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Abstract: This paper presents an extended study about the compression of topological models of
indoor environments. The performance of two clustering methods is tested in order to know their
utility both to build a model of the environment and to solve the localization task. Omnidirectional
images are used to create the compact model, as well as to estimate the robot position within
the environment. These images are characterized through global appearance descriptors, since
they constitute a straightforward mechanism to build a compact model and estimate the robot
position. To evaluate the goodness of the proposed clustering algorithms, several datasets are
considered. They are composed of either panoramic or omnidirectional images captured in several
environments, under real operating conditions. The results confirm that compression of visual
information contributes to a more efficient localization process through saving computation time and
keeping a relatively good accuracy.
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1. Introduction

The presence of mobile robots in many kinds of environments has increased substantially during
the past few years. Robots need a high degree of autonomy to develop their tasks. In the case of
autonomous mobile robots, this means that they must be able to localize themselves and to navigate
through environments that are a priori unknown. Hence, the robot will have to carry out the mapping
task, which consists of obtaining information from the environment and creating a model. Once this
task is done, the robot will be able to address the localization task, i.e., estimating its position within
the environment with respect to a specific reference system.

Vision sensors have been widely used for mapping, navigation, and localization purposes.
According to the number of cameras and the field of view, different configurations have been proposed.
Some authors (such as Okuyama et al. [1]) have used monocular configurations. Others proposed
stereo cameras by using binocular (such as Yong-Guo et al. [2] or Gwinner et al. [3]) or even trinocular
systems (such as Jia et al. [4]).

Despite stereo cameras permitting measuring depth from the images, these systems present a
limitation related to their field of view. In order to obtain complete information from the environment,
several images must be captured. In this respect, omnidirectional cameras constitute a good alternative.
They can provide a big amount of information with a field of view of 360 deg. around them, and their
cost is relatively low in comparison with other kinds of sensors. Furthermore, omnidirectional vision
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systems present further advantages. For instance, the features in the images are more stable (because
they stay longer as the robot moves), and they permit estimating both the position and the orientation of
the robot. Omnidirectional cameras have been successfully used by different authors for mapping and
localization [5-9]. A wide study was carried out by Paya et al. [10], who introduced a state-of-the-art
of the most relevant mapping and localization algorithms developed with omnidirectional visual
information. An example of a mobile robot that has an omnidirectional camera mounted on it is shown
in Figure 1a, and an example of an omnidirectional image is shown in Figure 1b.

(@)

Figure 1. (a) Example of a robot Pioneer P3-AT® equipped with an omnidirectional vision system
and a laser range finder. In this work, only the omnidirectional camera is used. (b) Example of an
omnidirectional image captured from one office.

In the related literature, two main frameworks have been proposed in order to carry out the
mapping task: the metric maps, which represent the environment with geometric accuracy; and the
topological maps, which describe the environment as a graph containing a set of locations with the
related links among them. Regarding the second option, some authors have proposed to arrange the
information in the map hierarchically, into a set of layers. The way a robot solves the localization task
efficiently in hierarchical maps is as follows: first, a rough, but fast localization is carried out using
the high-level layers; second, a fine localization is tackled in a local area using the low-level layers.
Therefore, in order to address the mapping and localization issue, hierarchical maps constitute an
efficient alternative (like the works [11-13] show).

Visual mapping and localization have been solved mainly by using two main approaches to extract
the most relevant information from scenes; either by detection, description, and tracking of some
relevant landmarks or working with global appearance algorithms, i.e., building a unique descriptor
per image. On the one hand, the methods based on local features consist of extracting some outstanding
points from each scene and creating a descriptor for each point, using the information around it
(Figure 2a). The most popular description methods used for this purpose are SIFT (Scale-Invariant
Feature Transform) [14] and SURF (Speeded-Up Robust Features) [15]. More recently, descriptors such
as BRIEF (Binary Robust Independent Elementary Features) [16] or ORB (Oriented FAST and Rotated
BRIEF) [17] have been proposed, trying to overcome some drawbacks such as the computational time
and invariance against rotation. These descriptors have become very popular in visual mapping and
localization, and many authors have proposed methods that use them, such as Angeli et al., who
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employed SIFT [18], or Murillo et al., who used SUREF [8]. Nonetheless, these methods present some
disadvantages. For instance, to obtain reliable landmarks, the environments must be rich in details.
Furthermore, keypoints’ detection is not always robust against changes in the environments (e.g.,
changes of lighting conditions), and sometimes, the description is not totally invariant to changes in the
robot position. Moreover, these approaches might be computationally complex; hence, in those cases,
it would not be possible to build models in real time. On the other hand, the methods based on the
global appearance of scenes consist of treating each image as a whole. Each image is represented by a
unique descriptor, which contains information about its global appearance (Figure 2b). These methods
lead to simpler mapping and localization algorithms, due to the fact that each scene is described by only
one descriptor. Hence, mapping and localization can be carried out by just storing and comparing the
descriptors pairwise. Besides, they could be more robust in dynamic and unstructured environments.
However, as drawbacks, these methods present a lack of metric information (they are commonly
employed to build topological maps). Visual aliasing also might have a negative impact on the
mapping and localization tasks, due to the fact that indoor environments are prone to present repetitive
visual structures. Additionally, modelling large environments would require a big amount of images,
and this can introduce serious issues when these techniques have to be used in real-time applications.
Therefore, global appearance is an intuitive alternative to solve the mapping and localization problem,
but its robustness against these issues must be tested. Many authors have addressed mapping and
localization using global appearance descriptors (Figure 2b). For instance, Menegatti et al. [19] used
the Fourier signature in order to build a visual memory of a relatively small environment from a set
of panoramic images. Liu et al. [20] proposed a descriptor based on colour features and geometric
information. Through this descriptor, a topological map can be built. Paya et al. [21] proposed a
mapping method from global appearance and solved the localization in a probabilistic fashion, using
a Monte Carlo approach. Furthermore, they developed a comparative analysis of some description
methods. Rituerto et al. [22] proposed the use of the descriptor gist [23,24] to create topological maps
from omnidirectional images. More recently, Berenguer et al. [6] proposed the Radon transform [25] as
the global appearance descriptor of omnidirectional images and a hierarchical localization method.
Through this method, first, a rough localization is obtained; after that, a local topological map of a
region is created and used to refine the localization of the robot.

In light of the previous information, in the present paper, the use of hierarchical models is
proposed to solve the localization task efficiently. In this sense, compression methods are used as a
solution to generate the high-level layers of the hierarchical model. Some authors have used clustering
algorithms to carry out the compression task. For instance, Zivkovic et al. [26] used spectral clustering
to obtain higher level models, which improved the efficiency of the path-planning. Grudic and
Mulligan [27] built topological maps through the use of an unsupervised learning algorithm, which
worked with spectral clustering. Valgren et al. [28] tackled an on-line topological mapping through the
use of incremental spectral clustering. Stimec et al. [29] used an unsupervised clustering based on the
multiple eigenspaces algorithm to carry out topological mapping hierarchically using omnidirectional
images. More recently, Shi et al. [30] proposed the use of a differential clustering method to improve
the compression of telemetry data.

We propose a method to build hierarchical maps through a combination of clustering methods
and global appearance descriptors. We compare the performance of spectral and self-organizing
maps’ clustering. In addition, an exhaustive experimental evaluation is carried out to assess the
performance of the method in mapping and localization tasks, and we evaluate the influence of the
most relevant parameters in the results. This is an interesting problem in the field of mobile robotics
because, as pointed out before, global appearance descriptors are a straightforward way of describing
visual information, but they contain no metric information, comparing to local-features” descriptors.
Additionally, no deep study to assess the performance of global-appearance descriptors in hierarchical
mapping can be found in the literature. The experiments show that the proposal that we present is a
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feasible alternative to build robust compact maps, despite the phenomenon of visual aliasing, which is
present in the sets of images that we have used in the experiments.
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Figure 2. Two main methods to extract the most relevant information from the images for mapping and
localization purposes. (a) Detection, description, and tracking of some relevant landmarks along a set of
scenes. (b) Building a unique descriptor per image that contains information on its global appearance.

The present paper continues and extends the study presented in [31], which is a comparative
evaluation in which the performance of some descriptors was assessed to create compact
models and estimate the position of the robot. The contributions of the present paper are
the following: (a) a new method to compact the visual model is proposed; (b) the trade-off
compactness-accuracy-computational cost is addressed, and the performance of the compact models is
compared to raw models (with no compaction); (c) a comparison between compression through direct
methods and compression through clustering methods to solve the localization task is evaluated; and
(d) new indoor environments with different topologies are included in the experimental section.

The remainder of the paper is structured as follows: Section 2 outlines the global appearance
descriptors that will be tested throughout the paper. After that, Section 3 shows the clustering
approaches used to compress the models. Next, Section 4 presents the method to obtain the localization
within the compact models. Section 5 presents the experimental results of clustering and localization
and also the discussions about the results. Finally, Section 6 outlines the conclusions and future
research lines.

2. Global Appearance Descriptors

As mentioned in the previous section, global appearance descriptors constitute an interesting
alternative for mapping and localization. In this work, the robot moves along the floor plane, and it
captures images using a hyperbolic mirror, which is mounted over a camera along the vertical axis.
This section details three methods to describe the global appearance of a set of panoramic scenes
IM = {imq,imy, ...,imy } where im; € RMxxMy - Aftor using each description method, a descriptor for
each image is calculated; thus, the database is composed of a set of descriptors, D = {6?1), 1?2’, e d_l\; }
where each descriptor is E; € C1 and corresponds to the image im j-
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The remainder of the section presents the global appearance techniques used throughout the
paper and the homomorphic filter, which is used as a pre-treatment for the images.

2.1. Fourier Signature Descriptor

The Fourier signature descriptor was firstly used by Menegatti et al. [19] to create an image-based
memory for robot navigation. Paya et al. [21] studied the computational cost and the error in
localization by using Fourier Signature (FS) and proposed a Monte Carlo approach to solve the
localization problem in indoor environments.

This description method is based on the use of the Discrete Fourier Transform (DFT).
After calculating the FS of a panoramic image, a new complex matrix is obtained IM(u,v). It can
be decomposed into two real matrices, one containing the magnitudes and the other the arguments.
The steps to obtain a global appearance descriptor from a panoramic image through the Fourier
Signature (FS) are: First, departing from the intensity matrix of the original image, the DFT of each
row is calculated. The result is a complex matrix with the same size as the original image (IM(u,v) €
CNxxNy ). Second, only the k; first columns of this matrix are retained since the main information is in
the low frequency components. Third, the resultant matrix (IM(u,v) € CNx*k1) is decomposed into
the magnitudes and arguments matrices. The matrix of magnitudes (A(u,y) € RN+*k1) is invariant
against changes of the robot orientation in the movement plane if the image is panoramic. In the last
step, the global appearance descriptor is obtained by arranging the k; columns of the magnitudes
matrix in one single column (E € RNvkix1y,

2.2. Histogram of Oriented Gradients Descriptor

The Histogram of Oriented Gradients (HOG) is a description method used in computer vision to
detect objects. This descriptor is remarkable due to the fact that it is easy to build, leads to successful
results in detection tasks, and also requires a low computational cost. It is built from the orientation
of the gradient in localized parts of the panoramic image. The development consists of dividing the
image into small regions (k, horizontal cells in this work) and compiling a histogram with b bins for
the pixels, which are included inside each cell using their gradient orientation. The combination of
this information provides the desired descriptor (;{ € RV%2x1). This method has been used by some
authors such as Mekonnen et al. [32] to develop a person detection tool, or Dong et al. [33], who
proposed an HOG-based multi-stage approach for object detection and pose recognition in the field
of service robots. This method was firstly used in mobile robotics by Dalal and Triggs [34] to solve
people detection task. Zhu et al. [35] presented an improved version with respect to computational
time and efficiency to detect people.

The HOG version proposed in this work is described in detail in [36].

2.3. Gist Descriptor

The gistdescription was introduced by Oliva et al. [37], and it has been commonly used to
recognize scenes. Since then, several versions can be found, which work with different features from
the images, such as colour, texture, orientation, etc. [38]. Some researchers have used gist in mobile
robotics. For instance, Chang et al. [39] used this global appearance descriptor for localization and
navigation. Murillo et al. [40] also used the gist descriptor to solve the localization problem, but in this
case, the gist descriptor was a reduced version obtained with Principal Components Analysis (PCA).

The version we use throughout this paper is described in [36] and works with the orientation
information obtained through a set of Gabor filters. From the panoramic image, m different resolution
levels are obtained. Then, 7,,,,s orientation filters are applied over each level. Finally, the pixels

of every image are grouped into k3 horizontal blocks, and the information is arranged in a vector
(l_j c anasks'm‘k3><l)'
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2.4. Homomorphic Filter

In order to solve the localization task, typical situations may happen such as lighting variations
and changes in the position of some objects (chairs, tables, open doors, etc.). Hence, descriptors must
be robust against these circumstances.

Fernandez et al. [41] showed that some pre-treatments could improve the localization accuracy
in indoor environments with different lighting levels. Among the studied techniques, the use of the
homomorphic filter [42] can be highlighted. The homomorphic filter permits filtering the luminance
and reflectance components from an image separately.

The use of this filter has proven to provide especially good results when it is used in combination
with the HOG descriptor [31], whereas in the FS and gist cases, the results were similar to or worse
than without this pre-treatment filter. Hence, in the present paper, the following configurations will be
used throughout the experiments: FS without filter, HOG with filter, and gist without filter.

3. Clustering Methods to Compact the Visual Information

In this section, the creation of topological models and how to compact them will be addressed.
Subsequently, these models will be utilized to solve the localization problem. Only visual information
and global appearance descriptors will be used in both tasks. This way, the problem will be addressed
through the next two steps.

1. Learning: creating a map of the environment and compacting it. A set of omnidirectional
images is captured from different positions, and a global appearance descriptor for each image
is calculated. After that, a clustering method is used to determine the structure and compact
the model.

2. Validation: Once the map is built, the robot obtains a new image from an unknown position,
calculates the descriptor, and compares it with the set of descriptors obtained in the learning step.
Through this comparison, the robot must be able to estimate its position.

Focusing on the learning step, the robot moves around the environment and captures some images
from different positions to cover the whole environment. This way, a set of omnidirectional images
is collected I = {imy,imy, ...,imy } where imj € RNxxNy - After that, a global appearance descriptor is
calculated for each image; hence, a set of descriptors is obtained D = {c?{, (z, ey E\; } where E; e CIx1,

This set of descriptors can be considered as a straightforward model of the environments [43,44],
as some previous works do. However, in this mapping strategy, important problems appear when the
environment has considerable dimensions. The larger the environment is, the more images have to be
captured to model it completely. This leads to the requirement of more computational time and also
more memory space in order to process and collect the information related to each captured image and
to solve the subsequent localization problem. This way, the model should be compacted in such a way
that it retains most of the visual information and permits solving the localization problem efficiently.

In this work, we propose a clustering approach to compact the model, with the objective of
creating a two-layer hierarchical structure. The low-level layer is composed of a set of descriptors and,
to obtain the high-level layer, this set will be compacted via clustering. Each cluster is characterized by
the common attributes of the instances that form that group. This way, the dataset D = {d_{, 072), .y %} }
is divided into 7, clusters C = {Cy, Cy, ..., Cy, } under the conditions:

Ci#Qi=1,..n
m
Uc=po )
i=0

CNC=Di#jij=1 . ne
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After this, each cluster is reduced to a unique representative descriptor, which is obtained in this
work as the average of all the descriptors that compose that cluster. A set of representatives is obtained
R = {#{,73,...,Tn, }, and therefore, the model is compacted. This set of representatives composes the
high-level layer.

Figure 3 shows how a sample map is compacted. Figure 3a shows the positions where panoramic
images were captured to cover the whole environment. The result of the clustering process is presented
in Figure 3b, and then, one representative per cluster is obtained (Figure 3c). The representative
descriptor is obtained as the average descriptor among those grouped in the same cluster. Additionally,
the position of this representative descriptor is calculated as the average position of the capture points
of the images included in the same cluster. These positions are calculated just as a ground truth to test
the performance of the compact map in a localization process, but they are not used either to build the
map, nor to localize the robot. Only visual information is used with these aims. Different clustering
methods will be analysed. These methods will only use visual information, and ideally, the objective is
to group images captured from near positions despite visual aliasing. To evaluate the correctness of
the approach, the geometrical compactness of the clusters and their utility to solve the localization task
will be tested in Section 5.

Regarding the clustering process to compact the visual models, two methods are studied: spectral
clustering and self-organizing maps.

sosse0e
233334
p22224
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Figure 3. Example of an indoor map and a compression of the information. (a) Positions where
the images were captured. (b) Result of the clustering process. (c) Each cluster is reduced to
one representative.

3.1. Spectral Clustering Algorithm

Spectral clustering algorithms [45] have proven to be suitable to process highly-dimensional data.
In this work, a spectral normalized clustering algorithm is used as was introduced by Ng et al. [46].
This algorithm has been already used for mapping along with local features extracted from the
scenes [29,47].

In our work, the algorithm departs from the set of global appearance descriptors D =
{E{, ds, E;\; } obtained from the images collected in the environment, and the parameter 7, is the

desired number of clusters. Initially, the similitude between descriptors is calculated. This parameter
-

is calculated for each pair of descriptors; hence, a matrix of similitudes S is obtained as S;; = e~ 22

where ¢ is a parameter that controls the rapidity of the reduction of the similitude when the distance

between tz and 07; increases. The steps to carry out the clustering are the following:
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1. Calculation of the normalized Laplacian matrix:
L=1-D "2sp!/? 2

where Dis a diagonal matrix D; = Z]-I\il Sij.

2. Calculation of the 1 main eigenvectors of L, {u1, 13, ..., iin, }. Arranging these vectors by columns,
the matrix U € RN*"e is obtained.

3.  Normalization of the matrix U to obtain the matrix T € RN*"e,

4.  Extraction of vector y; € R" from the i" row of the matrix T.i = 1, ..., N.

5.  Clustering of the i/; vectors by using a simple clustering algorithm (such as k-means or hierarchical
clustering). Through this, the clusters Ay, Ay, ..., A, are obtained.

6.  Obtaining the clusters with the original data as Cy, Cy, ..., C;;, where C; = 07]) | g]’ € A

If the number of instances N or the dimension [ is high, the computation of the 7, eigenvectors
(third step) will be computationally expensive. To solve this issue, Luxburg [45] proposed cancelling
some components of the similitude matrix. This way, in the matrix S, only the components S;; so that j
is among the t nearest neighbours of i are retained. After this, the n. first eigenvectors of the Laplacian
matrix L are calculated by using the Lanczos/Arnoldi factorization [48].

Finally, for each cluster, a representative is obtained as the average visual descriptor of the set of
descriptors that compose that cluster.

Spectral clustering may result in being more efficient than traditional methods such as k-means
or hierarchical clustering in large environments due to the fact that spectral clustering considers the
mutual similitude between the instances.

3.2. Cluster with a Self-Organizing Map Neural Network

As a second alternative, Self-Organizing Maps (SOM) have been chosen to carry out the clustering
evaluation in this work. This algorithm was introduced by Kohonen [49], and it is an effective option
to carry out a mapping distribution when the data present a high dimensionality [50]. This algorithm
has been commonly used for clustering or reducing the dimensionality of data. Therefore, in this
work, the input data are the set of global appearance descriptors calculated with one of the methods
described in Section 2. The size of the neural network map (Wsoa X Hsom = n¢) is chosen. After the
training step, the data will be grouped into . different clusters.

Self-organizing maps automatically learn to classify input vectors according to their similarity
and topology in the input space. They differ from competitive layers in that neighbouring neurons in
the SOM learn to recognize neighbouring sections of the input space. Thus, self-organizing maps learn
both the distribution (as the competitive layers do) and topology of the input vectors with which they
are trained. The neurons can be arranged in a grid, hexagonal, or random topology. The self-organizing
map network identifies a wining neuron i* using the same procedure as employed by the competitive
layer, but instead of updating only the winning neuron, all neurons within a certain neighbourhood
N+ (d) of the winning neuron are updated.

4. Using the Compact Topological Maps to Localize the Robot

At this point, the robot is provided with a model of the environment, which, in this case, is a
hierarchical map. From it, the robot firstly uses the high-level layer to carry out a rough localization,
and secondly, a fine localization is tackled through the use of the low-level layer. The visual localization
problem has been solved by many authors through local features by using probabilistic approaches
such as particle filters or Monte Carlo localization [51,52]. Nevertheless, the works developed with
global appearance descriptors are scarce. Hence, this paper presents a comparison of this kind of
descriptor to estimate hierarchically the position of the robot within a hierarchical map in a specific time
instant. In order to test the accuracy of the localization method proposed in this work, the coordinates
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where the images were captured within the environment are known (ground truth). Nevertheless, they
are not used to estimate the position of the robot since, as mentioned before, the presented method only
considers visual information. This decision permits studying the feasibility of visual sensors as the only
source of information to create a compact topological map and, more concisely, of global appearance
descriptors. Therefore, not using the position information in the mapping and localization algorithms
permits isolating the effect of the main parameters of these descriptors and knowing the performance
of this kind of information. The remainder of this section is structured as follows: Section 4.1 outlines
the types of distances that have been used to calculate how different the global appearance descriptors
are. Section 4.2 explains the localization step within maps that have not been compacted previously,
i.e., no clustering has been carried out (the full information about the environment is provided). Finally,
Section 4.3 explains the localization task within hierarchical topological maps.

4.1. Distance Measures between Descriptors

In order to know how similar two panoramic images are through their global appearance
descriptors, some distance measurements have been used. This way, a comparison can be carried out
by calculating the distance between the descriptors of two images captured from different positions
of the environment. The lower the distance between those images is, the more similar they are. This
kind of distance is used in the localization step. We consider two descriptors 7 e R and E) eR! x1
where 4; and b; are the ith components of 4 and b withi = 1, ...,1. The distances used in this work are:

e  Euclidean distance: This a particular case of the the weighted metric distance and is defined as:

diSteuclidean(H/ b) = - bi)z 3)

o Cosine distance: Departing from a similitude metric, which is defined as the scalar product
between two vectors, the distance is defined as:

diStcosine(E)/ b) =1- Simcosine(ﬁr b
T. (4)
v

~—

Q|

. —>
Slmcosine(ﬁ)/ b) =

=

o  Correlation distance: Again, departing from a similitude metric, which is defined as a normalized
version of the scalar product between two vectors, the distance is defined as:

. > 7 . - 7
dlStcorrelation( a, b ) =1- Slmcorrelation( a, b )

(@ —a)T(v — ) 5)

. - 7
Slmcarrelation( a,b ) =

where:

1
Y bi ©6)

Previous research works [21,36] have evaluated the relation between the distance between the
global appearance descriptors and the geometrical distance between capture points. These works show
that even if the robot moves a short distance, the descriptor changes. Therefore, global appearance
descriptors can be used to detect even small movements.
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4.2. Resolution of the Localization Problem in a Model That Has Not Been Compacted

In this case, the map is composed of a straightforward set of descriptors (i.e., this set has not been
treated to create a hierarchical map through any clustering process). Once this straightforward map is
available, the localization process starts:

The robot captures a new image at time instant ¢ from an unknown position (ir;).

2. It calculates the global appearance descriptor of the captured image d.

3. The distances between this new descriptor and the set of descriptors in the map are obtained.
The comparison between descriptors is carried out through one of the distance metrics presented
in Section 4.1.

4. A distance vector I; = {ly,.., Iy} is obtained where I;; = dist{cﬁ, E;} according to any
distance measure.

5. Considering the position of the robot as the position of the closest neighbour within the map (the
problem known as image retrieval [53]), the corresponding position of the robot is the position in
the map that minimizes the distance arg min; I;;. This way, the position (x,y) of the robot in the
instant ¢ is estimated.

4.3. Resolution of the Localization Problem in a Compact Model

Image retrieval is an inefficient process due to the fact that the maps are usually composed by a
huge number of images and the descriptors have a high dimensionality. Therefore, the computational
cost could be a problem. In this case, clustering is used to compact the map. Additionally, indoor
environments may present visual aliasing. As explained in Section 3, after clustering, the map 9t
will be formed only by a set of clusters C = {Cy,...,Cp,}, where n, is the number of clusters. For
each cluster, a representative descriptor was calculated as the average of the descriptors in it and the
coordinates of those representatives as the average coordinates of the descriptors that compose that
cluster. Thus, a set of cluster representatives {77, ..., 7., } and the coordinates of each representative
{(x,¥)rys - (X, )1, } are known (ground truth).

The localization in this hierarchical map is carried out as follows. (1) The robot captures a
new image im; from an unknown position (x;, y;), which must be estimated, and (2) the descriptor
corresponding to the new captured image is obtained (zZ) by using any of the description algorithms
explained in Section 2 (FS, HOG, or gist). (3) The distance vector is obtained l.; = {lﬂ/ . Ztnc} where
l_tl = dist{cﬁ, 77} is the distance (one of the three types explained in Section 4.1) between the descriptor
dy and each representative 7;. Finally, (4) the estimated position of the robot (x.,y.) is the position
associated with the nearest neighbour d}" |t = arg min; I;;.

The coordinates of the representatives are not used in the localization step. However, to
measure the goodness of the estimation, the geometric distance between (x¢, y¢) and the centre of
the corresponding cluster (obtained as the average position among the positions of the images that
belong to that cluster) is calculated: error = \/(x, — xt)2 + (y. — y:)2. Furthermore, the required
computational cost to estimate the localization is calculated.

5. Experiments

5.1. Datasets

Two different types of datasets were used to develop the experiments; QuorumV, which contains
grid-distributed visual data, and the COsy Localization Database (COLD), which contains visual
information along a trajectory. On the one hand, Quorum V is a publicly-available dataset [54], which
consists of a set of omnidirectional images that have been captured in an indoor environment at Miguel
Hernandez University (Spain). The database includes 3 offices, a library, a meeting room, and a corridor.
It is composed by two datasets; the first one is a training dataset, and it is composed of 872 images,
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which were captured on a dense 40 x 40 cm grid of points. As for the second dataset, the test dataset,
it is composed of 77 images, which were captured in different parts of the environment, in half-way
positions among the points of the training dataset, and including changes in the environment (e.g.,
people walking, position of furniture, etc.). Figure 4 shows the bird’s eye view of theQuorum V
database and the grid points captured by the robot for the training dataset.

On the other hand, COLD (COsy Localization Database) [55] (also publicly available) contains
several sets of images captured in three different indoor environments, which are located in three
different cities: Ljubliana (Slovenia), Saarbriicken, and Freiburg (Germany). This database contains
omnidirectional images captured while the robot traversed several paths within the environments
under real operating conditions (with people that appear and disappear from scenes, changes in
the furniture, etc.). In the present work, we use the two longest paths: Saarbriicken and Freiburg.
Both datasets include several rooms such as corridors, personal offices, printer areas, kitchens,
bathrooms, etc. In order to represent the same distance between images as the distance presented in
the Quorum V database, a downsampling is carried out to obtain an acquisition distance between
images of 40 cm approximately. Therefore, two training datasets are generated: Freiburgtmining and
Saarbruckenyygining, with 519 and 566 images, respectively. Moreover, from the remaining images, test
datasets were created. Figure 5 shows the bird’s eye view of the environments and the path that the
robot traversed to obtain the images. To summarize, Table 1 shows the datasets used for this work and
the number of images that each of them contains.

O iss4444

, /

Room 1: Corridor.
Room 2: Office A.
Room 3: Office B.

Room 4: Office C.

Room 5: Library.

Room 6: Events room.

Figure 4. Bird’s eye view of the Quorum V database.

Through evaluating these two types of datasets, an analysis of the localization in maps which
are completely different is tackled: the first kind of map (Quorum V) is a grid-based map, and the
second dataset (COLD) is a trajectory-based map. The Quorum V database presents a distance between
images of 40 cm approximately. This distance is considered reasonable for indoor applications. In this
case, the expected maximum error (when all the images are used for mapping) is around 28 cm (a case
in which the test image is in the middle of four images of the map, which compose a square of a side of
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40 cm). This is a reasonable accuracy to solve localization tasks, and additionally, the requirements of
memory to store the images of the map are not excessively high in large environments. Regarding the
downsampling that is carried out in COLD, this was done with the purpose of obtaining results that
can be directly compared with the ones obtained through the Quorum V database (whose minimum
available distance is 40 cm). Previous works [6] have shown that the distance between images has a
direct relation with the accuracy of localization when global appearance descriptors are used. Lower
distances tend to provide more accurate results. Therefore, if a specific application requires a lower
error, a more dense initial dataset of images should be used to obtain the map.
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Figure 5. Bird’s eye view of the COsy Localization Database (COLD). (a) Freiburg and (b) Saarbriicken
environment. Extracted from https://www.nada.kth.se/cas/COLD/.

Table 1. Datasets used to carry out the experiments.

Number Number

Dataset Name of Images of Rooms

QuorumV_training 872

QuorumV_test 77 °

Freiburg_training 519 9
Freiburg_test 52

Saarbrucken_training 566 8
Saarbrucken_test 57

5.2. Creating Compact Maps through Clustering

This section focuses on the evaluation of clustering methods to compact the information contained
in a set of global appearance descriptors. To carry out the experiments, two clustering methods were
studied for each environment, and three global appearance descriptors were considered. The first
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method (Method 1) consists of spectral clustering along with k-means as was explained in Section 3.1.
Other configurations were tested, such as to use of SOM instead of k-means to solve Step 5 of the
spectral clustering, but the results were quite similar; thus, only the spectral clustering along with
k-means to cluster the normalized matrix of the n, eigenvectors is shown. The second method
(Method 2) consists of the use of SOM, which was explained in Section 3.2. Therefore, for the two
proposed methods, several experiments were carried out to study the influence of the parameters of
the three global appearance descriptors. Table 2 summarizes the experiments developed.

Table 2. Summary of the parameters that have been varied to carry out the clustering experiments. FS,
Fourier Signature.

Parameter Values

Quorum V
Environment Freiburg (COLD)
Saarbriicken (COLD)

FS
Descriptor HOG
gist
FS: k1 =4, 8,16, 32, 64,128, 256
HOG: k, =2, 4,16, 32, 64,128
gist: k3 =2,4,8,16,32, 64
gist: Myaeks = 2,4, 8,16, 32, 64
Quorum V: n, =15, 25, 40, 60, 80, 100

Number of clusters Freiburg: n. = 10, 20, 30, 40, 50, 60, 70
Saarbriicken: n, = 10, 20, 30, 40, 50, 60, 70

Descriptor parameters

The values ki, kp, and k3 define the length of each descriptor, but their meaning is not the same
(equal values of ki, k2, and k3 would not lead to the same descriptor size). Therefore, as our aim is
to study the correct tuning of these values to use each descriptor as efficiently as possible, we do not
apply the same values for all the descriptors in the experiments.

Once the compact map has been produced, it may be interesting to provide some measures
that permit quantifying the compactness of the map. In this context, the concept of the silhouette is
commonly used. Silhouette values point out the degree of similarity between the instances within the
same cluster and at the same time the dissimilarity with the instances that belong to other clusters. The
silhouette takes values in the range [ -1, 1], and it provides information about how compact the clusters
are. Therefore, in order to quantify the goodness of each method, three parameters are considered:

a  The average moment of inertia of the cluster.
b The average silhouette of the points.
¢ The average silhouette of the descriptors.

These values are collected after the clustering process. As for the moment of inertia, it measures
the compactness of the clusters (if the clusters group images captured from geometrically-close points)
and is calculated as:

n; . )2
M nzc Zj:l dlSt((x,]/)ril (x]/y]))
i=1

7
- )
where dist((x, ), (xj,y;)) is the Euclidean distance between the coordinates of the representative 7;
and the position of the j''" image that belongs to the cluster C;, and #; is the number of images within
this cluster.

As for the silhouettes values, two types of silhouette are used: the average silhouette of points is

defined as:

o Zgzl Sw
Spomts - N (8)
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N is the number of instances (images), and sy, is the silhouette of each instance; it is calculated as:

by — ay
S = ——F—F— 9
7 max(ay, by) ©)
where a4, is the average distance between the capture point of the instance Ew and the capture points
of the other instances in the same cluster, and b, is the minimum average distance between the capture
point of the instance d;, and the capture point of the instances in the other clusters.
Differently, the average silhouette of descriptors is traditionally obtained through:

YR sk
Sdescr = kZ\Il (10)

where N is the total number of instances and sy is the silhouette of each instance. This value is
calculated as: .
k — Ak
k= max (ay, by) (1
where gy is the average distance between the descriptor Ek and the descriptor of the rest of the entities
contained in the same cluster, and by is the minimum average distance between gk and the instances
contained in the other clusters.

The silhouette of descriptors has been traditionally used to measure the compactness of the
clusters. However, it does not measure the geometrical compactness. This is why we introduce the
silhouette of points, which can provide more proper information since we are interested in knowing
whether the clusters have grouped images captured nearby.

5.2.1. Clustering in the Quorum V Environment

Figure 6 shows the results of the two clustering methods using FS as the descriptor depending
on the parameter k. Figure 7 shows the results using HOG depending on the parameter k. Figure 8
shows the results using gist depending on the parameter k3 and with 7,,,5s = 16. These figures
present the graphs that determine the goodness of each configuration to carry out the mapping task
through clustering. The three figures show the moment of inertia and average silhouettes vs. the
number of clusters. In all cases, the range of the vertical axis is the same, for comparison purposes.
Furthermore, Figure 9 shows the computing time necessary to cluster the environment through the
two clustering methods.

Regarding the parameters used to measure the compactness of the maps, the lower the moment of
inertia and the higher the silhouettes are, the more compact the map is. Generally, Method 1 (spectral
clustering) produces the best results. Method 2 (SOM) does not improve these results. As for the use
of the global appearance descriptor with the spectral clustering method, FS is not capable of creating
reliable clusters. As for HOG, the moment of inertia and silhouettes depend considerably on the value
of k. When k; is low, the results are poor, but when ky > 8, the moment of inertia, as well as the
silhouettes improve significantly. At last, regarding the gist descriptor, low values of k3 produce low
silhouettes and high moments of inertia, and high values of this parameter imply better results.

As for the computation time required to carry out the clustering through the two methods, the
SOM method presents the highest values. The computing time required for the clustering process
through the FS descriptor is the highest, whereas the time through HOG or gist is lower, and the fastest
one would be determined by the value of either k, or k3.
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Figure 6. Results of the two clustering methods: average moment of inertia, average silhouette of
points, and average silhouette of descriptors vs. number of clusters, when using FS in the Quorum
V environment. SOM, Self-Organizing Maps.
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Figure 7. Results of the two clustering methods: average moment of inertia, average silhouette of
points, and average silhouette of descriptors vs. number of clusters, when using HOG in the Quorum
V environment.
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Figure 8. Results of the two clustering methods: average moment of inertia, average silhouette of
points, and average silhouette of descriptors vs. number of clusters, when using gist in the Quorum
V environment.

As expected, the more components the descriptor has, the more time is required. In Section 5.3,
the trade-off descriptor size-localization accuracy will be studied.

Therefore, in the case of HOG, a value of ky = 32 or ky = 64 could be a good choice to achieve
a compromise between compactness and computing time, and in the case of gist, an intermediate
value of k3 could be also a good choice for the same purpose. The FS descriptor presents, in general,
the worst results: the moment of inertia is higher, and the silhouettes are lower, in general. Hence, the
best clustering results are obtained through the use of the spectral clustering method and the use of
HOG (for a configuration of k, = [32, 64]) or gist (for a configuration of k3 = [16,32] and 11,5545 = 16)
as the global appearance descriptor. Figure 10 shows a bird’s eye view of the clusters obtained with
spectral clustering and gistwith k3 = 32 and 7,545 = 16.

5.2.2. Clustering in COLD Environments

The previous results have shown that the use of FS for clustering is less suitable. Considering
this, only HOG and gist descriptors are analysed in the experiments with the COLD environment.
Figure 11 shows the results using HOG depending on the parameter k; in the Freiburg environment.
Figure 12 shows the results of the clustering methods using gist depending on the parameter k3 and
with 71,,,,64s=16 in the Freiburg environment. In the same way, for the Saarbriicken environment,
Figure 13 shows the results using HOG, and Figure 14 shows the results with gist. Regarding the use of
HOG with the second method (using SOM), it was not able to solve the clustering task for k, = [4, 16]
when n, > 60.
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Figure 9. Results of the two clustering methods: computing time vs. number of clusters, when using

FS, HOG, and gist descriptors in the Quorum V environment.

Again, spectral clustering is the best method, and in this case, gist presents better clustering
outcomes. Hence, through the experiments carried out in the environments of the COLD database, a
confirmation of the results obtained in Quorum V is reached (see Figure 15). Therefore, the proposed
method is generalizable despite the use of different types of models (linear or grid). As a conclusion,
the best option to carry out the compression of visual maps is reached when spectral clustering with

gist is applied.
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Figure 10. Quorum V environment. Cluster obtained with spectral clustering and gist description

(k3 = 32, 1y = 16).
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Figure 11. Results of the two clustering methods: average moment of inertia, average silhouette

of points, and average silhouette of descriptors vs. number of clusters, when using HOG in the

Freiburg environment.
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Figure 12. Results of the two clustering methods: average moment of inertia, average silhouette

of points, and average silhouette of descriptors vs. number of clusters, when using gist in the

Freiburg environment.
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Figure 13. Results of the two clustering methods: average moment of inertia, average silhouette

of points, and average silhouette of descriptors vs. number of clusters, when using HOG in the

Saarbriicken environment.
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Figure 14. Results of the two clustering methods: average moment of inertia, average silhouette
of points, and average silhouette of descriptors vs. number of clusters, when using gist in the
Saarbriicken environment.

5.3. Localization Using the Compact Maps

This section evaluates the performance of the compact maps to solve the localization problem.
The objective is to achieve a compactness that presents a balance between computing time and accuracy
of localization. To carry out the evaluation, among the mapping results, the spectral clustering
algorithm is selected with the gist descriptor (k3 = 32 and 71,54 = 16). With this configuration, a map
per environment is built, using the training images. After that, the test images are used to solve the
localization problem. The previous subsection proved that the best option to build the compressed
map was through the use of the gist descriptor. Nevertheless, the three proposed global appearance
descriptors are proposed again to solve the localization task (because mapping and localization are
two independent processes, and the performance of the descriptors could be different in a localization
framework). For each test image, its descriptor is calculated (either by FS, HOG, or gist), and then, it is
compared with the cluster representatives of the compact map. Afterwards, the most similar cluster is
retained. Three distance measures are considered for this comparison: (1) the correlation distance, (2)
the cosine distance, and (3) the Euclidean distance. In order to car