
applied
sciences

Article

Adaptive-Uniform-Experimental-Design-Based
Fractional-Order Particle Swarm Optimizer with
Non-Linear Time-Varying Evolution

Po-Yuan Yang 1,2, Fu-I Chou 3, Jinn-Tsong Tsai 4,* and Jyh-Horng Chou 2,5,6,*
1 Department of Information Engineering and Computer Science, Feng Chia University, 100, Wen-Hwa Road,

Taichung 407, Taiwan; 1103404102@nkust.edu.tw
2 Department of Electrical Engineering, National Kaohsiung University of Science and Technology, 415

Chien-Kung Road, Kaohsiung 807, Taiwan
3 Department of Automation Engineering, National Formosa University, 64, Wun-Hua Road, Yunlin 632,

Taiwan; alvis.cfi@gmail.com
4 Department of Computer Science, National Pingtung University, 4-18 Min-Sheng Road,

Pingtung 900, Taiwan
5 Department of Mechanical Engineering, National Chung-Hsing University, 145 Xing-Da Road,

Taichung 402, Taiwan
6 Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100

Shi-Quan 1st Road, Kaohsiung 807, Taiwan
* Correspondence: jttsai@mail.nptu.edu.tw (J.-T.T.); choujh@nkust.edu.tw (J.-H.C.)

Received: 22 November 2019; Accepted: 12 December 2019; Published: 16 December 2019 ����������
�������

Abstract: An adaptive-uniform-experimental-design-based fractional particle swarm optimizer
(AUFPSO) with non-linear time-varying evolution (NTE) is proposed. A particle swarm optimizer
(PSO) is an excellent evolutionary algorithm due to its simple structure and rapid convergence.
Nevertheless, PSO has notable drawbacks. Although many proposed methods and strategies have
enhanced its effectiveness and performance, PSO is limited by its tendency to fall into local optima
and its tendency to obtain different solutions in each search (i.e., its weak robustness). Introducing
fractional-order calculus in PSO (FPSO) can correct the order of the velocity derivative for each
particle, which enhances the diversity and algorithmic effectiveness. This study used NTE of the
order of the velocity derivative, inertia weight, cognitive parameter, and social parameter in an FPSO
used to search for a global optimal solution. To obtain the best combination of FPSO and NTE, an
adaptive uniform experimental design (AUED) method was used to deal with this essential issue.
The AUED method integrates a uniform layout with the best combination phase and a stepwise ratio
to assist in selecting the best combination for FPSO-NTE. Experimental applications in 15 global
numerical optimization problems confirmed that the AUFPSO-NTE had a better performance and
robustness than existing PSO-related algorithms.

Keywords: uniform experimental design; fractional-order particle swarm optimizer; non-linear
time-varying evolution; parameter optimization

1. Introduction

Particle swarm optimization (PSO), which was first proposed in 1995 [1], is a swarm intelligence
computational technique inspired by animal behavior, such as birds’ flocking. Because of its many
advantages, including fast convergence, simple structure, and high accuracy, PSO is used to solve
optimization problems, e.g., the travelling salesman problem [2], and problems in many industrial and
engineering domains [3], e.g., image processing [4], clouding computing [5], power systems [6,7], the

Appl. Sci. 2019, 9, 5537; doi:10.3390/app9245537 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1531-5027
http://dx.doi.org/10.3390/app9245537
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/24/5537?type=check_update&version=3

Appl. Sci. 2019, 9, 5537 2 of 18

chemical composition of a steel bar [8], and aircraft landing systems [9]. Although PSO is an excellent
optimization algorithm, it still has drawbacks that must be addressed. Shi and Eberhart proposed an
inertia weight, a linear time-varying inertia weight, and a random inertia weight to enhance the search
ability [10–12]. Ratnaweera et al. [13] used a time-varying acceleration coefficient, mutation, and a
self-organizing hierarchy to prevent the premature convergence in PSO. Chatterjee and Siarry [14]
used a non-linear time-varying inertia weight to enhance convergence. Yang et al. [15] proposed
an improved approach for velocity and afforded a different inertia weight for each particle. Ko et
al. [16] applied the concept of a non-linear time-varying inertia weight, cognitive coefficient, and social
coefficient. Ali and Kaelo [17] and Chen and Li [18] proposed strategies for adjusting the self-learning
strategy for each particle in a PSO. Huang [19] and Li [20] focused on improving the topology to
improve the PSO performance. Tsai et al. [21] divided particles into several groups and allowed
particles to be shared among different groups. Chen et al. [22] proposed a method of aging leaders
and challengers in PSO to overcome prematurity. Pehlivanoglu [23] proposed a periodic mutation
strategy to increase diversity and to avoid falling into the local optimum. Li et al. [24] employed
a new weighted particle to improve the PSO. Wang et al. [25] developed a dual-factor strategy for
increasing diversity. Cheng and Jin [26] improved the learning model of particles to increase the search
effectiveness. Lynn and Suganthan [27] divided the swarm population into two subpopulations to
explore or exploit exemplars by using the personal best experiences of the particles or the whole swarm,
respectively. Tsai et al. [28] used a sliding-level Taguchi method to enhance the PSO performance. Many
other optimization algorithms have been used to increase PSO effectiveness and performance [29–32].
Although the above improved PSO algorithms do improve the PSO performance, common limitations
are their lack of robustness and tendency to fall into the local optimum. Moreover, all the above
PSO-based algorithms are based on an integer-order derivative, which cannot be used to describe
natural phenomena, because fractional-order derivatives have a great influence in nature for objects that
are observed, touched, and controlled by humans [33]. Therefore, some researchers have proposed the
use of a fractional-order derivative to improve the PSO performance. A fractional-order particle swarm
optimizer (FPSO) was first proposed by Solteiro Pires et al. [34]. Solteiro Pires and coworkers [34,35]
later introduced the Grünwald–Letnikov definition of the fractional-order derivative in PSO and
modified the velocity update approach. In FPSO, memories of past particle movements influence
the next flight. Gao et al. [36], Couceiro and Ghamisi [37], Guo et al. [38], and Hosseini et al. [39]
also applied a fraction-order (FO) in PSO and Darwinian PSO (DPSO). However, the most recent
studies in FPSO have talked about the applications, such as the direction of arrival estimation
for electromagnetic plane waves [40], fractional order filters design [41], fractional fixed-structure
H∞ controller design [42], image segmentation [43–46], image border detection [47], design of a
complementary metal-oxide-semiconductor (CMOS) power amplifier [39], design for an electric
power transmission system [48], optimization for a pressurized water reactor (PWR) core loading
pattern [49], and optimization of extreme learning machine assignments [50]. This paper proposes
an FPSO algorithm with a non-linear time-varying evolution (NTE) based on Ko et al. [16] and
Solteiro Pires et al. [34]. In the proposed FPSO-NTE algorithm, NTE was used to set the inertia weight,
cognitive coefficient, and social coefficient. The proposed FPSO-NTE algorithm used four constant
coefficients to influence the order of the velocity derivative, the inertia weight, the cognitive parameter,
and the social parameter.

Therefore, an important issue is how to determine the best combination of the four constant
coefficients. The many proposed methods for determining the best combination include the
trial-and-error method, one-factor-at-a-time experimental design, full-factorial experimental design,
Taguchi method [51], and uniform experimental design [52,53]. Although most proposed methods and
experimental designs are systematic, they all have limitations. To solve this problem, Tsai et al. [54]
proposed a data-driven approach to uniform experimental design (DAUED) for optimizing the
parameters of an auto-alignment machine. The DAUED method optimizes parameters by integrating
a ten-level uniform layout with the best combination stage and a stepwise ratio. The FPSO-NTE

Appl. Sci. 2019, 9, 5537 3 of 18

algorithm proposed in this study applied the underlying concept of the DAUED method by using
DAUED to select the best combination of four constant coefficients. Because a data-driven approach
was not used, DAUED was renamed to an adaptive uniform experimental design (AUED) method for
this study. The AUFPSO-NTE algorithm automatically obtained the best combination of four constant
coefficients because AUED was integrated in FPSO-NTE.

This paper is organized as follows. FPSO and the proposed FPSO-NTE are briefly described in
Section 2. Section 3 describes how AUED was used in FPSO-NTE to search for the best combination.
Section 4 presents and discusses the experimental and simulation results. Finally, Section 5 concludes
the study.

2. FPSO and FPSO-NTE

Solteiro Pires and coworkers [34,35] first proposed FPSO, which introduced a fractional-order
derivative in PSO for rearranging and modifying the order of the velocity derivative. In a fractional-order
derivative, common definitions include the Riemann–Liouville definition, the Caputo definition, and the
Grünwald–Letnikov definition [55–57]. In the FPSO proposed by Solteiro Pires and coworkers [34,35],
the order of the velocity derivative is derived from the Grünwald–Letnikov definition, as shown below:

Dλ[x(t)] = lim
h→0

 1
hλ

+∞∑
k=0

(−1)kΓ(λ+ 1)x(t− kh)
Γ(k + 1)Γ(λ− k + 1)

, (1)

where D is the derivative operator, λ is the fractional order of the derivative, h is the difference operator,
Γ is the Gamma function, and x(t) is the object for the derivative.

For an application in discrete time, Expression (1) can be approximated using:

Dλ[x(t)] =
1

Tλ

r∑
k=0

(−1)kΓ(λ+ 1)x(t− kT)
Γ(k + 1)Γ(λ− k + 1)

, (2)

where T and r are the sampling period and the truncation order, respectively.
The update expression of the velocity for PSO is:

Vi(t + 1) = Vi(t) + c1·r1
(
Pl

i(t) − pi(t)
)
+ c2·r2(Pg(t) − pi(t)). (3)

The update expression of the position for PSO is:

Pi(t + 1) = pi(t) + Vi(t + 1), (4)

where i = 1, 2, . . . , S; S is the number of particles; t is the current iteration; λ is the fractional order of
the derivative; Vi(t) is the velocity; c1 and c2 are the cognitive and social coefficients, respectively; pi(t)
is the current position; Pi

l(t) and Pg(t) are the position of the self-best solution in the current iteration
and the position of the global solution in the current iteration, respectively; and r1 and r2 are random
constants between 0 and 1.

In Expression (3), the position term pi of (Pi
l
−pi) is rewritten as follows using fractional-order

derivation:

Dλ[pi(t + 1)] =
r∑

k=0

(−1)kΓ(λ+1)x(t−k)
Γ(k+1)Γ(λ−k+1)

= λpi(t) + λ
2 (1− λ)pi(t− 1) + λ

6 (1− λ)(2− λ)pi(t− 2)
+ λ

24 (1− λ)(2− λ)(3− λ)pi(t− 3).

(5)

According to Solteiro Pires et al. [34] and Gao et al. [36], r is set to 4 to obtain the best balance of
convergence rate and accuracy. Additionally, tests show that an r larger than 4 obtains the same results.

Appl. Sci. 2019, 9, 5537 4 of 18

Therefore, the updated expression of the velocity of the FPSO is:

Vi(t + 1) = Vi(t) + c1·r1
[
Pl

i(t) − λpi(t) − λ
2 (1− λ)pi(t− 1) − λ

6 (1− λ)(2− λ)

pi(t− 2) − λ
24 (1− λ)(2− λ)(3− λ)pi(t− 3)

]
+ c2·r2(Pg(t) − pi(t)).

(6)

To improve the PSO performance and effectiveness, Ko et al. [16] and Cui and Zeng [58] introduced
a non-linear NTE in PSO. Gao et al. [36] introduced a non-linear time-varying inertia weight in FO-DPSO.
In the current study, NTE is integrated in FPSO to enhance the performance and effectiveness. The
resulting FPSO-NTE is expressed as follows:

Vi(t + 1) = ω(t)·Vi(t)
+c1(t)·r1

[
Pl

i(t) − λpi(t) − λ
2 (1− λ)pi(t− 1) − λ

6 (1− λ)(2− λ)pi(t− 2)

−
λ
24 (1− λ)(2− λ)(3− λ)pi(t− 3)

]
+ c2(t)·r2(Pg(t) − pi(t))

(7)

pi(t + 1) = pi(t) + Vi(t + 1), (8)

where ω(t) is the time-varying inertia weight, ωmin ≤ ω(t) ≤ ωmax, c1(t) is the time-varying cognitive
coefficient, c1min ≤ c1(t) ≤ c1max, c2(t) is the time-varying social coefficient, and c2min ≤ c2(t) ≤ c2max.

ω(t) = ωmin +
(tmax − t

tmax

)α
× (ωmax −ωmin), (9)

c1(t) = c1min +
(tmax − t

tmax

)β
× (c1max − c1min), (10)

c2(t) = c2max +
(tmax − t

tmax

)γ
× (c2min − c2max), , (11)

where t and tmax are the current iteration and the maximum of iteration, respectively.
The constant coefficient λ influences the algorithmic performance, and coefficients α, β, and γ

influence ω, c1, and c2, respectively. The problem is how to obtain the best parameter value for the
constant coefficients λ, α, β, and γ. The solution proposed in this study is to use AUED to obtain the
best combination of constant coefficient values.

3. AUED-Based FPSO (AUFPSO) with NTE

This study used the AUED method in the proposed FPSO-NTE algorithm to assist in the search
for the best combination of the four constant coefficients. The three main steps of AUED method are
initializing, performing ten-level uniform layout experiments, and calculating the parameter range for
the next ten-level uniform layout. The initialization step includes selection of the parameters to be
optimized, their ranges, and the solution accuracy. At this time, a suitable ten-level uniform layout, the
output, a stepwise ratio, and the stop condition are also selected. The second main step can then be
executed. Ten levels of the parameter range and ten levels of the solution accuracy are defined, and
the ten levels are assigned to the ten-level uniform layout. The ten-level uniform layout experiments
can then be performed, and the experimental results are recorded. After the ten-level uniform layout
experiments in this stage are completed, the best combination obtained according to the output is
an optimal or near-optimal value. The range for each parameter is then calculated according to the
best combination and the stepwise ratio. The second and third main steps are repeated until the stop
condition is met.

For a clear understanding of how the AUED method is applied in the proposed FPSO-NTE
algorithm, the detailed steps of the method are given below.

A. Initialization of the AUED method in the proposed FPSO-NTE algorithm

Appl. Sci. 2019, 9, 5537 5 of 18

Step 1. Define the experimental parameters as the four constant coefficients λ, α, β, and γ. For
each parameter, set the range from 0 to 2, and set the solution accuracy to 0.0001.

Step 2. Set the experimental output as the fitness value.
Step 3. Set the stepwise ratio to 0.8.
Step 4. Select a suitable ten-level uniform layout of U10(104), as shown in Table 1.
Step 5. Repeat steps 1–4 until the objective value is reached or until the fitness value does not

obtain a near-objective value in two consecutive ten-level uniform layout experiments.

Table 1. A ten-level uniform layout of U10(104).

Experiment Number Column Numbers

1 2 5 7

1 1 2 5 7
2 2 4 10 3
3 3 6 4 10
4 4 8 9 6
5 5 10 3 2
6 6 1 8 9
7 7 3 2 5
8 8 5 7 1
9 9 7 1 8
10 10 9 6 4

B. Perform the ten-level uniform layout experiments

Step 1. The ranges for each parameter are divided into ten discrete values according to the chosen
ten-level uniform layout of U10(104).

Step 2. Assign ten discrete values of each parameter into the chosen ten-level uniform layout of
U10(104), shown as Table 2.

Step 3. Perform this process 15 times for each ten-level uniform layout experiment and record
the average as the output.

Table 2. Ten-level uniform layout of U10(104) for the proposed adaptive-uniform-
experimental-design-based fractional particle swarm optimizer with non-linear time-varying evolution
(AUFPSO-NTE).

Experiment Number Experimental Parameters

λ α β γ

1 0 0.2222 0.8889 1.3333
2 0.2222 0.6667 2 0.4444
3 0.4444 1.1111 0.6667 2
4 0.6667 1.5556 1.7778 1.1111
5 0.8889 2 0.4444 0.2222
6 1.1111 0 1.5556 1.7778
7 1.3333 0.4444 0.2222 0.8889
8 1.5556 0.8889 1.3333 0
9 1.7778 1.3333 0 1.5556

10 2 1.7778 1.1111 0.6667

C. Update the search range for next ten-level uniform experiments

Step 1. For each parameter, calculate the search range according to the best combination in this
stage and the stepwise ratio (0.8). The updated Algorithm 1 is shown below.

Step 2. Return to main step B and execute the experimental steps until the stop condition is met.

Appl. Sci. 2019, 9, 5537 6 of 18

Algorithm 1

Start
For K = 1 to PARA_NO

LT← LB(K);
UT ← UB(K);
LB(K)← BEST(K) − (UT − LT) × SWR ÷ 2;
UB(K)← BEST(K) + (UT − LT) × SWR ÷ 2;
If LB(K) < LT

LB(K) = LT;
End
If UB(K) > UT

UB(K) = UT;
End
For I = 1 to EXP_NO

LEVEL(I, K)← LB(K) + ((UB(K) − LB(K))/(EXP_NO − 1) × (I − 1));
End

End
End

where PARA_NO is the total number of parameters; LB and UB are the upper and lower bounds for
each experimental parameter, respectively; LT and UT are temporary values of LB and UB, respectively;
LEVEL is the level value; EXP_NO is the total number of experiments in the uniform layout; BEST is
the best parameter value for the best combination obtained by the uniform layout experiments in this
stage; and SWR is a stepwise ratio.

The following example demonstrates the use of the updated algorithm when the upper and lower
bounds for each parameter are initially set to 2 and 0, respectively, the number of parameters was 4,
and the number of experiments was 10. The first ten-level uniform layout experiments indicated that
the best combination [P1 P2 P3 P4] was [0.2553 0.4514 0.5556 1.2455]. The stepwise ratio was set to 0.8.
Here, the first parameter value was used to explain how to calculate a new range for the next ten-level
uniform layout experiments stage.

When the first ten-level uniform layout experiments stage was completed, LB and UB were 0 and
2, respectively. At first, LT and UT were 0 and 2, respectively, due to LB and UB. The best parameter
was 0.2553, and the stepwise ratio was 0.8. Therefore, LB = 0.2553 − (2 − 0) × 0.8 ÷ 2 = − 0.5447 and UB
= 0.2553 − (2 − 0) × 0.8 ÷ 2 = 1.0553. However, since LB was lower than LT, LB must be corrected to LT,
and the new range for the first parameter was 0 to 1.0553. This was because the original range was set
to 0 to 2. Therefore, we could know that LB for the next uniform layout experiments must be equal to
or more than LT. In the same way, UB for the next uniform layout experiments must have been equal
to or less than UT. Next, the range was divided into ten levels, and a discrete value was calculated
for each level. The discrete values were calculated as follows: 0 + ((1.0553 − 0) ÷ (10 − 1) × (1 − 1))
= 0 for the first level; 0 + ((1.0553 − 0) ÷ (10 − 1) × (2 − 1)) = 0.1173 for the second level, and so on.
The discrete value for the tenth level was calculated as 0 + ((1.0553 − 0) ÷ (10 − 1) × (10 − 1)) = 1.0533.
Table 3 shows the levels obtained after the updated algorithm was executed in this instance.

Table 3. New levels obtained after the updated algorithm was executed in this instance.

Levels
Parameters

P1 P2 P3 P4

1 0 0 0 0.4455
2 0.1173 0.1390 0.1506 0.6182
3 0.2345 0.2781 0.3012 0.7909
4 0.3518 0.4171 0.4519 0.9637

Appl. Sci. 2019, 9, 5537 7 of 18

Table 3. Cont.

Levels
Parameters

P1 P2 P3 P4

5 0.4690 0.5562 0.6025 1.1364
6 0.5863 0.6952 0.7531 1.3091
7 0.7035 0.8343 0.9037 1.4818
8 0.8208 0.9733 1.0544 1.6546
9 0.9380 1.1124 1.2050 1.8273

10 1.0553 1.2514 1.3556 2

4. Simulation Results and Comparisons

This section presents the results for the 15 global numerical optimization problems in Table 4,
which were used for the performance evaluations of the proposed AUFPSO-NTE algorithm. In Example
(1), functions f 1–f 7 were used to compare the performance of the proposed AUFPSO-NTE, the PSO-FOV
(PSO with the fractional-order velocity) proposed by Solteiro Pires et al. [34], the FPSO improved by
Solteiro Pires et al. [35] from PSO-FOV, the modified PSO (MPSO) proposed by Shi and Eberhart [11],
and the PSO proposed by Kennedy and Eberhart [1]. In Example (2), functions f 5 and f 8–f 11 were used
to compare the performance of the proposed AUFPSO-NTE, the FPSO-based algorithms proposed by
Gao et al. [36], and the PSO proposed by Gao et al. [36]. In Example (3), functions f 5, f 8, f 10, f 11, and
f 12 were used to compare between the AUFPSO-NTE, the adaptive fractional-order Darwinian PSO
(AFO-DPSO) proposed by Guo et al. [38], and the PSO-based algorithms described in Guo et al. [38].
In Example (4), functions f 5, f 8, f 10, f 11, and f 13–f 15 were used to compare between the AUFPSO-NTE,
the fractional-order Darwinian PSO (FDPSO) proposed by Hosseini et al. [39] and the PSO-based
algorithms described in Hosseini et al. [39]. The simulations were run on a Windows 10 personal
computer with a core i7-6700M, a 3.4 GHz CPU, and 8 GB RAM.

Table 4. Benchmark functions.

Name Definition Solution Space Optimal Value

Bohachevsky 1 f1 = v2
1 + 2v2

2 − 0.3 cos(3πv1) − 0.4 cos(4πv2) + 0.7 [−50,50]2 0

Colville
f2 = 100

(
v2 − v2

1

)2
+ (1− v1)

2 + 90
(
v4 − v2

3

)2
+ (1− v3)

2

+10.1
[
(v2 − 1)2 + (v4 − 1)2

]
+19.8(v2 − 1)(v4 − 1)

[−10,10]4 0

Drop wave f3 = −
1+cos

(
12

√
v2

1+v2
2

)
0.5(v2

1+v2
2)+2

[−10,10]2 −1

Easom f4 = − cos(v1) cos(v2)e−(v1−π)
2
−(v2−π)

2
[−100,100]2 −1

Rastrigin f5 =
∑G

i=1

(
v2

i − 10 cos(2πvi) + 10
)

[−5.12,5.12]G 0

Michalewiczs f6 =
∑G

i=1 − sin(vi)
[
sin

(i+1)v2
i

π

]2ι
[0,π]2 −1.8409

Rosenbrock’s valley f7 =
∑G−1

i=1 100
(
vi+1 − v2

i

)2
[−2.048,2.048]2 0

Sphere f8 =
∑G

i=1 v2
i [−100,100]G 0

Ackley f9 = −20 exp

−0.2

√∑G
i=1 v2

i
G

+ exp
(√∑G

i=1 cos 2πvi
G

)
+ 20

+e

[−32,32]G 0

Rosenbrock f10 =
∑G−1

i=1

[
100

(
vi+1 − v2

i

)2
+ (1− vi)

2
]

[−30,30]G 0

Griewank f11 = 1
4000

∑G
i=1 v2

i −
∏G

i=1 cos
(

vi√
i

)
+ 1 [−600,600]G 0

DeJong F4 f12 =
∑G

i=1 v4
i [−20,20]G 0

Schwefel’s P1.2 f13 =
∑G

i=1

(∑i
j=1 v j

)2
[−100,100]G 0

Appl. Sci. 2019, 9, 5537 8 of 18

Table 4. Cont.

Name Definition Solution Space Optimal Value

Quartic f14 =
∑G

i=1 iv4
i + random[0, 1) [−1.28,1.28]G 0

Salomon f15 = 1− cos
(
2π

√∑G
i=1 v2

i

)
+ 0.1

√∑G
i=1 v2

i [−100,100]G 0

4.1. Example (1): Proposed AUFPSO-NTE in Comparison with FPSO, PSO-FOV, MPSO, and PSO

The FPSO was the first developed, called PSO-FOV (PSO with the fractional-order velocity),
and improved by Solteiro Pires and coworkers [34,35], the MPSO introduced a time-varying inertia
weight [11], and PSO was first proposed by Kennedy and Eberhart [1]. All three algorithms were
compared with the proposed AUFPSO-NTE.

Table 5 shows the number of dimensions (Dn) that functions f 1 to f 7 were set to with Dn = 2, 4, 2,
2, 30, 2, and 4, respectively; the number of particles (S) was set to S = 10; and the number of iterations
(I) was set to 200. Table 6 shows the parameter settings for the proposed AUFPSO-NTE and for the
FPSO, PSO-FOV, MPSO, and PSO. In the AUFPSO-NTE, the minimum weight (ωmin) and maximum
weight (ωmax) were set to 0.4 and 0.9, respectively. The minimum cognitive coefficient (c1min) and
maximum cognitive coefficient (c1max) were set to 0 and 2, respectively. The minimum social coefficient
(c2min) and maximum social coefficient (c2max) were set to 0 and 2, respectively. In the MPSO, ωmin

and ωmax were set to 0.4 and 0.9, respectively, and c1 and c2 were both set to 2. For FPSO, PSO-FOV
and PSO, c1 and c2 were both set to 2. The maximum velocity (Vmax) was defined as the maximum
position minus minimum position, and the minimum velocity (Vmin) was defined as negative Vmax.
Table 7 shows the best combinations of the constant coefficients λ, α, β, and γ for each benchmark
function of the proposed AUFPSO-NTE. For comparisons, the constant coefficient λ and results are
obtained by the algorithms developed by Solteiro Pires and coworkers [34,35]. Tables 8 and 9 show the
constant coefficient λ for each benchmark function of the FPSO [35] and PSO-FOV [34], respectively.
In Tables 7–9, λ is the fractional order of the derivative. In Table 7, α, β, and γ are coefficients that
influence ω, c1, and c2, respectively.

Table 5. Settings for number of dimensions, number of particles, and number of iterations in the
proposed AUFPSO-NTE and for FPSO, PSO-FOV, MPSO, and PSO in Example (1).

Function Number of
Dimension (Dn)

Number of
Particles (S)

Number of
Iterations (I)

f 1 Bohachevsky 1 2 10 200
f 2 Colville 4 10 200
f 3 Drop wave 2 10 200
f 4 Easom 2 10 200
f 5 Rastrigin 30 10 200
f 6 Michalewiczs 2 10 200

f 7
Rosenbrock’s

valley 4 10 200

Table 6. Parameter settings for the proposed AUFPSO-NTE and for FPSO, PSO-FOV, MPSO, and PSO
in Example (1).

Terms
Algorithms

AUFPSO-NTE FPSO PSO-FOV MPSO PSO

ω
min 0.4 N/A N/A 0.4 N/A
max 0.9 0.9

c1
min 0

2 2 2 2max 2

Appl. Sci. 2019, 9, 5537 9 of 18

Table 6. Cont.

Terms
Algorithms

AUFPSO-NTE FPSO PSO-FOV MPSO PSO

c2
min 0

2 2 2 2max 2

Table 7. The best combinations of the constant coefficients for each benchmark function of the proposed
AUFPSO-NTE in Example (1).

Function λ α β γ

Bohachevsky 1 0.6667 1.5556 1.7778 1.1111
Colville 0.8852 0.3010 1.2533 0.9829

Drop wave 0.0320 0.3562 0.5070 1.5989
Easom 1.0035 0.3911 1.5022 1.4322

Rastrigin 1.3333 0.4444 0.2222 0.8889
Michalewiczs 0.9867 0.2489 1.9140 1.7678

Rosenbrock’s valley 1.3333 0.4444 0.2222 0.8889

Table 8. The λ parameter values for each benchmark function of FPSO in Example (1).

Function λ

Bohachevsky 1 1.65
Colville 1.75

Drop wave 1.43
Easom 1.98

Rastrigin 1.99
Michalewiczs 1.99

Rosenbrock’s valley 1.66

Table 9. The λ parameter values for each benchmark function of PSO-FOV in Example (1).

Function λ

Bohachevsky 1 0.35
Colville 0.57

Drop wave 0.57
Easom 0.32

Rastrigin 0.54
Michalewiczs 0.19

Rosenbrock’s valley 0.41

Table 10 shows the performance comparison results for the proposed AUFPSO-NTE and for
FPSO [35], PSO-FOV [34], MPSO [11], and PSO [1]. The table shows the best solution, mean, and
standard deviation (S.D.) that each algorithm obtained for f 1–f 7 in 30 independent trials. In Example
(1), all algorithms except PSO obtained the best solutions for f 1, f 3, f 4, and f 6. Only the proposed
AUFPSO-NTE and FPSO obtained the best solution for f 5 [35]. Additionally, only the proposed
AUFPSO-NTE obtained the best solution for f 2 and f 7. In terms of the mean and S.D., the proposed
AUFPSO-NTE outperformed FPSO [35], PSO-FOV [34], MPSO [11], and PSO [1].

Appl. Sci. 2019, 9, 5537 10 of 18

Table 10. Superior results obtained by the proposed AUFPSO-NTE in comparison with FPSO, PSO-FOV,
MPSO, and PSO in 30 independent trials in Example (1).

Function Terms AUFPSO-NTE FPSO PSO-FOV MPSO PSO

Bohachevsky 1
Best 0 0 0 0 0.1118

Mean 0 5.6621 × 10−16 0.0138 0.0275 5.1798
S.D. 0 1.8519 × 10−15 0.0754 0.1048 6.5905

Colville
Best 7.7920 × 10−5 1.3908 × 10−3 4.0173 × 10−3 0.2002 11.7514

Mean 1.6906 2.4786 2.8318 5.9281 223.7255
S.D. 1.8018 2.0702 2.8068 9.8226 462.9368

Drop wave
Best −1 −1 −1 −1 −0.9803

Mean −1 −0.9763 −0.9617 −0.9660 −0.7892
S.D. 1.9387 × 10−11 0.0310 0.0318 0.0324 0.1580

Easom
Best −1 −1 −1 −1 −0.9103

Mean −1 −1 0.9998 −0.9998 −0.0721
S.D. 7.6828 × 10−11 6.8674 × 10−6 9.0521 × 10−4 1.0572 × 10−3 0.1996

Rastrigin
Best 0 0 94.1343 0.0151 24.6608

Mean 5.1159 × 10−14 0.1044 153.9817 133.8380 223.4087
S.D. 6.5665 × 10−14 0.3025 27.1046 77.8643 75.7597

Michalewiczs
Best −1.8409 −1.8409 −1.8409 −1.8409 −1.8388

Mean −1.8409 −1.8409 −1.8409 −1.8409 −1.8388
S.D. 2.9272 × 10−10 9.4381 × 10−8 1.2377 × 10−7 3.9510 × 10−7 4.2741 × 10−7

Rosenbrock’s
valley

Best 4.0000 × 10−34 1.2791 × 10−21 4.8507 × 10−16 3.9505 × 10−14 0.0177
Mean 3.9129 × 10−22 1.3965 × 10−4 2.5900 × 10−3 2.8691 × 10−3 4.2239
S.D. 1.6158 × 10−21 6.4890 × 10−4 0.0089 0.0157 7.7636

4.2. Example (2): Proposed AUFPSO-NTE in Comparison with FVFP-PSO, FP-PSO, FV-PSO, and PSO

Example (2) compared the performance of the proposed AUFPSO-NTE with the standard PSO
and with three modifications of PSO proposed by Gao et al. [36]: particle swarm optimization with the
fractional-order velocity and the fractional-order position (FVFP-PSO), particle swarm optimization
with the fractional-order position (FP-PSO), and particle swarm optimization with the fractional-order
velocity (FV-PSO).

Table 11 shows that the number of dimensions for functions f 5 and f 8–f 11 was set to Dn = 10,
the number of particles was set to S = 30, and the number of iterations was set to N = 300. Table 12
shows the parameter settings for the proposed AUFPSO-NTE, FVFP-PSO, FP-PSO, FV-PSO, and PSO.
Parameters ωmin, ωmax, c1min, c1max, c2min, and c2max of the proposed AUFPSO-NTE were set as in
Example (1). In FVFP-PSO, FP-PSO, and FV-PSO, the fractional-order velocities and positions were
affected by factors ε and ζ. Notably, factorsω, ε, and ζ underwent time-varying evolution in FVFP-PSO,
FP-PSO, and FV-PSO. Table 12 also shows that c1 and c2 were 1. In Table 13, λ is the fractional order
of the derivative and α, β, and γ are coefficients that influence ω, c1, and c2, respectively. Table 13
shows the best combinations of constant coefficients λ, α, β, and γ for each benchmark function of the
proposed AUFPSO-NTE.

Table 11. Settings for the number of dimensions, number of particles, and number of iterations in
the proposed AUFPSO-NTE, fractional-order position (FP-PSO), fractional-order velocity (FV-PSO),
FVFP-PSO, and PSO in Example (2).

Function Number of
Dimension (Dn)

Number of
Particles (S)

Number of
Iterations (I)

f 5 Rastrigin 10 30 300
f 8 Sphere 10 30 300
f 9 Ackley 10 30 300
f 10 Rosenbrock 10 30 300
f 11 Griewank 10 30 300

Appl. Sci. 2019, 9, 5537 11 of 18

Table 12. Parameters settings for the proposed AUFPSO-NTE, FVFP-PSO, FP-PSO, FV-PSO, and PSO
in Example (2).

Terms
Algorithms

AUFPSO-NTE FVFP-PSO FP-PSO FV-PSO PSO

ω
min 0.4 0.4 0.4 0.4 N/A
max 0.9 0.9 0.9 0.9

c1
min 0

1 1 1 1max 2

c2
min 0

1 1 1 1max 2

ε
min N/A 0.1

1
0.1 N/A

max 1.2 1.2

ζ
min N/A 0.1 0.1

1 N/A
max 1.2 1.2

Table 13. The best combinations of the constant coefficients for each benchmark function of the
proposed AUFPSO-NTE in Example (2).

Function λ α β γ

Rastrigin 1.3333 0.4444 0.2222 0.8889
Sphere 1.4689 0.5306 0.2595 0.9879
Ackley 1.5538 0.3519 0.1248 0.7688

Rosenbrock 1.2 0 1.7235 1.8864
Griewank 1.5111 0.2765 0.1136 0.8

Table 14 compares the mean values obtained using the proposed AUFPSO-NTE, FVFP-PSO,
FP-PSO, FV-PSO, and PSO developed by Gao et al. [36] for f 5 and f 8–f 11 in 100 independent trials.
Table 14 shows that the means obtained by the proposed AUFPSO-NTE were better than those obtained
using FVFP-PSO, FP-PSO, FV-PSO, and PSO.

Table 14. Means obtained using the proposed AUFPSO-NTE and for FVFP-PSO, FP-PSO, FV-PSO, and
PSO for 5 benchmark functions in 100 independent trials in Example (2).

Function AUFPSO-NTE FVFP-PSO FP-PSO FV-PSO PSO

Rastrigin 0 0 3.4182 20.3351 18.3371
Sphere 2.8280 × 10−41 8.9588 × 10−36 1.9469 × 10−19 941.4338 8.2506 × 10−12

Ackley 8.8818 × 10−16 8.4555 × 10−15 0.0299 10.4455 0.0231
Rosenbrock 7.7881 8.0633 8.8267 2.5590 × 105 56.5664
Griewank 0 0.0013 0.3770 10.3937 0.1041

4.3. Example (3): Comparison of the Proposed AUFPSO-NTE with AFO-FPSO, NCPSO, FO-DPSO, FPSO,
APSO, DPSO, HPSO, and PSO

Example (3) compares the performance of the proposed AUFPSO-NTE with the AFO-DPSO
developed by Guo et al. [38], and the NCPSO (new chaos PSO), FO-DPSO (fractional-order Darwinian
PSO), FPSO, APSO (Adaptive PSO), DPSO (Darwinian PSO), HPSO (hybrid PSO), and PSO developed
by Guo et al. [38]. The AFO-DPSO introduces fractional-order velocity into a Darwinian PSO algorithm
and includes a mutation mechanism to overcome premature convergence, NCPSO improves the
chaos-PSO algorithm, FO-DPSO is a fractional-order Darwinian PSO, APSO provides adaptive PSO to
enable automatic control of parameters, DPSO is Darwinian particle swarm optimization, and HPSO
combines the concept of evolutionary computation with PSO.

Appl. Sci. 2019, 9, 5537 12 of 18

In Table 15, the Dn for functions f 5, f 8, f 9, f 11, and f 12 were set to 30, the number of particles was set
to S = 30, and the number of iterations was set to N = 1000. Tables 16 and 17 show the parameter settings
for the proposed AUFPSO-NTE and for the AFO-DPSO, NCPSO, FO-DPSO, FPSO, APSO, DPSO,
HPSO, and PSO. Parameters ωmin, ωmax, c1min, c1max, c2min, and c2max of the proposed AUFPSO-NTE
were set as in Example (1). For AFO-DPSO, ω was 1; c1 and c2 were 1.5 to 2.5, respectively; and δ was
0.05 to 0.1. For NCPSO, ω was 0.7298, and c1 and c2 were both 1.4962. For FO-DPSO and FPSO, ω was
0.9, λ was 0.632, and c1 and c2 were both 1.5. The APSO parameters were automatically set. In DPSO,
ω was set to 0.9. In HPSO, ωmin and ωmax were set to 0.2 and 0.8, respectively, and c1 and c2 were both
set to 2.5. In PSO, ωmin and ωmax were set to 0.4 and 0.9, respectively, and c1 and c2 were both set to 2.
Table 18 illustrates the best combinations of constant coefficients λ, α, β, and γ for each benchmark
function of the proposed AUFPSO-NTE. In Table 18, λ is the fractional order of the derivative and α, β,
and γ are coefficients which influence ω, c1, and c2, respectively.

Table 15. Number of dimensions, number of particles, and number of iterations for the proposed
AUFPSO-NTE and for AFO-DPSO, NCPSO, FO-DPSO, FPSO, APSO, DPSO, HPSO, and PSO in
Example (3).

Function Number of
Dimension (Dn)

Number of
Particles (S)

Number of
Iterations (I)

f 5 Rastrigin 30 30 1000
f 8 Sphere 30 30 1000
f 9 Ackley 30 30 1000
f 11 Griewank 30 30 1000
f 12 DeJong F4 30 30 1000

Table 16. Parameter settings for the proposed AUFPSO-NTE and for AFO-DPSO, NCPSO, FO-DPSO,
FO-PSO, APSO, DPSO, HPSO, and PSO in Example (3).

Terms
Algorithms

AUFPSO-NTE AFO-FPSO NCPSO FO-DPSO FPSO

ω
min 0.4

1 0.7298 0.9 0.9max 0.9

c1
min 0 1.5

1.4962 1.5 1.5max 2 2.5

c2
min 0 1.5

1.4962 1.5 1.5max 2 2.5

Table 17. Parameter settings for the proposed AUFPSO-NTE and for AFO-DPSO, NCPSO, FO-DPSO,
FPSO, APSO, DPSO, HPSO, and PSO in Example (3).

Terms
Algorithms

AUFPSO-NTE APSO DPSO HPSO PSO

ω
min 0.4

Auto-control 0.9
0.2 0.4

max 0.9 0.8 0.9

c1
min 0

Auto-control N/A 2.5 2max 2

c2
min 0

Auto-control N/A 2.5 2max 2

Appl. Sci. 2019, 9, 5537 13 of 18

Table 18. Best combinations of the constant coefficients for each benchmark function of the proposed
AUFPSO-NTE in Example (3).

Function λ α β γ

Rastrigin 1.1111 0 1.5556 1.7778
Sphere 1.3333 0.4444 0.2222 0.8889
Ackley 1.3813 0.9368 0.9227 1.7236

Griewank 0.4444 1.1111 0.6667 2
DeJong F4 1.3333 0.4444 0.2222 0.8889

In Tables 19 and 20, the mean values obtained by the AUFPSO-NTE are compared with those
obtained using AFO-DPSO, NCPSO, FO-DPSO, FPSO, APSO, DPSO, HPSO, and PSO given by Guo
et al. [38]. Mean values obtained using each PSO-based algorithm for f 5, f 8, f 9, f 11, and f 12 in 30
independent trials were recorded. Tables 19 and 20 show that the means obtained using the proposed
AUFPSO-NTE were better than those obtained using AFO-DPSO, NCPSO, FO-DPSO, FPSO, APSO,
DPSO, HPSO, and PSO. In Guo et al. [38], the performance was evaluated in terms of variance in the
optimum (12):

variances in optimum =
30∑

i=1

∣∣∣∣∣∣ fi − favg

fmax

∣∣∣∣∣∣2, (12)

where fi is the ith fitness value and favg is the mean fitness value for 30 independent trials. The fmax is a
normalization factor. When |fi − favg| > 1, fmax is the maximum (|fi − favg|); otherwise, fmax = 1.

Table 19. Means obtained using the proposed AUFPSO-NTE and using AFO-FPSO, NCPSO, FO-DPSO,
and FO-PSO for 5 benchmark functions in 30 independent trials.

Function AUFPSO-NTE AFO-FPSO NCPSO FO-DPSO FO-PSO

Rastrigin 0 1.8956 × 10−10 4.3741 × 10−4 4.2305 × 10−5 3.5000 × 10−3

Sphere 1.5042 × 10−124 2.3420 × 10−14 2.0279 × 10−9 3.4728 × 10−7 1.5340 × 10−5

Ackley 8.8818 × 10−16 3.6610 × 10−11 9.0869 × 10−7 1.3774 × 10−6 1.4000 × 10−6

Griewank 0 0 9.9050 × 10−11 8.1377 × 10−9 1.4184 × 10−7

DeJong F4 1.3852 × 10−255 6.3364 × 10−23 2.0809 × 10−17 8.8098 × 10−16 9.2521 × 10−12

Table 20. Means obtained using the proposed AUFPSO-NTE and using APSO, DPSO, HPSO, and PSO
for 5 benchmark functions in 30 independent trials.

Function AUFPSO-NTE APSO DPSO HPSO PSO

Rastrigin 0 1.0100 1.9899 4.8642 106.55
Sphere 1.5042 × 10−124 1.4500 × 10−10 0.0328 0.3876 370.04
Ackley 8.8818 × 10−16 0.3550 2.4083 5.6972 11.4953

Griewank 0 0.0167 7.400 × 10−3 0.0237 2.6100 × 107

DeJong F4 1.3852 × 10−255 2.1300 × 10−10 1.3752 × 10−5 0.0635 4.3467 × 103

The variance in the optimum was also used to compare the performance of the proposed
AUFPSO-NTE with algorithms given by Guo et al. [38]. Tables 21 and 22 compare the variance in
the optimum obtained by the proposed AUFPSO-NTE and by AFO-DPSO, NCPSO, FO-DPSO, FPSO,
APSO, DPSO, HPSO, and PSO. A variance in the optimum closer to 0 indicates a better performance.
Tables 21 and 22 indicate that the proposed AUFPSO-NTE had a better variance in the optimum
compared to AFO-DPSO, NCPSO, FO-DPSO, FPSO, APSO, DPSO, HPSO, and PSO.

Appl. Sci. 2019, 9, 5537 14 of 18

Table 21. Variances in the optimum obtained using the proposed AUFPSO-NTE, AFO-FPSO, NCPSO,
FO-DPSO, and FO-PSO for 5 benchmark functions in 30 independent trials.

Function AUFPSO-NTE AFO-FPSO NCPSO FO-DPSO FO-PSO

Rastrigin 0 0.0017 0.0043 0.0137 0.0232
Sphere 1.6599 × 10−245 0.0031 0.0597 0.4091 0.7505
Ackley 2.9170 × 10−61 1.4637 × 10−5 3.5416 × 10−4 5.9058 × 10−4 0.0025

Griewank 0 0.0116 0.1912 0.6574 0.8151
DeJong F4 0 0.0201 0.2765 0.7344 0.8836

Table 22. Variances in the optimum obtained using the proposed AUFPSO-NTE, APSO, DPSO, HPSO,
and PSO for 5 benchmark functions in 30 independent trials.

Function AUFPSO-NTE APSO DPSO HPSO PSO

Rastrigin 0 0.0173 0.0774 0.2162 0.3488
Sphere 1.6599 × 10−245 0.5126 1.0068 1.6022 2.0978
Ackley 2.9170 × 10−61 0.0011 0.0162 0.0200 0.9074

Griewank 0 0.6819 0.9371 1.3658 1.6408
DeJong F4 0 0.8381 0.9611 1.0130 1.7960

4.4. Example (4): Comparison of the Proposed AUFPSO-NTE with HAFPSO, GAPSO, HFPSO, FPSO, and
PSO

Example (4) compares the performance of the proposed AUFPSO-NTE with the HAFPSO
(hunter-attack fractional-order PSO) developed by Hosseini et al. [38], GAPSO (genetic
algorithm-PSO) [59], HFPSO (hybrid firefly algorithm and PSO) [60], FPSO, and PSO developed
by Hosseini et al. [38]. The HAFPSO introduces the concept of hunter-attack into the FODPSO and the
GAPSO is a compound optimizer that introduces the crossover and mutation strategy of GA into PSO.
The HFPSO combines the firefly optimization algorithm and PSO.

Table 23 shows that the number of dimensions for functions f 5, f 8, f 10, f 11, and f 13–f 15 was set
to Dn = 50, the number of particles was set to S = 30, and the number of iterations was set to N =

1000. Parameters ωmin, ωmax, c1min, c1max, c2min, and c2max of the proposed AUFPSO-NTE were set as
in Example (1). Except for the fractional order value (λ) in HAFPSO being 0.6, the parameter settings
for the HAFPSO, GAPSO, HFPSO, FPSO, and PSO were not mentioned. In Table 24, λ is the fractional
order of the derivative and α, β, and γ are coefficients that influence ω, c1, and c2, respectively. Table 24
shows the best combinations of the constant coefficients λ, α, β, and γ for each benchmark function of
the proposed AUFPSO-NTE.

Table 23. Settings for the number of dimensions, number of particles, and number of iterations in the
proposed AUFPSO-NTE and for HAFPSO, GAPSO, HFPSO, FPSO, and PSO in Example (4).

Function Number of
Dimension (Dn)

Number of
Particles (S)

Number of
Iterations (I)

f 5 Rastrigin 50 30 1000
f 8 Sphere 50 30 1000
f 10 Rosenbrock 50 30 1000
f 11 Griewank 50 30 1000
f 13 Schwefel P1.2 50 30 1000
f 14 Quartic 50 30 1000
f 15 Salomon 50 30 1000

Appl. Sci. 2019, 9, 5537 15 of 18

Table 24. Best combinations of the constant coefficients for each benchmark function of the proposed
AUFPSO-NTE in Example (4).

Function λ α β γ

Rastrigin 1.2494 0 1.6361 1.8209
Sphere 1.3333 0.4444 0.2222 0.8889

Rosenbrock 1.7778 1.3333 0 1.5556
Griewank 0.2765 1.2 0.4889 2

Schwefel P1.2 1.3333 0.4444 0.2222 0.8889
Quartic 1.5111 0.2765 0.1136 0.8

Salomon 1.3087 1.6889 0.8592 0.0889

Table 25 shows the performance comparison results obtained using the proposed AUFPSO-NTE,
and obtained using HAFPSO [38], GAPSO [59], HFPSO [60], FPSO, and PSO developed by
Hosseini et al. [38] for f 5, f 8, f 10, f 11, and f 13–f 15 in 100 independent trials. The table shows that
the means and S.D. obtained using the proposed AUFPSO-NTE were better than those obtained using
HAFPSO [38], GAPSO [59], HFPSO [60], FPSO, and PSO. Overall, the performance of the proposed
AUFPSO-NTE was better than others in Example (4).

Table 25. Performance results obtained using the proposed AUFPSO-NTE in comparison with HAFPSO,
GAPSO, HFPSO, FPSO, and PSO for 7 benchmark functions in 100 independent trials in Example (4).

Function Terms AUFPSO-NTE HAFPSO GAPSO HFPSO FPSO PSO

Rastrigin Mean 0 2.18 × 10−2 6.76 × 101 8.83 × 101 7.40 × 101 7.90 × 101

S.D. 0 2.83 × 10−2 1.84 × 101 3.08 × 101 2.04 × 101 1.86 × 101

Sphere Mean 1.89 × 10−121 2.15 × 10−9 3.67 × 10−3 1.43 × 10−5 7.51 × 10−3 4.57 × 10−5

S.D. 1.75 × 10−120 3.54 × 10−9 6.11 × 10−3 8.05 × 10−6 3.20 × 10−2 1.61 × 10−4

Rosenbrock
Mean 4.88 × 101 1.00 × 102 8.14 × 101 1.53 × 102 1.16 × 102 1.06 × 102

S.D. 1.06 × 10−1 5.57 × 101 4.16 × 101 5.93 × 101 5.56 × 101 4.86 × 101

Griewank
Mean 0 1.27 × 10−2 1.60 × 10−2 9.88 × 10−1 3.64 × 10−2 5.81 × 10−2

S.D. 0 1.54 × 10−2 2.06 × 10−2 6.49 × 10−2 6.61 × 10−2 8.96 × 10−2

Schwefel P1.2
Mean 6.98 × 10−123 1.03 × 103 3.99 × 101 1.15 × 103 6.32 × 102 2.22 × 103

S.D. 6.49 × 10−122 4.83 × 102 3.53 × 101 1.09 × 103 4.32 × 102 8.84 × 102

Quartic Mean 1.34 × 10−4 1.34 × 10−2 4.46 × 10−2 3.70 × 10−2 6.45 × 10−2 5.23 × 10−2

S.D. 9.80 × 10−5 3.91 × 10−3 1.17 × 10−2 1.28 × 10−2 2.12 × 10−2 1.90 × 10−2

Salomon
Mean 7.99 × 10−3 6.40 × 10−1 7.85 × 10−1 1.15 1.27 1.13
S.D. 2.72 × 10−2 7.91 × 10−2 1.38 × 10−1 1.99 × 10−1 3.60 × 10−1 2.74 × 10−1

5. Conclusions

This study applied the AUED method to enhance the performance and effectiveness of the
FPSO-NTE algorithm. Use of the AUED method in the proposed FPSO-NTE algorithm enabled a
rapid automatic search for the best combination of four constant coefficients, namely λ, α, β, and
γ. The major contribution of this paper was the use of AUED to improve the performance of the
algorithm and to obtain a robust output. The above experimental and simulation results indicate
that the proposed AUFPSO-NTE algorithm achieved a higher solution accuracy compared to the
FPSO and PSO-FOV proposed by Solteiro Pires and coworkers [34,35], the FPSO proposed by Gao
et al. [36], the AFO-DPSO proposed by Guo et al. [38], the HAFPSO proposed by Hosseini et al. [39],
and the PSO-based algorithm described by them [34–36,38,39]. Examples demonstrated that the
solutions obtained using the proposed AUFPSO-NTE algorithm were more consistent, i.e., more
robust. Therefore, we conclude that the proposed AUFPSO-NTE algorithm had a superior effectiveness
and performance.

Appl. Sci. 2019, 9, 5537 16 of 18

Author Contributions: Formal analysis, P.-Y.Y. and F.-I.C.; funding acquisition, J.-T.T. and J.-H.C.; methodology,
J.-T.T. and J.-H.C.; software, P.-Y.Y. and F.-I.C.; supervision, J.-T.T. and J.-H.C.; validation, P.-Y.Y. and F.-I.C.;
writing—original draft, P.-Y.Y. and F.-I.C.; writing—review and editing, J.-T.T. and J.-H.C.

Funding: This research was funded in part by the Ministry of Science and Technology, Taiwan, R.O.C., grant
numbers MOST 105-2221-E-992-304-MY3, MOST107-2221-E-992-086-MY3, and MOST107-2221-E-153-005-MY2,
and in part by the “Intelligent Manufacturing Research Center” (iMRC) from the Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in
Taiwan, R.O.C. And The APC was funded by MOST107-2221-E-992-086-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995.

2. Wang, Y.; Feng, X.Y.; Huang, Y.X.; Pu, D.B.; Zhou, W.G.; Liang, Y.C. A Novel Quantum Swarm Evolutionary
Algorithm and Its Applications. Neurocomputing 2007, 70, 633–640. [CrossRef]

3. Rezaee Jordehi, A.; Jasni, J. Parameter Selection in Particle Swarm Optimisation: A Survey. J. Exp. Theor.
Artif. Intell. 2013, 25, 527–542. [CrossRef]

4. Chen, Q.; Yang, J.G.; Gou, J. Image Compression Method Using Improved PSO Vector Quantization. In
Proceedings of the Advances in Natural Computation: First International Conference, ICNC, Changsha,
China, 27–29 August 2005.

5. Navimipour, N.J.; Eslamic, F. Service Allocation in the Cloud Environments Using Multi-Objective Particle
Swarm Optimization Algorithm based on Crowding Distance. Swarm Evol. Comput. 2017, 35, 56–64.

6. Kerdphol, T.; Fuji, K.; Mitani, Y.; Watanabe, M.; Qudaih, Y. Optimization of a Battery Energy Storage System
Using Particle Swarm Optimization for Stand-Alone Microgrids. Electr. Power Energy Syst. 2016, 81, 32–39.
[CrossRef]

7. Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A Novel Fuzzy Adaptive Configuration of Particle
Swarm Optimization to Solve Large-Scale Optimal Reactive Power Dispatch. Appl. Soft Comput. 2017, 53,
441–456. [CrossRef]

8. Chou, P.Y.; Tsai, J.T.; Chou, J.H. Modeling and Optimizing Tensile Strength and Yield Point on a Steel Bar
Using an Artificial Neural Network with Taguchi Particle Swarm Optimizer. IEEE Access. 2016, 4, 585–593.
[CrossRef]

9. Girish, B.S. An Efficient Hybrid Particle Swarm Optimization Algorithm in a Rolling Horizon Framework
for the Aircraft Landing Problem. Appl. Soft Comput. 2016, 44, 200–221.

10. Shi, Y.; Eberhart, R.C. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE International
Conference on Evolutionary Computation World Congress on Computational Intelligence, Anchorage, AK,
USA, 4–9 May 1998.

11. Shi, Y.; Eberhart, R.C. Empirical Study of Particle Swarm Optimization. In Proceedings of the Congress on
Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999.

12. Eberhart, R.C.; Shi, Y. Tracking and Optimizing Dynamic Systems with Particle Swarm. In Proceedings of
the Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001.

13. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-Organizing Hierarchical Particle Swarm Optimizer
with Time-Varying Acceleration Coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]

14. Chatterjee, A.; Siarry, P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm
Optimization. Comput. Oper. Res. 2006, 33, 859–871. [CrossRef]

15. Yang, X.; Yuan, J.; Yuan, J. A Modified Particle Swarm Optimizer with Dynamic Adaptation. Appl. Math.
Comput. 2007, 189, 1205–1213. [CrossRef]

16. Ko, C.N.; Chang, Y.P.; Wu, C.J. An Orthogonal-Array-based Particle Swarm Optimizer with Nonlinear
Time-Varying Evolution. Appl. Math. Comput. 2007, 191, 272–279. [CrossRef]

17. Ali, M.M.; Kaelo, P. Improved Particle Swarm Algorithms for Global Optimization. Appl. Math. Comput.
2008, 196, 578–593. [CrossRef]

18. Chen, X.; Li, Y. On Convergence and Parameter Selection of an Improved Particle Swarm Optimization. Int.
J. Control Autom. Syst. 2008, 6, 559–570.

19. Huang, S.R. Survey of Particle Swarm Optimization Algorithm. Comput. Eng. Des. 2009, 30, 1977–1980.

http://dx.doi.org/10.1016/j.neucom.2006.10.001
http://dx.doi.org/10.1080/0952813X.2013.782348
http://dx.doi.org/10.1016/j.ijepes.2016.02.006
http://dx.doi.org/10.1016/j.asoc.2017.01.012
http://dx.doi.org/10.1109/ACCESS.2016.2521162
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1016/j.cor.2004.08.012
http://dx.doi.org/10.1016/j.amc.2006.12.045
http://dx.doi.org/10.1016/j.amc.2007.02.096
http://dx.doi.org/10.1016/j.amc.2007.06.020

Appl. Sci. 2019, 9, 5537 17 of 18

20. Li, X. Niching without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE
Trans. Evol. Comput. 2010, 14, 150–169. [CrossRef]

21. Tsai, H.C.; Tyan, Y.Y.; Wu, Y.W.; Lin, Y.H. Isolated Particle Swarm Optimization with Particle Migration and
Global Best Adoption. Eng. Optim. 2012, 44, 1405–1424. [CrossRef]

22. Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Li, Y.; Shi, Y.H. Particle Swarm
Optimization with an Aging Leader and Challengers. IEEE Trans. Evol. Comput. 2013, 17, 241–258.
[CrossRef]

23. Pehlivanoglu, Y.V. A New Particle Swarm Optimization Method Enhanced with a Periodic Mutation Strategy
and Neural Networks. IEEE Trans. Evol. Comput. 2013, 17, 436–452. [CrossRef]

24. Li, N.J.; Wang, W.J.; Hsu, C.C.; Chang, J.W.; Chang, J.W. Enhanced Particle Swarm Optimizer Incorporating a
Weighted Particle. Neurocomputing 2014, 124, 218–227. [CrossRef]

25. Wang, L.; Yang, B.; Li, Y.; Zhang, N. A Novel Improvement of Particle Swarm Optimization Using Dual
Factors Strategy. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing, China,
6–11 July 2014.

26. Cheng, R.; Jin, Y. A Social Learning Particle Swarm Optimization Algorithm for Scalable Optimization. Inf.
Sci. 2015, 291, 43–60. [CrossRef]

27. Lynn, N.; Suganthan, P.N. Heterogeneous Comprehensive Learning Particle Swarm Optimization with
Enhanced Exploration and Exploitation. Swarm Evol. Comput. 2015, 24, 11–24. [CrossRef]

28. Tsai, J.T.; Chou, P.Y.; Chou, J.H. Color Filter Polishing Optimization Using ANFIS with Sliding-Level Particle
Swarm Optimizer. IEEE Trans. Syst. Man Cybern. Syst. 2017. [CrossRef]

29. Kao, Y.T.; Zahara, E. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions.
Appl. Soft Comput. 2008, 8, 849–857. [CrossRef]

30. Xin, B.; Chen, J. A Survey and Taxonomy on Hybrid Algorithms based on Particle Swarm Optimization and
Differential Evolution. J. Syst. Sci. Math. Sci. 2011, 31, 1130–1150.

31. Noel, M.M. A New Gradient Based Particle Swarm Optimization Algorithm for Accurate Computation of
Global Minimum. Appl. Soft Comput. 2012, 12, 353–359. [CrossRef]

32. Sun, Y.; Zhang, L.; Gu, X. A Hybrid Co-Evolutionary Cultural Algorithm based on Particle Swarm
Optimization for Solving Global Optimization Problems. Neurocomputing 2012, 98, 76–89. [CrossRef]

33. Zhao, C.N.; Li, Y.S.; Lu, T. Analysis and Design of Fractional Order System; National Defense Industry Press:
Beijing, China, 2011.

34. Solteiro Pires, E.J.; Tenreiro Machado, J.A.; Moura Oliveira, P.B.; Boaventura Cunha, J.; Mendes, L. Particle
Swarm Optimization with Fractional-Order Velocity. Nonlinear Dyn. 2010, 61, 295–301. [CrossRef]

35. Solteiro Pires, E.J.; Tenreiro Machado, J.A.; Moura Oliveira, P.B. Fractional Particle Swarm Optimization. In
Mathematical Methods in Engineering; Fonseca, N.M., Tenreiro Machado, J.A., Eds.; Springer: London, UK,
2014; pp. 47–56.

36. Gao, Z.; Wei, J.; Liang, C.; Yan, M. Fractional-Order Particle Swarm Optimization. In Proceedings of the 26th
Chinese Control and Decision Conference (CCDC), Changsha, China, 31 May–2 June 2014.

37. Couceiro, M.; Ghamisi, P. Fractional Order Darwinian Particle Swarm Optimization: Applications and Evaluation
of an Evolutionary Algorithm; Springer: Cham, Switzerland, 2016; pp. 11–20.

38. Guo, T.; Lan, J.L.; Li, Y.F.; Chen, S.W. Adaptive Fractional-Order Darwinian Particle Swarm Optimization
Algorithm. J. Commun. 2014, 35, 130–140.

39. Akbar, S.; Zaman, F.; Asif, M.; Rehman, A.U.; Raja, M.A.Z. Novel application of FO-DPSO for 2-D parameter
estimation of electromagnetic plane waves. Neural Comput. Appl. 2019, 31, 3681–3690. [CrossRef]

40. Ates, A.; Alagoz, B.B.; Kavuran, G.; Yeroglu, C. Implementation of fractional order filters discretized by
modified fractional order darwinian particle swarm optimization. Measurement 2017, 107, 153–164. [CrossRef]

41. Shahri, E.S.A.; Alfi, A.; Machado, J.T. Fractional fixed-structure H∞ controller design using augmented
lagrangian particle swarm optimization with fractional order velocity. Appl. Soft Comput. 2019, 77, 688–695.
[CrossRef]

42. Wei, J.R.; Ma, Y.; Xia, R.; Jiang, H.B.; Zhou, T.T. Image segmentation algorithm based on Otsu optimized by
fractional-order particle swarm optimization. Comput. Eng. Des. 2017, 38, 3284–3290.

43. Guo, F.; Peng, H.; Zou, B.; Zhao, R.; Liu, X. Localisation and segmentation of optic disc with the fractionalorder
Darwinian particle swarm optimization algorithm. IET Image Process. 2018, 12, 1303–1312. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2010.2050024
http://dx.doi.org/10.1080/0305215X.2012.654787
http://dx.doi.org/10.1109/TEVC.2011.2173577
http://dx.doi.org/10.1109/TEVC.2012.2196047
http://dx.doi.org/10.1016/j.neucom.2013.07.005
http://dx.doi.org/10.1016/j.ins.2014.08.039
http://dx.doi.org/10.1016/j.swevo.2015.05.002
http://dx.doi.org/10.1109/TSMC.2017.2776158
http://dx.doi.org/10.1016/j.asoc.2007.07.002
http://dx.doi.org/10.1016/j.asoc.2011.08.037
http://dx.doi.org/10.1016/j.neucom.2011.08.043
http://dx.doi.org/10.1007/s11071-009-9649-y
http://dx.doi.org/10.1007/s00521-017-3318-8
http://dx.doi.org/10.1016/j.measurement.2017.05.017
http://dx.doi.org/10.1016/j.asoc.2019.01.037
http://dx.doi.org/10.1049/iet-ipr.2017.1149

Appl. Sci. 2019, 9, 5537 18 of 18

44. Ahilan, A.; Manogaran, G.; Raja, C.; Kadry, S.; Kumar, S.N.; Agees Kumar, C.; Jarin, T.; Krishnamoorthy, S.;
Kumar, P.M.; Babu, G.C.; et al. Segmentation by Fractional Order Darwinian Particle Swarm Optimization
Based Multilevel Thresholding and Improved Lossless Prediction Based Compression Algorithm for Medical
Images. IEEE Access. 2019, 7, 89570–89580. [CrossRef]

45. Tang, Q.; Gao, S.; Liu, Y.; Yu, F. Infrared image segmentation algorithm for defect detection based on FODPSO.
Infrared Phys. Technol. 2019, 102, 103051. [CrossRef]

46. Wang, Y.Y.; Peng, W.X.; Qiu, C.H.; Jiang, J.; Xia, S.R. Fractional-order Darwinian PSO-based feature selection
for media-adventitia border detection in intravascular ultrasound images. Ultrasonics 2019, 92, 1–7. [CrossRef]

47. Hosseini, S.A.; Hajipour, A.; Tavakoli, H. Design and optimization of a CMOS power amplifier using
innovative fractional-order particle swarm optimization. Appl. Soft Comput. 2019, 85, 105831. [CrossRef]

48. Akdağ, O.; Okumuş, F.; Kocamaz, A.F.; Yeroglu, C. Fractional Order Darwinian PSO with Constraint
Threshold for Load Flow Optimization of Energy Transmission System. Gazi Univ. J. Sci. 2018, 31, 831–844.

49. Zameer, A.; Muneeb, M.; Mirza, S.M.; Raja, M.A.Z. Fractional-order particle swarm based multi-objective
PWR core loading pattern optimization. Ann. Nucl. Energy 2020, 135, 106982. [CrossRef]

50. Wang, Y.Y.; Zhang, H.; Qiu, C.H.; Xia, S.R. A Novel Feature Selection Method Based on Extreme Learning
Machine and Fractional-Order Darwinian PSO. Comput. Intell. Neurosci. 2018, 2018, 5078268. [CrossRef]

51. Taguchi, G.; Chowdhury, S.; Taguchi, S. Robust Engineering; McGraw-Hill: New York, NY, USA, 2000.
52. Wang, Y.; Fang, K.T. A Note on Uniform Distribution and Experimental Design. Chin. Sci. Bull. 1981, 26,

485–489.
53. Tsao, H.; Lee, L. Uniform Layout Implement on Matlab. Stat. Decis. 2008, 6, 144–146.
54. Tsai, J.T.; Yang, P.Y.; Chou, J.H. Data-Driven Approach to Using Uniform Experimental Design to Optimize

System Compensation Parameters for an Auto-Alignment Machine. IEEE Access. 2018, 6, 40365–40378.
[CrossRef]

55. Diethelm, K. The Analysis of Fractional Differential Equations—An Application-Oriented Exposition Using
Differential Operators of Caputo Type; Springer: London, UK, 2010.

56. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
57. Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific:

Singapore, 2015.
58. Cui, Z.H.; Zeng, J.C. Particle Swarm Optimization; Science Press: Beijing, China, 2011.
59. Liu, H.; Zhai, R.; Fu, J.; Wang, Y.; Yang, Y. Optimization study of thermal-storage PV-CSP integrated system

based on GA-PSO algorithm. Sol. Energy 2019, 184, 391–409. [CrossRef]
60. Aydilek, İ.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive

numerical problems. Appl. Soft Comput. 2018, 66, 232–249. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2891632
http://dx.doi.org/10.1016/j.infrared.2019.103051
http://dx.doi.org/10.1016/j.ultras.2018.06.012
http://dx.doi.org/10.1016/j.asoc.2019.105831
http://dx.doi.org/10.1016/j.anucene.2019.106982
http://dx.doi.org/10.1155/2018/5078268
http://dx.doi.org/10.1109/ACCESS.2018.2856911
http://dx.doi.org/10.1016/j.solener.2019.04.017
http://dx.doi.org/10.1016/j.asoc.2018.02.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	FPSO and FPSO-NTE
	AUED-Based FPSO (AUFPSO) with NTE
	Simulation Results and Comparisons
	Example (1): Proposed AUFPSO-NTE in Comparison with FPSO, PSO-FOV, MPSO, and PSO
	Example (2): Proposed AUFPSO-NTE in Comparison with FVFP-PSO, FP-PSO, FV-PSO, and PSO
	Example (3): Comparison of the Proposed AUFPSO-NTE with AFO-FPSO, NCPSO, FO-DPSO, FPSO, APSO, DPSO, HPSO, and PSO
	Example (4): Comparison of the Proposed AUFPSO-NTE with HAFPSO, GAPSO, HFPSO, FPSO, and PSO

	Conclusions
	References

