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Abstract: Although infrared small target detection has been broadly used in airborne early warning,
infrared guidance, surveillance and tracking, it is still an open issue due to the low signal-to-noise
ratio, less texture information, background clutters, and so on. Aiming to detect a small target in an
infrared image with complex background clutters, this paper carefully studies the characteristics of a
target in an IR image filtered by the difference of Gaussian filter, concluding that the intensity
of the adjacent region around a small infrared target roughly has a Mexican-hat distribution.
Based on such a conclusion, a raw infrared image is sequentially processed with the modified
top-hat transformation and the difference of Gaussian filter. Then, the adjacent region around
each pixel in the processed image is radially divided into three sub-regions. Next, the pixels that
distribute as the Mexican-hat are determined as the candidates of targets. Finally, a real small target
is segmented out by locating the pixel with the maximum intensity. Our experimental results on both
real-world and synthetic infrared images show that the proposed method is so effective in enhancing
small targets that target detection gets very easy. Our method achieves true detection rates of 0.9900
and 0.9688 for sequence 1 and sequence 2, respectively, and the false detection rates of 0.0100 and 0
for those two sequences, which are superior over both conventional detectors and state-of-the-art
detectors. Moreover, our method runs at 1.8527 and 0.8690 s per frame for sequence 1 and sequence 2,
respectively, which is faster than RLCM, LIG, Max–Median, Max–Mean.

Keywords: small infrared target; target enhancement; target detection; mexican-hat distribution;
difference of Gaussian filter

1. Introduction

Small infrared (IR) target detection has been widely used in airborne early warning, IR guidance,
surveillance and tracking, and others. Usually, the earlier we detect a small IR target, the more time
we get for dealing with it, and thus the more suitable decision can be made. However, factors such as
low signal-to-noise ratio (SNR), variable target sizes, variable target intensity, less shape and texture
information, blurred edges, and serious background clutters, cause small IR target detection to be a
challenging task.

So far, many IR target detection algorithms have been developed ranging from recursive
estimation techniques [1] to partial sum of the tensor nuclear norm [2]. Among them, morphology
filtering such as the top-hat transform and its variants plays an important role [3,4]. Top-hat transforms
are also combined with other techniques such as genetic algorithm [5] to improve the detection
performance. Though these methods can detect targets to a certain degree, their performance is greatly
degraded under complex background clutters.

Over the last few years, it is widely shared that algorithms derived from visual attention mechanics
work well for detecting a small target. The early work in 1998 made intellectuals pour attention
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into visual attention distribution [6], and then saliency estimation methods corresponding to visual
attention became popular in small IR target detection [7]. Wang et al. are the early researchers
to use the Difference of Gaussian (DoG) filters to get a saliency map for detecting real targets [8].
However, due to problems like signal interference, a small target does not strictly obey the 2D Gaussian
distribution, and thus cannot be successfully detected by merely adopting DoG filters. Further studies
on visual attention focus on the relationship between a target and its neighborhoods. The local contrast
method [9,10], the multiscale patch-based contrast measure [11], weighted local difference measure [12],
human visual mechanism detectors [13,14], variance difference detector [15], entropy-based contrast
measure [16], weighted local contrast detector [17], local intensity and gradient detector [18], visual
saliency guided detector [19], local difference adaptive measure [20], the adaptive local measurement
contrast, and salient region extraction and gradient vector processing [21] are reported successively,
demonstrating that the contrast between a target and its neighbor is helpful for small IR target detection.

Though many improved algorithms have been reported, it is still challenging to detect a small IR
target in images with low SNR, low contrast, and serious background clutters. This paper presents an
effective detection method based on the Mexican-hat distribution. A raw IR image is first processed
by the modified top-hat transformation [22] and the DoG filter, getting a filtered IR image. Then,
the adjacent region around a pixel of the filtered image is radially divided into three sub-regions. Next,
the pixels whose adjacent regions have the Mexican-hat distribution are determined as candidate
targets. Finally, a small target is segmented out by locating the brightest pixel. Experimental results
show that the adoption of the Mexican-hat distribution benefits our method with higher detection rate,
lower false alarm rate, and faster detection speed than existing detectors. Though the existing detector
in [15] is resemble to our method, it performs on raw IR images and only compares the relationship
between two regions. On contrast, we operate on the filtered image and detect an IR target based on
the Mexican-hat distribution, and our experimental results show that such strategy can effectively
enhance the small IR target and improve the detection rate.

The rest of the paper is organized as follows. Section 2 analyzes the characteristics of the
adjacent region of a target in a DoG-filtered image. Section 3 describes the details of the proposed
method. Section 4 presents experimental results along with some analysis. Finally, Section 5 gives
some conclusions.

2. Mexican-Hat Distribution of the Adjacent Region around an IR Target

Let I(x, y) be an image. Then its DoG-filtered image, IDoG, is formed by (1) [23]:

IDoG(x, y) = G(x, y, σ1) ∗ I(x, y)− G(x, y, σ2) ∗ I(x, y) (1)

where σ1 and σ2 are the standard deviations of the two Gaussian kernels, ‘*’ is the convolution operation
given by (2).

G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 (2)

After careful observation, we find the pixel intensity of the adjacent region around an IR target
shows a regular bright-dark-bright pattern along the radial direction. Specifically, Figure 1 illustrates
such bright-dark-bright pattern. The center pixel of a target patch is the brightest, and then the intensity
decreases gradually along the radial direction until reaching the lowest value. After that, the intensity
increases again. As shown in Figure 1c, the profile of such bright-dark-bright pattern is like a Mexican
hat, and thus we call it Mexican-hat distribution in this paper.
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Figure 1. The bright-dark-bright pattern of the adjacent region of an IR target.

Based on the above observations, we propose to detect small targets in IR images via the
Mexican-hat distribution. As shown in Figure 2, we first divide the adjacent region of a small target
into three sub-regions along the radial direction that are respectively termed as R0, R1, and R2. For a
small target positioned at (r, c), R0 is a (2L + 1) × (2L + 1) square image region centered at (r, c), and R1

is one-pixel square border just outside R0, and R2 is one-pixel square border without four corner
pixels outside R1. According to the Mexican-hat distribution, we know that the intensity relationship
between the three sub-regions of a target roughly meets the bright-dark-bright pattern, and thus have
the following rule:

Rule 1: If the mean intensity of R0 is both larger than R1 and R2, and the mean intensity of R1 is smaller
than R2, then the center of R0 can be a candidate target center.

Figure 2. Three sub-regions of a small image patch.

3. The Proposed Method

As shown in Figure 3, the proposed four-step method for detecting a small IR target is based
on the Mexican-hat distribution. To increase the contrast between small targets and the background,
the modified top-hat transformation [22] is first applied to a raw IR image, followed by DoG filtering.
Then, the Mexican-hat-distribution based Rule 1 is applied to the DoG image, getting candidate targets.
Finally, a small IR target is detected by locating the brightest pixel.
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Figure 3. The proposed method for detecting small IR targets.

Here, to deal with the variable size of small IR targets, the following iteration strategy is adopted
when applying Rule 1 to a DoG image. First, let the half-width, L, of region R0 ranges from 1 to 5,
implying the size of region R0 varies from 3× 3 to 11× 11 that is consistent to the recognition that a
small target usually occupies less than 80 pixels [24]. Then for each L, Rule 1 is applied to the adjacent of
each pixel of the DoG-filtered image. Those pixels that meet Rule 1 are labeled as candidates, and their
intensity is emphasized by the mean intensity of R1. Meanwhile, the corresponding size of R0, i.e.,
(2L + 1) × (2L + 1) are recorded as the target size.

Algorithm 1 presents the details for finding candidate targets as well as their sizes. Considering
small IR targets are usually brighter than the background, Rule 1 is merely applied to the patches
whose center pixel is brighter than th = µ0 + σ0 with µ0 and σ0 being the mean intensity and the
standard variance of the DoG-filtered image.

Algorithm 1 Candidate target detection.

1: Input : IDoG—the DoG-filtered image
H,W—the height and the width of IDoG
th—threshold

2: Output : Ican—the image with enhanced candidate targets
(rcan, ccan)—the coordinates of candidates
s—the size of candidates
inten—the mean intensity of candidates

3: for r = 1 to H do
4: for c = 1 to W do
5: if IDoG(r, c)>th then
6: for L = 1 to 5 do
7: Locate sub-regions R0, R1 and R2 according to Figure 2;
8: mi = mean intensity of Ri, with i = 0, 1 and 2.
9: if m0 > m1,m0 > m2, and m1 < m2 then

10: (rcan, ccan)=(r, c)
s(rcan, ccan)=(2L + 1)× (2L + 1)
inten(rcan, ccan)=m0
Ican(rcan, ccan)=IDoG(rcan, ccan) - m1

11: else
12: break;
13: end if
14: end for
15: end if
16: end for
17: end for

Next, to further remove false targets, the statistics of sub-regions R0, R1 and R2 are calculated.
For real small IR targets, their intensity might not strictly meet the Mexican-hat distribution.
For example, the first row of Figure 4 shows that the center pixel of a target is not the brightest,
and the second row shows that nearly half of pixels in region R1 and in region R2 don’t meet the
Mexican-hat distribution. Therefore, for a candidate target located at (r, c), (3) is adopted to calculate
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the ratio of the number of pixels in R1 being darker than the mean intensity of R0 to the total pixels
of R1.

Rt10(r, c) =
Card((x, y) ∈ R1|I(x, y) < m0)

Card(R1)
(3)

where m0 is the mean intensity of R0, and Card(.) represents the cardinality of a set.

Figure 4. The intensity distribution of two real small IR targets in a DoG-filtered image.

Then the pixel by pixel differences between R1 and R2 are calculated along the row direction and
the column direction, respectively, followed by the computation of the ratio of the number of pixels in
R1 being darker than the corresponding pixels in R2 to the total pixels with (4) and (5).

Rt12(r, c) =
N12

Card(R1) + 4
(4)

N12 = Card((xl , y) ∈ R1|IDoG(xl − 1, y) > IDoG(xl , y))+

Card((xr, y) ∈ R1|IDoG(xr + 1, y) > IDoG(xr, y))+

Card((x, yu) ∈ R1|IDoG(x, yu − 1) > IDoG(x, yu))+

Card((x, yd) ∈ R1|IDoG(x, yd + 1) > IDoG(x, yd)) (5)

where (xL, y) and (xR, y) represent pixels of the first and the last columns in R1, and (x, yU) and (x, yD)

are the pixels of the first and the last rows in R1. Equation (5) indicates that each corner element in
R1 has been compared two times, so the total number of pixels in (4) is given by Card(R1) + 4 rather
than Card(R1).

Having the ratios of Rt10 and Rt12, we compare them with two predetermined thresholds th10 and
th12, and use Rule 2 to detect a true small target. Finally, Rule 3 is applied to both target regions and
non-target regions to further enhance targets while suppressing non-targets.

Rule 2: If Rt10 > th10 and Rt12 > th12, then the corresponding pixel position (r, c) is the center of a
small target.
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Rule 3: If (r, c) is the center of a small target, then use (6) to enhance it; otherwise use (7) to suppress it.

IFinal(r, c) =
√

max(Rt10, Rt12)× I(r, c)× IDoG(r, c) (6)

IFinal(r, c) = (min(Rt10, Rt12))
2 × I(r, c)× IDoG(r, c) (7)

where IFinal(r, c), I(r, c) and IDoG(r, c) represent the final enhanced IR image, the raw IR image, and the
DoG-filtered image, max(.) and min(.) are the maximum and the minimum functions.

Since small targets in both a raw IR image and DoG-filtered image are usually brighter than
their surroundings, the term I(r, c)× IDoG(r, c) in (6) and (7) can enhance targets while suppressing
backgrounds. Moreover, since both Rt10 and Rt12 are positive numbers smaller than 1, the term√

max(Rt10, Rt12) in (6) is always bigger than the term (min(Rt10, Rt12))
2 in (7). Therefore, by applying

(6) and (7) to targets and non-targets, we can get a final image with salient targets. As a result, the target
is easily detected by assigning the pixel with the maximum intensity as the target center. Algorithm 2
gives the details of our method for detecting small IR target.

Algorithm 2 Our method for detecting small IR target.

1: Input : I, IDoG—raw IR image and the corresponding DoG image
th10, th12—thresholds
H,W—the height and the width of I

2: Output : (rtar, ctar)—target center
3: for r = 1 to H do
4: for c = 1 to W do
5: if (r,c) is the center of a candidate target then
6: compute R10 and R12 with (3)–(5).
7: if R10 > th10 and R12 > th12 then
8: use (6) to get IFinal(r, c)
9: else

10: use (7) to get IFinal(r, c)
11: end if
12: end if
13: end for
14: end for
15: [rtar ctar] = max

1≤r≤H,1≤c≤W
(IFinal(r, c))

4. Experimental Results and Analysis

The proposed method for detecting a small IR target has been implemented in MATLAB using a
PC with 2.6 GHz Intel Core i7 processor and 8 GB RAM. To evaluate the proposed method, different
quantitative and qualitative evaluations have been carried out on IR images with complex backgrounds.
The test data consists of 100 synthetic IR images with resolution of 584 × 468 pixels (termed as Seq.1)
and 32 real-world IR images with resolution of 240 × 320 pixels (termed as Seq.2). Each image of Seq.1
has only one target. So does Seq.2. Here, the 100 synthetic images are made by adding targets with a
Gaussian distribution to real-world cloud backgrounds.

4.1. Influences of the Modified Top-Hat Transformation and the DoG

This experiment adopts Seq.2 that has low target-background contrast to evaluate the influence
of the modified top-hat transformation. According to [22] as well as our experimental results, we set
the parameters of the modified top-hat transformation as Ltop−hat = 5, δ = 1, α = 1, β = 1.2, γ = 1.2,
and ε = 5. Here Ltop−hat is the window size. α, β and γ are the coefficients of target enhancement
operation. For the two thresholds of our method, we set th10 = 0.9 and th12 = 0.5. Figures 5–7 show
some results with and without modified top-hat transformation. The raw IR images of these figures
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include a small target located at the edge of clouds, a small target located at the sky background
without clouds, and a small target near the edge of clouds, respectively. We can see that the modified
top-hat transformation benefits to increasing the contrast between the target and the background.
Therefore, the targets with low contrast can be detected easier with such a transformation.

Figure 5. The twenty-first image in Seq.2. (x,y) in each sub-caption is the coordinate of the target center,
and the detected target is circled in yellow.

Figure 6. The twenty-fifth image in Seq.2.

4.2. Step-By-Step Results

As shown in Figure 3, our proposed method consists of four major steps. This experiment aims
to present the influence of each step on the detection. Figures 8 and 9 show some representative
results. Generally speaking, the proposed method is able to well enhance the IR targets under different
backgrounds and can suppress much of the background clutters. Specifically, we can see that by
applying the modified top-hat transformation, dark sky backgrounds are darkened further, and cloud
clutters become smoother (Figures 8b and 9b). Then, with DoG filtering, a small IR target is emphasized,
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while the background is greatly suppressed, and thus the target becomes more prominent (Figures 8c
and 9c). Next, by using the Mexican-hat distribution, candidate targets including the real target as well
as some cloud edges are enhanced (Figures 8d and 9d). And then by using Rule 2 and Rule 3, the real
target becomes the most prominent one (Figures 8e,f and 9e,f). As a result, the target can be easily
detected by locating the brightest pixel.

Figure 7. The thirty-second image in Seq.2.

Figure 8. The thirty-seventh image in Seq.1.

Figure 8c shows that DoG filtering is good at dealing with a synthetic target whose intensity
strictly meets the Gaussian distribution. Generally speaking in this case the DoG itself is enough to
detect the real target. But Figure 9c indicates that the DoG cannot well deal with real targets which
may not have a strict Gaussian distribution. In this case, background clutters like cloud edges may
have a similar intensity to a small target after DoG, and thus the simple DoG cannot detect targets
correctly. From Figure 9f we can see that in the case of real targets our method still performs well.
This is due to the rules based on the Mexican-hat distribution play an important role in enhancing
real targets.
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Figure 9. The twentieth image in Seq.2.

4.3. Comparison with Other Methods

This experiment compares the proposed method with other nine popular small IR target detectors,
i.e. Relative Local Contrast Measure (RLCM) [25], Patch-based Contrast Measure (PCM) [11],
Variance difference (Var-diff) [15], Absolute Average Gray Difference (AAGD) [25], Laplacian of
Gaussian (LoG) [26], Local Intensity and Gradient (LIG) [18], Max-median [27], Max–Mean [27]
and the traditional Top-Hat filter. Some of them are traditional methods like LoG, Max-median,
Max–Mean, and the traditional Top-Hat filter, and others are state-of-the-art methods like RLCM,
PCM, Var-diff, AAGD, and LIG. Most parameters of the nine methods are the same as the original
references, except the following parameters. The standard deviation of the Gaussian kernel is 0.5 in
LoG, and the sliding window size of LIG is 19 × 19. The patch sizes of Max-median and Max–Mean is
5. The structure element is a rectangle of 3 × 3 in the Top-Hat filter. We determine these parameters to
make the corresponding method perform best on both Seq.1 and Seq.2.

Figures 10 and 11 visually illustrate the detection results corresponding to each method. The final
detected target is circled in yellow. An image without any yellow circle means the method fails to
detect any target. Here zoomed in images have been presented to see the target clearly.

From the 3D intensity plots shown in Figures 10 and 11, we can see the target enhanced by our
Mexican-hat distribution based method is more prominent than other compared methods, leading our
method a satisfied detection performance. Particularly, RLCM can enhance the target successfully,
but as shown in Figures 10 and 11, it cannot suppress the high bright backgrounds successfully. For the
methods of LoG, Max-median, Max-mean, and Top-Hat, they sometimes fail in suppressing clutters,
leading to a false detection or failing to detect any target. For PCM, Var-diff, AAGD, and LIG, they apt
to fail to detect any target in the images with complex backgrounds. In fact, for the simple methods
such as Max-median and Max-mean, they seem to be more effective on a synthetic target, because of
the non-strict Gaussian distribution of real small IR targets as well as the low contrast between target
and background.
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Figure 10. The forty-ninth image in Seq.1.
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Figure 11. The first image in Seq.2.

Besides visual comparisons, quantitative metrics have also been evaluated. We choose the Signal
to Clutter Ratio Gain (SCRG) [28], Background Suppression Factor(BSF) [28], the true detection rate
Pd, the false detection rate Pf [29], and time cost as the quantitative metrics. The results are listed in
Tables 1 and 2.
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Table 1. Quantitative assessment on Seq.1 (time is the average per image processing time).

Method Our Method RLCM PCM Var-Diff AAGD LoG LIG Max–Median Max–Mean Top-Hat

Pd 0.9900 0.0600 0 0.2600 0 0.3500 0.8100 1 0.9900 0.9000
Pf 0.0100 0.0500 0 0.1300 0 0.2300 0.0900 0 0 0.0400

SCRG 203.9131 0.3930 0.0025 0.4481 0.0055 0.0275 0.0275 0.3577 0.2193 0.1267
BSF 113.8130 0.0004 1.1872 0.2359 0.0703 0.0018 0.0018 0.00004 0.0001 0.0004

Time (second) 1.8572 40.3541 0.4709 0.1362 0.1537 0.1144 7.5586 6.8573 15.4546 0.1023

Table 2. Quantitative assessment of Seq.2.

Method Our Method RLCM PCM Var-Diff AAGD LoG LIG Max–Median Max–Mean Top-Hat

Pd 0.9688 0.3438 0 0.0313 0 0.9063 0.5313 0.8750 0.9063 0.9063
Pf 0 0.5626 0 0.8750 0 0.0625 0.3125 0.1250 0.0625 0.0625

SCRG 4920.8611 0.0029 0.0252 0.0632 0.0030 0.0172 0.1482 0.2515 0.0901 0.1482
BSF 612.0357 0.0005 7.8553 2.1969 0.1317 0.0019 0.0009 0.0002 0.0004 0.0009

Time (second) 0.8690 14.6853 0.1861 0.1057 0.1102 0.1040 2.1391 2.0189 4.6056 0.1294



Appl. Sci. 2019, 9, 5570 13 of 16

Tables 1 and 2 show that for both synthetic and real-world targets, our method gets the highest
SCRG and BSF, indicating it performs better than other compared methods in terms of both clutter
suppression and target enhancement. Though for a synthetic target, Pd and Pf of our method are
slightly worse than the Max-median and the Max-median, they are much better than the other seven
methods. Moreover, among all of the compared methods, our method gets the highest Pd and the
lowest and Pf on Seq.2 that has a real-world target. In terms of time cost, our method has a medium
performance. The average processing time of our method is about 1.86 s for an image of 468 by
584 pixels, and 0.87 s for an image of 240 by 320 pixels. Our method is slower than PCM, Var-diff,
AAGD, LoG, and Top-Hat, but faster than LIG and Max-median, and much faster than RLCM.

4.4. Multi-Target Detection Results

Although our method is originally designed for detecting single target, our method can
also be directly applied to multi-target detection. To evaluate the performance of our method
on multi-target detection, two sequences respectively derived from Seq.1 and Seq.2 are adopted.
Two Gaussian-distributed synthetic small targets are added to the first thirty images of Seq.1 (Seq.2) and
we named it as Seq.3 (Seq.4). Here, we only compare our method to LoG, LIG, Max-median, Max-mean,
Top-Hat due to their good performance on Seq.1 and Seq.2. Tables 3 and 4 list the quantitative results,
while Figures 12 and 13 show some detection results visually. Once again, we can see from Table 3 and
Figure 12 that our method achieves the best Pd and Pf . However, our detector performs worse than
LoG in the case of complex backgrounds as presented in Table 4 and Figure 13. Form Figures 12 and 13,
we can also see that our method still has strong ability for removing background clutters while
reserving targets.

Figure 12. Detection results on the second image in Seq.3.
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Table 3. Quantitative assessment of Seq.3.

Method Our Method LoG LIG Max–Median Max–Mean Top-Hat

Pd 0.9667 0.8000 0.8667 0.7111 0.7333 0.8444
Pf 0.0333 0.2000 0.1333 0.2889 0.2667 0.1556

Table 4. Quantitative assessment of Seq.4.

Method Our Method LoG LIG Max–Median Max–Mean Top-Hat

Pd 0.6556 0.8030 0.7396 0.5729 0.6979 0.7369
Pf 0.3444 0.1969 0.2604 0.4271 0.3021 0.2604

We also compare our method to those detectors mentioned in Section 4.3. As is shown in Figure 12,
compared to other methods, our method can detect multi targets more accurately due to its stronger
ability than RLCM, LoG, LIG, Max- median, Max-mean, and Top-hat for removing background clutters
while reserving targets.

Figure 13. Detection results on the second image in Seq.4.

5. Conclusions

In this paper, we have proposed a new method for detecting small IR targets. Our method is based
on that the adjacent region of a small target in a DoG-filtered image roughly holds the Mexican-hat
distribution. Our experimental results on both real-world and synthetic IR images show that our
method is quite effective in enhancing small IR targets while suppressing background clutters. In terms
of SCRG, BSF, Pd, and Pf , our method outperforms both the traditional and state-of-the-art methods.
Moreover, it runs faster than the RLCM, the LIG, the Max–median, and the Max–mean.
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Our experimental results show that our method performs rather well in single target detection
and can also be directly used for detecting multi-targets in simple background. However, such direct
use degrades the detection performance when the background is very complicated. Thus, our future
work will focus on detecting multi-targets in complex background via such a method.
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