] and term frequency [18]. Classical approaches include graph-based
methods [19], integer linear programming [20] and classifier-based methods [21,22]. On the other
hand, there has been much less research on abstractive summarization. Early works on abstractive
summarization were mostly restricted to the domain of sentence compression, using methods like syntactic
tree pruning [23,24] and machine translation [25]. A more systematic review of these classical approaches
can be found in [15].

In recent years, neural networks have been widely investigated both on extractive and
abstractive summarization tasks. In terms of neural extractive models, impressive performance
gains have been made by applying deep learning techniques in the traditional framework [26–29]
or using a more data-driven way, i.e., the encoder-decoder approach [30,31]. In the meantime,
neural sequence-to-sequence models have provided a viable new approach for abstractive
summarization. As this paper is about abstractive summarization at the document level, the following
sections will mainly focus on the related works of neural abstractive summarization.
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Rush et al. [5] were the first to apply modern neural networks in the task of abstractive
text summarization and achieved state-of-the-art performance on the sentence-level summarization
datasets DUC-2004 and Gigaword. Based on the neural encoder-decoder architecture with the attention
mechanism, their model used a Convolutional Neural Network (CNN) encoder and a neural language
model decoder. Chopra et al. [6] extended this work by replacing the decoder with a Recurrent
Neural Network (RNN). Nallapati et al. [7] further improved the performance by using a full RNN
encoder-decoder framework. These neural models often use a fixed vocabulary, which leads to the
Out-Of-Vocabulary (OOV) problem when there are new words in the input. One way to fix this is to
enable the decoder network to copy these OOV words into the output sequence. Based on this copying
idea, Gu et al. [32] proposed CopyNet and Vinyals et al. [33] proposed the pointer network.

Another challenge for abstractive summarization is the lack of large-scale datasets for longer
document-level summarization. Nallapati et al. solved this problem by introducing the CNN/Daily
Mail dataset, which was originally the DeepMind question-answering dataset [34]. In their work,
they provided the first abstractive baseline for this dataset and illustrated a key problem in this
document-level summarization: these attentional neural models often generate unnatural summaries
with repeated phrases. Tan et al. [16] proposed a graph-based attention mechanism to address saliency
and a hierarchical beam search algorithm to alleviate the repeated phrases problem. Paulus et al. [35]
proposed the intra-attention mechanism and a new training method with reinforcement learning
to generate more readable long sequences. See et al. [36] augmented the standard seq2seq model
with a pointer network [37] for the OOV problem and the coverage mechanism [38,39] to discourage
repetition. These models were able to achieve state-of-the-art performance on the CNN/Daily Mail
dataset, generating summaries with basic readability. Unfortunately, these state-of-the-art models have
overlooked the potential value of improving beam search, which keeps these models from getting
better performance.

There have been some works on producing diverse decoding sequences from recurrent models in
other Natural Language Processing (NLP) tasks like machine translation and conversation modeling.
Li et al. [40] were the first to address the issue of output diversity in the neural sequence generation
framework; they proposed using maximum mutual information as the objective function in neural models
to produce more diverse and interesting responses in conversation modeling. Li and Jurafsky [41] proposed
a beam search diversification method, which discourages sequences from sharing common roots to generate
diverse lists for neural machine translation. Vijayakuma et al. [42] proposed a universal diverse beam
search method, which can be applied to any model where the original beam search is applicable and
outperformed the previously-proposed diverse decoding techniques. However, these methods only
focus on generating different and fluent sequences, and they lack considerations of the content of the
sequences. In abstractive summarization, diversity is meaningless if most of the generated lists have no
connection to the input document. In addition, all of the above methods are for single-sentence-level
generation tasks and are not applicable to abstractive summarization tasks.

Compared to previous works, our method focuses on the task of document-level abstractive
summarization using the neural attention model. The proposed model combines a collection of
previously-proven effective methods on the standard neural attention framework, including the
pointer network for the OOV problem [37] and the converge mechanism [36] for the repetition problem.
Moreover, instead of using the traditional decoder, we modify the standard beam search with our new
objective and introduce new selection.

3. Neural Abstractive Summarization with Diverse Decoding

In this section, we introduce the framework and implementation details of the proposed NASDD
approach. We chose a neural framework of summarization called pointer generator [36] as the
base model to apply the diverse decoding method and sequence selection method. This framework
itself is the standard sequence-to-sequence attentional model combined with a collection of proven
effective measures and achieves the state-of-the-art performance on the document-level abstractive
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summarization. The original model then naturally becomes the baseline of our experiments.
For the sequence-to-sequence attentional model, we used a bi-directional LSTM encoder and
a single-layer LSTM decoder, and we used the pointer mechanism to handle OOV problems and
the coverage mechanism to handle repetition problems. Based on the neural model, we applied the
Diversity-Promoting Beam Search method (DPBS) and the optimal sequence selection method.

3.1. Structure of the Neural Network Model

The base neural model uses a bi-directional LSTM encoder and a single-layer LSTM decoder,
as shown in Figure 2. The encoder takes the source text x = {w1, w2, . . . , wn} as input and produces
a sequence of encoder hidden states {h1, h2, . . . , hn}.

et
i = vT tanh (whhi + wsst + battn) (1)

Figure 2. Illustration of the attentional sequence-to-sequence model. The model attends to relevant
words in the source text to generate words of the output sequence.

The task is to predict the summary sequence y = {y1, y2, . . . , yn}. At each step t, the decoder
receives the word embedding of the previous word and produces the decoder state st. Notice that all
the following probability expressions are conditional probabilities. The attention distribution at each
decoding time step is:

at = softmax
(
et) (2)

where v, wh, ws, and battn are learnable parameters. The attention distribution can help the decoder to
focus on a specific part of the input when predicting the next word. Next, the attention distribution is
used to calculate the context vector, which is the weighted sum of encoder hidden states and can be
used to produce the vocabulary distribution:

h∗t = ∑
i

at
i hi (3)

Pvocab = softmax
(
V′ (V [st, h∗t ] + b) + b′

)
(4)

where V′, V, b, b′ are learnable parameters. Pvocab is the probability over all words in the vocabulary.
Then, we add the pointer mechanism, which works as a switch, to choose whether to generate a word
from the fixed vocabulary or to copy OOV words from the input. The generation probability Pgen for
time step t is calculated as:

Pgen = œ
(

wT
h∗ + wT

s st + wT
x xt + bptr

)
(5)
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where vectors wh∗, ws, wx, and scalar bptr are learnable parameters and œ is the sigmoid function.
We finally obtain the following probability distribution:

P (yt) = PgenPvocab (yt) +
(
1− Pgen

)
∑

i:yi=yt

at
i (6)

During training, we use the human-written summary as the target sequence y∗ =
{

y∗1 , y∗2 , . . . , y∗n
}

;
the loss for time step t is the negative log likelihood of the target word y∗t ; and the overall loss for the
whole sequence is:

loss =
1
T

T

∑
t=0
−logP (y∗t ) (7)

3.2. Diversity-Promoting Beam Search Method

In this section, we introduce our DPBS method, which is an improved decoding procedure for the
standard decoder. We talk about the task of decoding in Section 3.2.1 and reveal the problem caused
by the huge search space. In Section 3.2.1 we introduce the beam search method, which alleviates the
search problem in a greedy way, and discuss its shortcomings when facing long sequence-generation
tasks like summarization. Then, in Section 3.2.3, we introduce our DPBS method, which is composed
of a novel objective and a middle-term grouping approach.

3.2.1. Decoding Problem

The neural model is trained to estimate the likelihood of sequences of generated words given the
input x. When generating summaries, as Equation (6) expresses, the decoder produces the conditional
probability distribution for the next output considering the input and all previous generated words.
Let θ (yt) = log P(yt|yt−1, . . . , y1, x) be the conditional probability distribution over the vocabulary
V at time step t. The log probability of a sequence of generated words can now be written as
Θ
(

Y[t]

)
= ∑

i∈[t]
θ (yi). Then, the decoding task is to find a sequence y that maximizes Θ (Y).

The decoder produces the probability distribution over the vocabulary V, which means the
decoder has as many choices as the vocabulary size |V|. Every one time step forwards means the
whole search space is expanded |V| times. At time step t, the search space for finding the global
optimum solution is |V|t, which is computationally intractable. An alternative approach is to choose
the word with the highest probability each time, which is a strictly greedy approach and is not
necessarily going to provide the sentence with the highest probability.

3.2.2. Standard Beam Search and Its Problem

A compromise between exact and greedy decoding is to use the beam search approach,
which keeps the top K high-scoring candidates at each time; where K is known as the beam size.
The beam search is the standard approach for neural decoding. At time step t− 1 in the decoding
process, we keep record of K hypotheses based on score S (Yt−1|x) = logP(yt−1, . . . , y1|x) =

Θ
(

Y[t−1]

)
. As the decoding process moves on to time step t, each of the K hypotheses (denoted as

Yk
t−1 = {yk

1, yk
2, ..., yk

t−1}, k ∈ [1, K]) is expanded individually by selecting the top K candidates, denoted

as Yk,k′
t−1, leading to the construction of K× K new hypotheses:

S
(

Yk
t−1, yk,k′

t |x
)

, k′ ∈ [1, K], k ∈ [1, K] (8)

The goal is to find the top K hypotheses from the newly-generated K× K hypotheses; we rank
theme with scores computed as as follows:

S
(

Yk
t−1, yk,k′

t |x
)
= S

(
Yk

t−1|x
)
+ logP(yk,k′

t |x, Yk
t−1) (9)
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Based on the score S
(

Yk
t−1, yk,k′

t |x
)

, the top K hypotheses are selected, and the remaining
hypotheses are ignored as the decoder proceeds to next time step.

The beam search process can be viewed as a search algorithm that explores a graph by expanding
the most promising node in a limited set. However, each time step when we are expanding the top K
nodes, the first node’s successors can easily outcompete other nodes’ successors. This is because their
parental node is already the one with the highest score, and the beam search selects candidates by the
sum of the words’ score. This parental advantage accumulates with the increasing of decoding length,
resulting in the final candidates generate mostly coming from a single beam, with minor variations in
the tail.

3.2.3. Diversity-Promoting Beam Search

To overcome this shortcoming and inspired by the work of [41] in machine translation, we propose
to introduce the ranking information in the calculation of candidates’ score S

(
Yk

t−1, yk,k′
t |x

)
to

discourage sequences from sharing common roots and thus promoting diversity. For each of the K
candidates Yk

t−1, we rank the newly-generated top K nodes Yk,k′
t−1, based on their conditional probability

P(yk,k′
t |x, Yk

t−1) in descending order. Therefore, now, k′ denotes the ranking of the current node among

its siblings. Then, we add an additional part γk′ to rewrite the score function for
[
Yk

t−1, yk,k′
t

]
:

Ŝ
(

Yk
t−1, yk,k′

t |x
)
= S

(
Yk

t−1, yk,k′
t |x

)
− γk′ (10)

where scalar γ can be tuned based on the validation set. The top K candidates are then selected
based on Ŝ

(
Yk

t−1, yk,k′
t |x

)
as the time step moves on. This additional term γk′ works by punishing

bottom ranked nodes among siblings (directly descended from the same parental node), thus making
the whole decoding process tend to select candidates descended from different root nodes.
The diversity-promoting process is shown in Figure 3.

Figure 3. Illustration of standard beam search and the proposed diversity-promoting beam search.
Note that this is only the initial part of the diversity-promoting process. After the candidates have
diverged sufficiently, we turn to using the grouping strategy.

With the length of decoding sequences growing, the “accumulated parental advantage” of the first
beam would gradually undermine the effect of γk′ and make the selection still concentrate on the first
beam in the last several time steps of decoding. To avoid this, we use the new score function for beam
search at the beginning of decoding. Next, we divide the K unfinished candidates into groups G at
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time step t′ when the candidates have diverged sufficiently. Then, we limit the selection of candidates
into each of the groups, i.e., we use the standard beam search with beam size K/G inside each of
these groups until the end of decoding. As the sequences have already diverged, the subsequent
predicted nodes from different groups are unlikely to overlap, and thus, the grouping strategy can
help to preserve the diverged beam.

3.3. Optimal Sequence Selection Method

At the end of the Diverse-Promoting Beam Search method (DPBS), there are K final candidate
sequences to be the summary of the input document. As the diversity improves, the original selection
method becomes inappropriate. We propose a novel selection method that considers more about the
candidates’ connection to the salient information of input documents, instead of only choosing the one
with the highest probability as the standard beam search does.

Recall that the attention distribution at at time step t is a vector with a size equal to the number of
words in the input document, and the distribution demonstrates the degree of participation of each
input word in decoding at this time step. Along with each of the K candidate sequences, there is
a list of attention vectors; we propose to use these vectors as a measurement for salient information
preservation. We are inspired by the unsupervised keyword extraction method, which could be used
for importance evaluation of input words without harming the full data-driven pattern of neural
abstractive summarization. We use the strong baseline tf-idfweighting to score every word in the
input document (x = {w1, w2, . . . , wn}) and combine the list of attention vectors, and we now have
a term for saliency estimation: ∑

t
∑
i

at
i ωi, where ωi is the Tf-idf score of the ith word of the input

document. We also introduce an additional term that considers the extractive words (words appear
both in generated sequences and the input document; once again, we use the Tf-idf score value) ∑

ωj∈x
ωj.

The score for a given candidate sequence y is then calculated as follows:

Score (y)=
1
Ly

(
log (y|x)+ λ ∑

t
∑

i
at

i ωi+ η ∑
ωj∈x

ωj

)
(11)

where Ly is the length of sequence y; we optimize λ and η on the validation set.

4. Experiment

In this section, we introduce our experimental setup and result analysis. We conduct experiments
to validate the effectiveness of the NASDD approach at improving abstractive summarization.

4.1. Experimental Setup

In this section, we will describe our experimental setup in detail. The following subsections will
present our dataset, implementation detail, evaluation metrics, and baseline methods, respectively.

4.1.1. Dataset

We used the CNN/Daily Mail dataset [7,34], which has been widely used in neural document
summarization. The corpora was constructed by collecting human-written highlights from news
articles on the website of CNN and Daily Mail, and it contains 287,226 train pairs, 12,268 validation
pairs, and 11,490 test pairs.

4.1.2. Implementation

This model was implemented using Tensorflow. We used a one-layer biLSTM encoder and
a one-layer LSTM decoder, with 256-dimensional hidden states and 128-dimensional word embeddings.
For this model, we chose the 50k most frequently-used words in the dataset as the fixed vocabulary,
and the word embeddings were learned from scratch during training. We trained the model using
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Adagrad [43] with a learning rate of 0.15 and an initial accumulator value of 0.2. Gradient clipping
was used with a maximum gradient norm of two. The number of epochs was determined by early
stopping on the validation set.

4.1.3. Performance Measurement

We adopted the widely-used ROUGEmetric [44] for the evaluation of the summarization
performance. ROUGE stands for Re-call-Oriented Understudy for Gisting Evaluation. Formally,
ROUGE-N is an n-gram recall between a candidate summary and a set of reference summaries.
ROUGE-N is computed as follows:

ROUGE− N =
∑S∈{Referencesummaries} ∑gramn∈S Countmatch (gramn)

∑S∈{Referencesummaries} ∑gramn∈S Count (gramn)
(12)

where n stands for the length of the n-gram, gramn, and Count (gramn) is the maximum number
of n-grams co-occurring in a candidate summary and a set of reference summaries. In this paper,
we use full-length F1 score on ROUGE-1 (unigrams), ROUGE-2 (bigrams), and ROUGE-L (Longest
common substring).

We also report the diversity statistics with the evaluation method proposed by [40], which counts
the number of distinct n-grams present in the list of generated candidates of the beam search, and then
divide these counts by the sentence length to bias against long sentences.

4.1.4. Baseline Methods

In order to verify the effectiveness of the proposed method, we compared our method with
the results of state-of-the-art neural summarization methods reported in recent papers. Extractive
models include a sentence ranking model called REFRESH [45], and SummaRuNNer [31], which is
a recurrent neural network based sequence model. In addition, lead-3 is a strong extractive baseline
that uses the first three sentences as the summary. Abstractive models include the original Pointer
Generator Network (PGN) [36] and the Graph-Abs model [16] which applys the graph-based attention
mechanism to seq2seq neural model.

4.2. Experiment Results

In this section, we first analyze the effectiveness of the two key components of the NASDD
method and then evaluate the overall summarization performance of NASDD and baseline methods.

In particular, the experiments aim to answer three main questions:

• Can the DPBS method effectively improve diversity?
• Can the optimal sequence-selection method locate the ideal sequences?
• Does the NASDD method achieve state-of-the-art performance on the abstractive summarization task?

4.2.1. DPBS Evaluation

In Table 1, we report the diversity statistics calculated according to the number of distinct
n-grams produced by the standard beam search and the DPBS method. These two methods are
applied to the same test set with the same beam size of four. As discussed in the previous section,
the diversity statistics present how diverse the parallel generated sequences are. The standard beam
search achieved 0.1714 (Distinct-1), 0.3627 (Distinct-2), and 0.4344 (Distinct-3). The DPBS exceeded this
with 0.1953 (Distinct-1), 0.4476 (Distinct-2), and 0.6389 (Distinct-3). Distinct-1 measures how different
the multiple generated sequences are at the single-word level, and Distinct-2 and Distinct-3 are more
about the phrase level. The results in Table 2 show that DPBS had improvements on both sides. As the
diversity was calculated using distinct n-grams divided by sequence length, the total number of the
generated distinct n-grams of the method was considerably bigger than these figures suggest. To have
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an intuitive view of the diversity provided by our DPBS method, we used a sample news article from
the test set and obtained the decoding outputs by DPBS and beam search. The results are show in
Figure 4. Due to the original article being too long, we do not show it here. We used the human-written
summary to have an overview of its content. As shown by this example, our DPBS effectively increased
the diversity without much harm to the readability. We also provide the different decoding results of
a battery of articles in this paper’s Supplementary Material.

Table 1. Diversity statistics of the standard beam search and the Diversity-Promoting Beam Search
(DPBS) method.

Distinct-1 Distinct-2 Distinct-3

Standard Beam Search 0.1714 0.3627 0.4344
DPBS 0.1953 0.4476 0.6389

Figure 4. Example from the CNN/Daily Mail test dataset showing the outputs generated by both
DBPS and standard Beam Search (BS).
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Table 2. ROUGE F1 scores on the test set. All of these ROUGE scores have a 95% confidence interval of
at most ± 0.25 as reported by the official ROUGE script. PGN, Pointer Generator Network; NASDD,
Neural Abstractive Summarization with Diverse Decoding.

Rouge
1 2 L

lead-3 40.34 17.70 36.57
REFRESH 40.0 18.2 36.6

SummaRuNNer 39.6 16.2 35.3

Graph-Abs 38.1 13.9 34.0
PGN 38.15 16.46 35.37

NASDD (w/o selection) 39.03 16.02 35.71
NASDD 39.97 17.58 37.91

4.2.2. Selection Method Evaluation

Figure 5 shows the different results achieved by twenty different combinations of λ and η for the
selection method. These experiments were all performed on the same validation set. As shown in the
score function (11), λ ∑

t
∑
i

at
i ωi indicates the salient information preservation and η ∑

ωj∈x
ωj indicates the

coverage of extractive keywords. Figure 5 has verified this by demonstrating the positive association
between λ and ROUGE-L in the left part and the positive association between η and ROUGE-1 in the
right part. ROUGE-l measures single-word overlapping, and ROUGE-L is more about sentence-level
structure similarity. Although there are declines in both parts of Figure 5, like ROUGE-2 in the left
part, the decline is in a small range, and proper choices of λ and η can reinforce each other. In NASDD,
we tuned the value of λ and η on the validation set and finally set λ = 0.4 η = 0.2. In addition,
the effectiveness of the two parameters has also proven that our DPBS method provided sufficient
diversity, thus providing ample room for these factors to work.

Figure 5. ROUGEscores achieved on the validation set with various value combinations of λ and η.
The two parameters affected the result from different aspects.

4.2.3. Overall Summarization Performance

The results in Table 2 show the overall performance evaluation of baseline models and
our proposed NASDD model. Firstly, our proposed method exceeded the state-of-the-art neural
summarization model (PGN) by over one ROUGE point (+1.82 ROUGE-1, +1.12 ROUGE-2, + 2.54
ROUGE-L). Then, the extractive methods were still tough to beat, but our method achieved competitive
performance. The sixth row of Table 2 is NASDD without the proposed selection method, which only
uses the DPBS algorithm in decoding and adopts the conventional maximal possibility selection method
for the final candidates of DPBS. The results were 39.53 (ROUGE-1), 16.02 (ROUGE-2), and 35.71
(ROUGE-L). This shows that without the selection method, only using the original maximal possibility
selection method cannot achieve better, sometimes even worse, results than the baseline.
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As the DPBS method is to improve the diversity of the beam search method to increase
the possibility of generating better sequences, at the same time, worse sequences may also be
generated, so the selection method capable of filtering bad candidate sequences becomes necessary.
Moreover, the ROUGE evaluation has its own limitation: the evaluation is only performed based on the
n-gram overlap between the generated sequences and the ground truth summaries written by a human.
This means sequences containing insufficient words appeared in the ground truth summaries and
will get very low ROUGE scores even when they are expressing the same idea. The selection method
augmented the important words’ influence in the selection process, and these words were also highly
likely to appear in the ground truth summaries. In summary, the DPBS method can generate better
sequences as summaries with the increase of diversity, and the selection method can effectively choose
these sequences.

5. Conclusions and Future Work

In neural abstractive summarization, beam search is the most prevalent approximate inference
algorithm for the decoding process; however, it suffers from a lack of diversity. The highly-similar
sequences generated by standard beam search means the waste of computational resources and the
elimination of potential better choice. In this paper, for the task of neural summarization, we present
the Diversity-Promoting Beam search (DPBS) to encourage sequences generated from multiple roots
and thus generate more diverse outputs. We also design an effective method to select better sequences
based on saliency estimation. The DPBS method is applicable to any sequence model that uses the
standard beam search and brings considerable improvement of performance. Our novel selection
method creatively uses the attention vector for saliency estimation, providing a new promising solution
for sequence evaluation in neural language generation. Experimental results show that the proposed
NASDD method improves the performance with respect to the state-of-the-art neural summarization
methods on the CNN/Daily Mail summarization task.

This work suggests several interesting directions for future research. We will try to integrate other
methods to improve the coherence of the more diverse generated sequences. Moreover, we will further
investigate methods to improve diversity from the sentence level to the discourse level, as a reasonable
solution for generating multiple summaries with a single input document.
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