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Abstract: Numerical simulation of the turbulent wind field on long-span bridges is an important task in
structural buffeting analysis when it comes to the system non-linearity. As for non-stationary extreme
wind events, some efforts have been paid to update the classic spectral representation method (SRM)
and the fast Fourier transform (FFT) has been introduced to improve the computational efficiency.
Here, the non-negative matrix factorization-based FFT-aided SRM has been updated to generate
not only the horizontal non-stationary turbulent wind field, but also the vertical one. Specifically,
the evolutionary power spectral density (EPSD) is estimated to characterize the non-stationary feature
of the field-measured wind data during Typhoon Wipha at the Runyang Suspension Bridge (RSB)
site. The coherence function considering the phase angles is utilized to generate the turbulent wind
fields for towers. The simulation accuracy is validated by comparing the simulated and target
auto-/cross-correlation functions. Results show that the updated method performs well in generating
the non-stationary turbulent wind field. The obtained wind fields will provide the research basis for
analyzing the non-stationary buffeting behavior of the RSB and other wind-sensitive structures in
adjacent regions.

Keywords: non-stationary turbulence simulation; non-negative matrix factorization; fast Fourier
transform (FFT); suspension bridge; evolutionary power spectral density

1. Introduction

Flexible long-span bridges are susceptible to extreme wind. As one of the wind-induced structural
responses, bridge buffeting has been the concern of engineers for a long time [1]. The buffeting response,
which is induced by turbulent winds, can be analyzed in both time [2] and frequency domain [3]. It is
noted that the linear hypothesis is the prerequisite of the buffeting analysis in the frequency domain.
Since the aerodynamic and geometrical effects may cause flexibilities and non-linear behaviors in
long-span bridges, frequency-domain buffeting analysis is limited to most of long-span bridges [4–6].
As for time domain analysis, numerical integration is selected to solve the buffeting responses, hence,
the non-linear and aerodynamic behaviors of long-span bridges can be considered [7,8]. To conduct
time domain analysis, it is significant to accurately simulate the turbulent wind fields of wind-sensitive
structures, since wind-induced responses are sensitive to the simulated wind loads [9].

The spectral representation method (SRM), which is an accurate and simplified method, is widely
employed to generate the turbulent wind fields in structural wind engineering [5,10]. According to
the stationary hypothesis, the turbulence is typically regarded as a zero-mean stationary stochastic
process over a given time, which is determined by the power spectral density (PSD) [11,12]. However,
field measurements indicate that extreme wind shows strong non-stationary features [13,14]. Therefore,
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it is significant to conduct non-stationary wind field simulation for analyzing non-stationary buffeting
in the time domain. Deodatis [15] proposed the general SRM-based framework to generate the
non-stationary and multivariate stochastic processes, in which the evolutionary power spectral density
(EPSD) was utilized to characterize the non-stationary processes. It is revealed in this work that the
fast Fourier transform (FFT) cannot be implemented due to the time-dependent EPSD matrix. Thus,
the simulation efficiency is restricted when using the general non-stationary SRM.

To take advantage of the FFT technique, some efforts have been made. Li and Kareem [16] proposed
the FFT-aided SRM, in which the decomposed EPSD matrix is fitted by various polynomial functions.
Huang [17] introduced the proper orthogonal decomposition to decompose the time-frequency EPSD,
which leads to a higher simulation efficiency. Li et al. [18] used the Taylor series expansion to enhance
the simulation efficiency of the non-stationary SRM. Wang et al. [19] also developed a FFT-aided SRM
to simulate the non-stationary turbulent wind field of the bridge deck based on the non-negative
matrix factorization (NMF). Compared with other FFT-aided approaches, the NMF-based method
ensures the physical meaning of the factorized low rank matrices, and achieves straightforwardness in
the simulation. However, the existing NMF-based method can only simulate horizontal non-stationary
turbulence, which is a flawed approach when the vertical turbulent wind field must be considered.

In this study, the wavelet-based method is utilized to estimate both the along-wind and vertical
EPSDs using the data measured at the Runyang Suspension Bridge (RSB) site during Typhoon Wipha.
The existing NMF-based FFT-aided SRM, which cannot simulate the vertical turbulent wind field,
is updated to consider both the horizontal and vertical ones. The non-stationary turbulent wind fields
for the girder and tower of the RSB are generated using the updated NMF-based SRM. All the program
was executed in Matlab due to its convenience in matrix computation. The reliability of the updated
method is verified by comparing the estimated correlation functions and the target ones.

2. Related Works

2.1. Field Measurement at the Runyang Suspension Bridge (RSB) Site during Typhoon Wipha

The Runyang Yangtze River Bridge connects Yangzhou city and Zhenjiang, and is composed
of the Runyang Suspension Bridge (RSB) (south side) and the Runyang Cable-stayed Bridge (north
side). The main span of the RSB (see Figure 1) is 1490 m. Each two side spans are 470 m. The RSB is a
hinged and simply supported steel-box-girder bridge. As a national key engineering project, the RSB
is located on the Southeast coast of China. The meteorological survey indicates that this region belongs
to subtropical monsoon climate. The cold and dry northern wind from the mainland is the main strong
wind in winter, while the typhoon dominates in summer.Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 17 
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Figure 1. Location of the Runyang Suspension Bridge (RSB).
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Every year, the RSB is attacked by typhoons. The ultrasonic anemometer was installed on south
tower (210 m in elevation) to collect wind data using a cylindrical coordinate system for further study
of the typhoon characteristics at the RSB site. In September 2007, Typhoon Wipha passed through
Jiangsu Province, the 3D strong wind data was collected by the anemometer. The sampling frequency
was set as 20 Hz. The detailed information about the field measurement can be found in Wang et al. [20].
The sampling number in time was 40960 for better use of the FFT. Data collected from 20:00:00 to
20:34:08 on 19 September were utilized to estimate the EPSD. Daubechies wavelet (Db10) with a
decomposition level of 11 was selected to separate the time-varying mean wind speed [21].

The stationarity of the turbulent wind flows was verified by the run test method with a significance
level of 0.05 [22]. The field measured wind data and its time-varying mean are shown in Figure 2a,c).
The turbulence is shown in Figure 2b,d).
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Figure 2. Field measured wind data during Typhoon Wipha.

2.2. Evolutionary Power Spectral Density (EPSD) Estimation of the Non-Stationary Turbulence

The wavelet transform, which can capture both the low-frequency and high-frequency information
using different scale windows, was selected to calculate the EPSDs of the measured turbulence in
Figure 2 [23]. In addition, the filtered harmonic wavelet (FHW), which is the updated version of the
generalized harmonic wavelet, was selected to estimate the EPSD herein [24]. The EPSD S

(
ωi, tk

)
for

FHW scheme can be given by:

S
(
ωi, tk

)
=

4E
[∣∣∣∣cF(m,n),k

∣∣∣∣2]
n−m

(1)

where cF(m,n),k is the FHW transform coefficients. Equation (1) defines the local spectrum in the time
and frequency regions.

m2π ≤ ω ≤ n2π and
k

n−m
≤ t ≤

k + 1
n−m

(2)

The EPSDs of the measured turbulence in Figure 2b,d were estimated using the FHW with a total
2000 of frequency segmentations [25], as shown in Figure 3. The reliability of the estimated EPSDs was
validated by comparing the averaging EPSDs with the power spectral density (PSDs) calculated by the
Pwelch method [26]. Here, the averaging EPSD can be obtained by averaging the EPSD over time.
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Figure 3. Estimating and validating the evolutionary power spectral density (EPSD) of the
measured turbulence.

The estimated EPSDs in along-wind and vertical directions are shown in Figure 3a,c, respectively.
For clarity, the EPSDs with frequency over 2 Hz are omitted due to the relatively small values in
Figure 3a,c. It is seen that the non-stationary characteristics of the measured turbulence are captured
properly by the FHW scheme. Meanwhile, the averaging EPSDs agree quite well with the PSDs in
Figure 3b,d, which indicates that the estimated EPSDs are accurate and consistent with the analytical
theory [27].

3. The Updated Non-Negative Matrix Factorization (NMF)-Based Fast Fourier Transform
(FFT)-Aided Spectral Representation Method (SRM)

3.1. Simulation of Non-Stationary Process Using the Classic SRM

S(ω, t) is the EPSD of a zero-mean non-stationary process with components x1(t), x2(t), · · · , xn(t),
which can be expressed as [15]:

S(ω, t) =


S11(ω, t) S12(ω, t) · · · S1n(ω, t)
S21(ω, t) S22(ω, t) · · · S2n(ω, t)

...
...

. . .
...

Sn1(ω, t) Sn2(ω, t) · · · Snn(ω, t)

 (3)
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Si j(ω, t) =
√

Sii(ω, t)S j j(ω, t)γi j(ω) (4)

where ω represents the circular frequency; Sii(ω, t) = Sii(−ω, t) represents the auto-EPSD; Si j(ω, t) =
S∗i j(−ω, t) represents the cross-EPSD (‘*’ denotes the complex conjugate); γi j(ω) are complex coherence
functions between xi(t) and x j(t). The coherence matrix Γ(ω, t) can be represented by: [15]

Γ(ω, t) =


1 γ12(ω, t) · · · γ1n(ω, t)

γ21(ω, t) 1 · · · γ2n(ω, t)
...

...
. . .

...
γn1(ω, t) γn2(ω, t) · · · 1

 (5)

The cross-correlation function can be determined by [15]:

R(t, t + τ) =


R11(t, t + τ) R12(t, t + τ) · · · R1n(t, t + τ)

R21(t, t + τ) R22(t, t + τ) · · · R2n(t, t + τ)
...

...
. . .

...
Rn1(t, t + τ) Rn2(t, t + τ) · · · Rnn(t, t + τ)

 (6)

Ri j(t, t + τ) =

∫
∞

−∞

√
Sii(ω, t)S j j(ω, t + τ)γi j(ω)e

iωτdω (7)

The cross-correlation matrix for non-stationary processes is determined by t and t + τ (τ is the
time lag). To simulate the one-dimensional, n variate (1D-nV) non-stationary stochastic process

x(t) =
[
x1(t), x2(t), · · · , xn(t)

]T
, where T represents the transpose, the S(ω, t) should be decomposed

at each time instant t, into the following product [15]:

S(ω, t) = H(ω, t)HT∗(ω, t) (8)

Cholesky’s method can finish this decomposition, and H(ω, t) can be represented by:

H(ω, t) =


H11(ω, t) 0 · · · 0
H21(ω, t) H22(ω, t) · · · 0

...
...

. . .
...

Hn1(ω, t) Hn2(ω, t) · · · Hnn(ω, t)

 (9)

where Hii(ω, t) are real and positive functions, while Hi j(ω, t) are generally complex. The diagonal
elements Hii(ω, t) satisfy the following relation:

Hii(ω, t) = Hii(−ω, t) (10)

Furthermore, Hi j(ω, t) can be written in polar form as:

Hi j(ω, t) =
∣∣∣∣Hi j(ω, t)

∣∣∣∣eiϑi j(ω,t) (11)

ϑi j(ω, t) = tan−1


Im

[
Hi j(ω, t)

]
Re

[
Hi j(ω, t)

]
 (12)

where Re and Im represent the real and imaginary parts of a complex number, respectively.
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Once the S(ω, t) is decomposed using Equations (8) and (9), the components of the x(t) can be
simulated with the following expression [15]:

x j(t) = 2
j∑

m=1

N∑
l=1

∣∣∣∣H jm

(
ωl, t

)∣∣∣∣√∆ω cos
[
ωlt− ϑ jm

(
ωl, t

)
+ Φml

]
(13)

ωl = l∆ω, l = 1, 2, · · · , N (14)

∆ω =
ωu
N

(15)

where ωu represents the cutoff frequency; N represents the number of discretized frequencies; ∆ω is
the frequency resolution; and Φml represent the independent random phase angles with uniform
distribution from 0 to 2π. To avoid aliasing, the time resolution ∆t must satisfy the following relation:

∆t ≤ 2π/(2ωu) (16)

Or
M ≥ 2N (17)

where M represents the discretized time number. It is pointed out that the simulation efficiency is
unacceptable for engineering practice due to the time-dependent H(ω, t) in the double summation
in Equation (13). Therefore, it is necessary to improve the simulation efficiency of the traditional
non-stationary SRM.

3.2. The Updated Algorithm Considering Vertical Turbulent Wind Field

The essence of the non-negative matrix factorization (NMF) is a bound-constrained minimization
problem. As for a non-negative matrix L ∈ RM×N and a pre-specified positive integer P < min{M, N},
NMF can be utilized to find two non-negative matrices W ∈ RM×P and V ∈ RP×N satisfying [28]:

L ≈WV (18)

where WV is the NMF of L. The conventional approach proposed by Berry et al. [29] can be utilized to
find the NMF of L:

min
W,V

f (W, V) ≡
1
2

M∑
i=1

N∑
j=1

(
Li j − (WV)i j

)2
, Wim ≥ 0, Vnj ≥ 0, ∀i, m, n, j (19)

It is noted that Equation (19) is a standard optimization problem with bound constraint. The simple
iteration algorithm proposed by Lee and Seung [30] is the widely-used approach to solve Equation (19).

Wip ←Wip

(
SVT

)
ip(

WVVT
)
ip

Vpj ← Vpj

(
WTS

)
pj(

WTWV
)
pj

(20)

At every iteration, Wip and Vpj are multiplied by certain factors. When the iteration is stopped,
W and V are strictly positive. It is noted that Equation (19) will become invariant if the stationary
points of the W and V are reached in Euclidean distance [30].

The H jm(ω, t) can be further factorized using the NMF, then the FFT technique can be utilized in
the non-stationary SRM.

H jm
M×N(ω, t) ≈

P∑
q=1

w jm
q (t)v jm

q (ω) (21)
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Substituting Equation (21) into Equation (13) and using Euler’s formula satisfying:

x j(t) = Re

2
j∑

m=1

P∑
q=1

w jm
q (t)

N∑
l=1

v jm
q

(
ωl

)√
∆ωei(ωlt−ϑ jm(ωl,t)+Φml)

 (22)

Note that the simulation efficiency of Equation (22) is much higher when the coherence matrix
Γ(ω) is time-invariant. From Equation (3), S(ω, t) can be rewritten as [31]:

S(ω, t) = D(ω, t)Γ(ω)DT(ω, t) (23)

D(ω, t) = diag
[√

S11(ω, t),
√

S22(ω, t), · · · ,
√

Snn(ω, t)
]

(24)

Γ(ω) =


1 γ12(ω) · · · γ1n(ω)

γ21(ω) 1 · · · γ2n(ω)
...

...
. . .

...
γn1(ω) γn2(ω) · · · 1

 (25)

It is obvious that Γ(ω) is a Hermitian matrix, which also has the positive property. When the
elements in Γ(ω) are complex, the EPSD matrix can be rewritten in polar form [32]:

S(ω, t) =
∣∣∣S(ω, t)

∣∣∣⊗Θ(ω) (26)

∣∣∣S(ω, t)
∣∣∣ =


S11(ω, t)

∣∣∣S12(ω, t)
∣∣∣ · · · ∣∣∣S1n(ω, t)

∣∣∣∣∣∣S21(ω, t)
∣∣∣ S22(ω, t) · · ·

∣∣∣S2n(ω, t)
∣∣∣

...
...

. . .
...∣∣∣Sn1(ω, t)

∣∣∣ ∣∣∣Sn2(ω, t)
∣∣∣ · · · Snn(ω, t)

 (27)

Note that the phase angle in Equation (12) was the function coupled with time and frequency.
However, it is only determined by frequency with regard to Equation (23). Thus, Θ can be expressed as:

Θ(ω) =


1 eiθ12(ω) · · · eiθ1n(ω)

eiθ21(ω) 1 · · · eiθ2n(ω)

...
...

. . .
...

eiθn1(ω) eiθn2(ω) · · · 1

 (28)

where ⊗ denotes the element-wise multiplication operator between two matrices. Similarly, Γ(ω) can
be given by:

Γ(ω) =
∣∣∣Γ(ω)∣∣∣⊗Θ(ω) (29)

where
∣∣∣Γ(ω)∣∣∣ represent the lagged coherence matrix [33]. According to Equation (8),

∣∣∣S(ω, t)
∣∣∣ can be

factorized as: ∣∣∣S(ω, t)
∣∣∣ = Λ(ω, t)ΛT(ω, t) (30)

where Λ(ω, t) is lower triangular matrix. The following relations have been proved when the phases
admit the requirement that θ jm(ω) = θ jk(ω) − θkm(ω) [32]:

H j j(ω, t) = Λ j j(ω, t); H jm(ω, t) = Λ jm(ω, t)eiθ jm(ω) ( j > m) (31)

θ jm(ω) = ϑ jm(ω) (32)
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Similar to Equation (23),
∣∣∣S(ω, t)

∣∣∣ can be rewritten as:∣∣∣S(ω, t)
∣∣∣ = D(ω, t)B(ω)BT(ω)DT(ω, t) (33)

where B(ω) is the lower triangular matrix derived from
∣∣∣Γ(ω)∣∣∣ through Cholesky decomposition.

That is: ∣∣∣Γ(ω)∣∣∣ = B(ω)BT(ω) (34)

where

B(ω) =


β11(ω) 0 · · · 0
β21(ω) β22(ω) · · · 0

...
...

. . .
...

βn1(ω) βn2(ω) · · · βnn(ω)

 (35)

According to Equations (30) and (33), the following relationship can be obtained:

Λ(ω, t) = D(ω, t)B(ω) (36)

Based on Equations (31), (32) and (36), the components of the x(t) can be generated using:

x j(t) = Re

2
j∑

m=1

N∑
l=1

√
S j j

(
ωl, t

)
∆ωβ jm

(
ωl

)
ei(ωlt−θ jm(ωl)+Φml)

 (37)

Taking advantage of the NMF, the square root of Sii(ω, t) can be factorized and given as:

√
S j j(ω, t) ≈

P∑
q=1

w j j
q (t)v

j j
q (ω) (38)

Substituting Equation (38) into Equation (37), the updated NMF-based non-stationary SRM can
be rewritten as:

x j(t) = Re

2
j∑

m=1

P∑
q=1

w j j
q (t)

N∑
l=1

v j j
q

(
ωl

)
β jm

(
ωl

)√
∆ωei(ωlt−θ jm(ωl)+Φml)

 (39)

Or

x j(t) = Re

2
√

∆ω
P∑

q=1

w j j
q (t)

N∑
l=1

v j j
q

(
ωl

)
eiωlt

j∑
m=1

β jm

(
ωl

)
ei(Φml−θ jm(ωl))

 (40)

It is clear that the FFT technique can be introduced for the second summation in Equation (40),
which can enhance the simulation efficiency significantly. In addition, various auto-EPSDs and the
complex coherence functions can be considered in Equation (40) for the simulation of both horizontal
and vertical non-stationary turbulent wind fields for engineering structures.

4. Simulation of Non-Stationary Turbulent Wind Fields for the RSB

4.1. The Hypotheses

Turbulent wind field simulation for long-span bridges is complicated due to the huge number
of simulated points. According to the structural features of the suspension bridge, some hypotheses
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can be construed to enhance the simulation. In this work, non-stationary winds are regarded as a
time-varying mean wind plus non-stationary turbulence:

U = U(Z, t) + u(x, Z, t)
v = v(x, Z, t)
w = w(x, Z, t)

(41)

where u is the turbulence in the across-bridge direction, v is the turbulence in the along-bridge direction
x and w is the turbulence in vertical direction Z, t is the time. U(Z, t) represents the time-varying mean
wind. This is assuming that the EPSD matrices are uniform for all simulated points [34]. To simplify the
calculation, the wind fields should be simulated in finite simulated points. Usually, only the correlation
in spatial distributions of turbulent winds is considered in practice. Hence, a 3D-nV stochastic vector
process can be simplified as three independent 1D-nV stochastic processes [35]. Specifically, turbulence
v is not considered for the main girder since it is a linear component. As along-bridge vibrations of
the towers are determined by the main cables, turbulence v for towers is not simulated. Meanwhile,
turbulence w for towers is also not simulated [35]. In general, four independent 1D-nV stochastic
processes can be assumed for the main girder and towers of the RSB based on the above hypotheses,
listed in Table 1.

Table 1. Stochastic turbulent wind fields for the RSB.

Wind Field Position Direction Space Interval (m) Number of Simulated Nodes

1 Main girder u 80.5 19
2 Main girder w 80.5 19
3 Left tower u 30 7
4 Right tower u 30 7

The simulated points in the RSB is shown in Figure 4. There are 19 simulated points (from G1 to
G19) uniformly distributed along the main girder (69.3 m in elevation), with the interval being 80.5 m.
Similarly, there are 7 simulated points distributed uniformly along each tower. Specifically, T1 to T7
points in the left tower and T8 to T14 points in the right tower, with the interval being 30 m.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 
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Figure 4. Simulated points in the RSB (Unit: m).

4.2. NMF of the Measured Decomposed EPSDs

The square root of the measured EPSDs in Figure 3a,c, can be factorized into the latent matrices W
and V with the NMF. The integer P in Equation (38) is taken as 8, while the iteration tolerance is taken
as 10−8 in this factorization. The NMF results of the measured EPSDs are shown in Figure 5 with the
target ones.

As shown in Figure 5, the NMF of the decomposed EPSD generally fit well with the targets in
along-wind and vertical directions. Furthermore, the spectra snapshots of the NMF results at t = 200,
500, 1200 and 1500 s are compared with the targets. As shown in Figures 6 and 7, the spectrum
snapshots agree well with the targets at the specific time instants, indicating that the NMF is an effective
method to factorize the measured decomposed EPSDs.



Appl. Sci. 2019, 9, 5506 10 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 

 
Figure 4. Simulated points in the RSB (Unit: m). 

4.2. NMF of the Measured Decomposed EPSDs 

The square root of the measured EPSDs in Figure 3a,c, can be factorized into the latent matrices 
W  and V  with the NMF. The integer P  in Equation (38) is taken as 8, while the iteration 
tolerance is taken as 10−8 in this factorization. The NMF results of the measured EPSDs are shown in 
Figure 5 with the target ones. 

 
(a) The NMF result (Along-wind) 

 
(b) The target one (Along-wind) 

 
(c) The NMF result (Vertical) 

 
(d) The target one (Vertical) 

Figure 5. The non-negative matrix factorization (NMF) of the decomposed EPSDs and the targets. 

As shown in Figure 5, the NMF of the decomposed EPSD generally fit well with the targets in 
along-wind and vertical directions. Furthermore, the spectra snapshots of the NMF results at t = 200, 
500, 1200 and 1500 s are compared with the targets. As shown in Figures 6 and 7, the spectrum 
snapshots agree well with the targets at the specific time instants, indicating that the NMF is an 
effective method to factorize the measured decomposed EPSDs. 

Yangzhou Zhenjiang

G1 G2 G3 G9 G10 G11 G17 G18 G19T1

T4

T7 T14

T8

T11

1490
218.905 218.905

470 470

Frequency/(rad/s)

Ti
m

e/
s

 

 

0 2 4 6 8 10 12

0

256

512

768

1024

1280

1536

1792

2048

0.5

1

1.5

2

Frequency/(rad/s)

Ti
m

e/
s

 

 

0 2 4 6 8 10 12

0

256

512

768

1024

1280

1536

1792

2048

0.5

1

1.5

2

Frequency/(rad/s)

Ti
m

e/
s

 

 

0 2 4 6 8 10 12

0

256

512

768

1024

1280

1536

1792

2048

0.2

0.4

0.6

0.8

1

1.2

Frequency/(rad/s)

Ti
m

e/
s

 

 

0 2 4 6 8 10 12

0

256

512

768

1024

1280

1536

1792

2048

0.2

0.4

0.6

0.8

1

1.2

Figure 5. The non-negative matrix factorization (NMF) of the decomposed EPSDs and the targets.
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Figure 6. Spectrum snapshots of the decomposed EPSD (along-wind).
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4.3. Turbulent Wind Field Simulation for the Main Girder

The Davenport exponential function model is adopted to be the coherence function for the
turbulence simulation of main girder [3]:

γi j(ω) = exp

−λω∆
∣∣∣i− j

∣∣∣
2πU(Z)

 = ξ|i− j| (42)

where

ξ = exp

− λω∆

2πU(Z)

 (43)

In Equations (42) and (43), λ represent the decay factor; ∆ is the distance between the successive
simulated points; U(Z, t) represents the mean wind speed, which can be obtained by averaging the
U(Z, t). The mean wind speed profile at the RSB site is consistent with the power law:

U2

U1
=

(Z2

Z1

)α
(44)

where U1 and U2 denote wind speeds at altitude Z1 and Z2, respectively, and α is a dimensionless
exponent which depends on roughness of terrain, taken as measured value 0.12 herein [35]. Based on
Equation (36), the explicit form of the lagged decomposed EPSD matrix Λ can be expressed as [36]:

Λ(ω, t) =
√

S(ω, t)


1 0 0 0
ξ

√
1− ξ2 · · · 0

...
...

. . .
...

ξn−1 ξn−2
√

1− ξ2 · · ·

√
1− ξ2

 (45)

Here, the Davenport coherence function is adopted and the decay factor is taken as seven. Table 2
lists the detailed information in the simulation.
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Table 2. Details for non-stationary turbulent wind field simulations of main girder.

Parameter Value Parameter Value

Overall length, L (m) 1490 Height of simulated points, Z (m) 69.3
Number of simulated points, n 19 Cutoff frequency,ωu (rad/s) 4π
Frequency segmentations, N 4096 Sample time interval, ∆t (s) 0.25

Number of generated samples 5000 Time duration, Tu (s) 2048

As shown in Figure 8, 5000 samples (both in Along-wind and Vertical direction) are simulated
using the measured EPSDs. Then, the auto-/cross-correlation functions are estimated using the
generated samples. The generated wind fields are validated by comparing the estimated correlation
functions and the target ones at various time differences τ, as shown in Figure 9.
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Figure 8. The generated samples for the main girder.
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Figure 9. Comparison of estimated correlation functions and target ones (5000 samples).

Figure 8 shows that the generated wind samples in along-wind and vertical directions exhibit
prescribed non-stationary features. In Figure 9, the estimated auto-correlation functions fit well with
the target one, while the discrepancy between the cross-correlation function and the target one is
relatively wide. This phenomenon will be improved if many more samples are considered.

4.4. Turbulent Wind Field Simulation for Towers

As for towers, the mean wind speed approximately obeys the distribution of the exponential
relationship in Equation (44). The following empirical coherence function is selected to generate the
non-stationary turbulence for towers in the along-wind direction [32].

γi j(ω) = exp

− 1
2π

λω
∣∣∣∣zi − z j

∣∣∣∣
1
2

[
U
(
zi

)
+ U

(
z j

)]
 exp

−i
zi − z j

vapp
ω

, ( j > k) (46)

According to Equation (46), phase angles θ jm(ω) in Equation (32) can be determined by:

θ jm(ω) = −
z j − zm

vapp
ω (47)

In the wind field, the apparent wave velocity vapp can be modified as [37]:

vapp =
π
(
U j + Um

)
C
θ

(48)
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where U j and Um denote the mean wind speed at different elevation; Cθ represents the experimental
appropriate coefficient [3]. Obviously, vapp is varying for the simulation points of the towers with
different mean wind speeds. However, it can be approximated to be a constant by calculating the mean
wind speeds on two end points, and for that the variation is usually acceptable [32]. Table 3 lists the
detailed information in the simulation.

Table 3. Details for non-stationary turbulent wind field simulations of each tower.

Parameter Value Parameter Value

Overall length, L (m) 218.9 Simulation range, Z (m) 30–210
Number of simulated points, n 7 Cutoff frequency,ωu (rad/s) 4π
Frequency segmentations, N 4096 Sample time interval, ∆t (s) 0.25

Number of generated samples 5000 Time duration, Tu (s) 2048

As shown in Figure 10, the non-stationary turbulent wind fields of towers in the along-wind
direction are shown. For comparison, 5000 samples are utilized to estimate the ensemble
auto-/cross-correlation functions at various time differences τ. The estimated auto-/cross-correlation
functions and corresponding target ones are shown in Figure 11.
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Figure 10. Simulation of non-stationary turbulence for towers.
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Figure 11. Comparison of estimated correlation functions and target ones (5000 samples).

As shown in Figure 10, the non-stationary turbulent wind fields of towers are constructed from
the measured EPSD in along-wind direction with the coherence function in Equation (46). It is seen
that the estimated correlation functions generally fit well with the target ones in Figure 11, indicating
the reliability of the generated non-stationary turbulent wind fields of the towers.

5. Conclusions

The existing FFT-aided NMF-based SRM, which cannot simulate the vertical turbulent wind field,
has been updated to simulate a non-stationary turbulent wind field in both horizontal and vertical
directions. NMF can be utilized to decouple the EPSD matrix, the FFT technique can be then utilized
to improve the simulation efficiency of the non-stationary SRM. The turbulent wind fields of the
RSB are generated based on the field-measured EPSDs during typhoon Wipha. The non-stationary
turbulent wind fields for towers are generated considering the coherence function with the phase
angles. Relative comparisons are conducted to validate the reliability and accuracy of the generated
wind fields. The following conclusions can be drawn accordingly:

• The existed NMF-based SRM for horizontal non-stationary turbulent wind field simulation is
updated to also generate the vertical non-stationary turbulent wind field. With the aid of the FFT,
the simulation efficiency is enhanced.

• In the NMF-based SRM, the phase angles can be considered in the coherence functions. The complex
EPSD matrix can be transformed into the real modulus matrix after the phase was separated.
With this treatment, the efficiency of decomposition can be improved.

• The estimated auto-/cross-correlation functions generally fit well with the target ones, validating the
effectiveness and reliability of the non-stationary turbulent wind fields generated. The presented
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wind field simulation method can provide research basis for non-stationary buffeting analysis of
the RSB.

Author Contributions: Z.X. performed the numerical simulation; H.W., H.Z. and K.Z. analyzed the data; H.G. and
Q.Z. wrote the manuscript; all authors reviewed the manuscript. Correspondence should be addressed to Z.X.

Funding: The research was supported by the National Natural Science Foundation of China (No. 51722804),
the National Ten Thousand Talent Program for Young Top-notch Talents (No. W03070080), the Key R & D Plan of
Jiangsu Province (BE2018120) and the China Scholarship Council (No. 201906090074).

Conflicts of Interest: The authors declared no potential conflicts of interest.

References

1. Bocciolone, M.; Cheli, F.; Curami, A.; Zasso, A. Wind measurements on the Humber Bridge and numerical
simulations. J. Wind Eng. Ind. Aerodyn. 1992, 42, 1393–1404. [CrossRef]

2. Kovacs, I.; Svensson, H.S.; Jordet, E. Analytical aerodynamic investigation of cable-stayed Helgeland bridge.
J. Struct. Eng. 1992, 118, 147–168. [CrossRef]

3. Simiu, E.; Scanlan, R.H. Wind Effects on Structures; Wiley: New York, NY, USA, 1978.
4. Niemann, H.J.; Hoffer, R. Nonlinear Effects in the Buffeting Program: A State of the Art in Wind

Engineering. In Proceedings of the Ninth International Conference on Wind Engineering, New Delhi,
India, 9–13 January 1995.

5. Yang, W.W.; Chang, T.Y.P.; Chang, C.C. An efficient wind field simulation technique for bridges. J. Wind Eng.
Ind. Aerodyn. 1997, 67, 697–708. [CrossRef]

6. Su, C.; Fan, X.; He, T. Wind-induced vibration analysis of a cable-stayed bridge during erection by a modified
time-domain method. J. Sound Vib. 2007, 303, 330–342. [CrossRef]

7. Mao, J.X.; Wang, H.; Feng, D.M.; Tao, T.Y.; Zheng, W.Z. Investigation of dynamic properties of long-span
cable-stayed bridges based on one-year monitoring data under normal operating condition. Struct. Control
Health Monit. 2018, 25, e2146. [CrossRef]

8. Mao, J.X.; Wang, H.; Fu, Y.G.; Spencer, B.F., Jr. Automated modal identification using principal component
and cluster analysis: Application to a long-span cable-stayed bridge. Struct. Control Health Monit. 2019, 26,
e2430. [CrossRef]

9. Chen, X.; Matsumoto, M.; Kareem, A. Time domain flutter and buffeting response analysis of bridges. J. Eng.
Mech. 2000, 126, 7–16. [CrossRef]

10. Deodatis, G. Simulation of ergodic multivariate stochastic processes. J. Eng. Mech. 1996, 122, 778–787.
[CrossRef]

11. Li, Y.; Kareem, A. Simulation of multivariate random processes: Hybrid DFT and digital filtering approach.
J. Eng. Mech. 1993, 119, 1078–1098. [CrossRef]

12. Chen, J.; Hui, M.C.H.; Xu, Y.L. A comparative study of stationary and non-stationary wind models using
field measurements. Bound. Layer Meteorol. 2007, 122, 105–121. [CrossRef]

13. Kareem, A. The changing dynamics of aerodynamics: New frontiers. In Proceedings of the 7th Asia-Pacific
Conference on Wind Engineering (APCWQ-VII), Taiwan, China, 8–12 November 2009.

14. Wang, H.; Wu, T.; Tao, T.Y.; Li, A.Q.; Kareem, A. Measurements and analysis of non-stationary wind
characteristics at Sutong Bridge in Typhoon Damrey. J. Wind Eng. Ind. Aerodyn. 2016, 151, 100–106.
[CrossRef]

15. Deodatis, G. Non-stationary stochastic vector processes: Seismic ground motion applications. Probab. Eng.
Mech. 1996, 11, 149–167. [CrossRef]

16. Li, Y.; Kareem, A. Simulation of multivariate nonstationary random processes by FFT. J. Eng. Mech. 1991,
117, 1037–1058. [CrossRef]

17. Huang, G. Application of proper orthogonal decomposition in fast Fourier transform-assisted multivariate
nonstationary process simulation. J. Eng. Mech. 2015, 141, 04015015. [CrossRef]

18. Li, Y.; Togbenou, K.; Xiang, H.; Chen, N. Simulation of non-stationary wind velocity field on bridges based
on Taylor series. J. Wind Eng. Ind. Aerodyn. 2017, 169, 117–127. [CrossRef]

19. Wang, H.; Xu, Z.D.; Feng, D.M.; Tao, T.Y. Non-stationary turbulent wind field simulation of bridge deck
using non-negative matrix factorization. J. Wind Eng. Ind. Aerodyn. 2019, 188, 235–246. [CrossRef]

http://dx.doi.org/10.1016/0167-6105(92)90147-3
http://dx.doi.org/10.1061/(ASCE)0733-9445(1992)118:1(147)
http://dx.doi.org/10.1016/S0167-6105(97)00111-6
http://dx.doi.org/10.1016/j.jsv.2007.01.018
http://dx.doi.org/10.1002/stc.2146
http://dx.doi.org/10.1002/stc.2430
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:5(1078)
http://dx.doi.org/10.1007/s10546-006-9085-1
http://dx.doi.org/10.1016/j.jweia.2016.02.001
http://dx.doi.org/10.1016/0266-8920(96)00007-0
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1037)
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000923
http://dx.doi.org/10.1016/j.jweia.2017.07.005
http://dx.doi.org/10.1016/j.jweia.2019.03.005


Appl. Sci. 2019, 9, 5506 17 of 17

20. Wang, H.; Li, A.Q.; Huang, R.X.; Xie, J.; Xie, Y.S. Field measurements on wind characteristics of typhoon
wipha at the runyang suspension bridge. Eng. Mech. 2009, 26, 128–133. (In Chinese)

21. Xu, Z.D.; Wang, H.; Wu, T.; Tao, T.Y.; Mao, J.X. Wind characteristics at Sutong Bridge site using 8-year field
measurement data. Wind Struct. 2017, 25, 195–214.

22. Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; Wiley: New York, NY,
USA, 2011.

23. Spanos, P.D.; Failla, G. Evolutionary spectra estimation using wavelets. J. Eng. Mech. 2004, 130, 952–960.
[CrossRef]

24. Spanos, P.D.; Tezcan, J.; Tratskas, P. Stochastic processes evolutionary spectrum estimation via harmonic
wavelets. Comput. Methods Appl. Mech. Eng. 2005, 194, 1367–1383. [CrossRef]

25. Wang, H.; Xu, Z.D.; Wu, T.; Mao, J.X. Evolutionary power spectral density of recorded typhoons at Sutong
Bridge using harmonic wavelets. J. Wind Eng. Ind. Aerodyn. 2018, 177, 197–212. [CrossRef]

26. Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time
averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [CrossRef]

27. Priestley, M.B. Evolutionary spectra and non-stationary processes. J. R. Stat. Soc. 1965, 27, 204–237. [CrossRef]
28. Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401,

788–791. [CrossRef]
29. Berry, M.W.; Browne, M.; Langville, A.N.; Pauca, V.P.; Plemmons, R.J. Algorithms and applications for

approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 2007, 52, 155–173. [CrossRef]
30. Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001,

13, 556–562.
31. Gao, Y.; Wu, Y.; Li, D.; Liu, H.; Zhang, N. An improved approximation for the spectral representation method

in the simulation of spatially varying ground motions. Probab. Eng. Mech. 2012, 29, 7–15. [CrossRef]
32. Huang, G.; Liao, H.; Li, M. New formulation of Cholesky decomposition and applications in stochastic

simulation. Probab. Eng. Mech. 2013, 34, 40–47. [CrossRef]
33. Kiureghian, A. A coherency model for spatially varying ground motions. Earthq. Eng. Struct. Dyn. 1996, 25,

99–111. [CrossRef]
34. Xu, Y.L.; Hu, L.; Kareem, A. Conditional simulation of nonstationary fluctuating wind speeds for long-span

bridges. J. Eng. Mech. 2012, 140, 61–73. [CrossRef]
35. Wang, H.; Zong, Z.H.; Li, A.Q.; Tong, T.; Niu, J.; Deng, W.P. Digital simulation of 3D turbulence wind field of

Sutong Bridge based on measured wind spectra. J. Zhejiang Univ. Sci. A 2012, 13, 91–104. [CrossRef]
36. Cao, Y.; Xiang, H.; Zhou, Y. Simulation of stochastic wind velocity field on long-span bridges. J. Eng. Mech.

2000, 126, 1–6. [CrossRef]
37. Di Paola, M. Digital simulation of wind field velocity. J. Wind Eng. Ind. Aerodyn. 1998, 74–76, 91–109.

[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:8(952)
http://dx.doi.org/10.1016/j.cma.2004.06.039
http://dx.doi.org/10.1016/j.jweia.2018.04.015
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1111/j.2517-6161.1965.tb01488.x
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1016/j.csda.2006.11.006
http://dx.doi.org/10.1016/j.probengmech.2011.12.001
http://dx.doi.org/10.1016/j.probengmech.2013.04.003
http://dx.doi.org/10.1002/(SICI)1096-9845(199601)25:1&lt;99::AID-EQE540&gt;3.0.CO;2-C
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000589
http://dx.doi.org/10.1631/jzus.A1100177
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1)
http://dx.doi.org/10.1016/S0167-6105(98)00008-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Field Measurement at the Runyang Suspension Bridge (RSB) Site during Typhoon Wipha 
	Evolutionary Power Spectral Density (EPSD) Estimation of the Non-Stationary Turbulence 

	The Updated Non-Negative Matrix Factorization (NMF)-Based Fast Fourier Transform (FFT)-Aided Spectral Representation Method (SRM) 
	Simulation of Non-Stationary Process Using the Classic SRM 
	The Updated Algorithm Considering Vertical Turbulent Wind Field 

	Simulation of Non-Stationary Turbulent Wind Fields for the RSB 
	The Hypotheses 
	NMF of the Measured Decomposed EPSDs 
	Turbulent Wind Field Simulation for the Main Girder 
	Turbulent Wind Field Simulation for Towers 

	Conclusions 
	References

