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Featured Application: In this paper, the proposed monitoring system and image processing
algorithm give a simple and feasible way to investigate kinematic characteristics, which can
provide a new method for possible applications in studying mathematic descriptions of droplet
flight trajectory and developing a precise automatic welding system.

Abstract: Pulsed gas metal arc welding (GMAW) is widely applied in industrial manufacturing. The
use of pulsed GMAW was found superior to the traditional direct-current (DC) welding method with
respect to spatter, welding performance, and adaptability of all-position welding. These features are
closely related to the special pulsed projected metal transfer process. In this paper, a monitoring
system based on a high-speed camera and laser backlight is proposed. High-quality images with clear
droplets and a translucent arc can be obtained at the same time. Furthermore, a novel image-processing
algorithm is proposed in this paper, which was successfully applied to remove the interference of the
arc. As a result, the edge and region of droplets were precisely extracted, which is not possible using
only the threshold method. Based on the algorithm, centroid coordinates of undetached and detached
droplets can be calculated, and more parameters of the kinematic characteristics of droplets can be
derived, such as velocity, acceleration, external force, and momentum. The proposed monitoring
system and image-processing algorithm give a simple and feasible way to investigate kinematic
characteristics, which can provide a new method for possible applications in studying mathematic
descriptions of droplet flight trajectory and developing a precise automatic welding system.

Keywords: high-speed camera; image processing; edge detection; pulsed GMAW; metal transfer;
droplet

1. Introduction

As one of the most efficient welding methods, gas metal arc welding (GMAW) is widely used
in industrial production due to the large range of controllable heat input levels [1–3]. With the rapid
promotion of automation in the welding industry, the traditional direct-current (DC) welding method
at constant voltage fails to meet the increasing manufacturing requirements; hence, pulsed GMAW
was developed recently, and it is especially used in robotic welding systems [4].

A special pulsed projected metal transfer process plays an important role in the stability of
pulsed GMAW [5–7]. Under the periodic action of a pulse current, the droplets periodically transit
to the molten pool, the speed of which has a great effect on the welding quality. As a result, a better
adaptability of all-position welding can be obtained during the pulsed GMAW process [8,9]. Therefore,
it is significant to observe and study the metal transfer process of pulsed GMAW.
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In addition, under the drive of intelligent manufacturing, automatic welding technology is gaining
importance. As a powerful tool to extract information from digital images, image processing is
applied in automatic welding equipment to monitor the welding process and amend parameters
automatically [10–12]. It is of great significance to obtain intuitive information of the metal transfer
process using image-processing technology to improve the quality of pulsed GMAW. Many recent
investigations focused on the mode of metal transfer and tried to determine the mathematic description
of droplet flight trajectory or kinematic characteristics, such as droplet size and velocity [13–16]. Both
arc and droplet behaviors are necessary for studying metal transfer. However, it is difficult to obtain
high-quality pictures of the arc and clear droplets at the same time, and the extraction of droplet
information is not precise enough due to the interference of the bright arc.

Thus, in this paper, a monitoring system of the metal transfer process is proposed to acquire
clear images during pulsed GMAW. Furthermore, a novel image-processing algorithm is designed to
recognize the edge and centroid coordinates of a droplet automatically from the metal transfer image.
To this end, kinematic characteristics of droplets can be extracted based on the proposed algorithm
for possible applications in revealing the droplet transfer mode and developing precise automatic
welding systems.

2. Experimental System and Welding Conditions

Figure 1 shows the GMAW system that can realize synchronous voltage, current, and image signal
acquisition. Considering that the frequency of arc behavior and droplet transfer is pretty high in GMAW,
a high-speed camera at 10,000 fps was used in this study to catch detailed images of the process. However,
the welding arc cannot be photographed without filter lens protection. Otherwise, the extremely bright
arc could cause huge interference in the images and even damage the photosensitive elements of camera.
The brightness of the arc should be filtered to an appropriate range. Depending on the spectrogram of a
welding arc, the energy of arc light in the infrared band is relatively weak [17]. Thus, a narrow-band filter
centered at 850 nm was placed in the lens, and a laser light with a wavelength of 850 nm was used as a
backlight to enhance the background brightness and magnify the contrast of images.
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Figure 1. Schematic diagram of gas metal arc welding (GMAW) synchronous signal acquisition system.

In addition, an adjustable ND (neutral density) filter was added in front of the lens. The filter is
composed of a pair of polarizers. According to Malus’s law, light intensity can be adjusted by changing
the relative angles θ of the two polarizers [18]. Furthermore, because of different response characteristics
of visible light and infrared light, this ND filter has a significant effect on visible light reduction but not
the 850-nm infrared laser [19]. As a result, the intensity of arc light in the image can be strengthened or
weakened, while the intensity of the laser background merely changes with the ND filter.

Two groups of images under the same single typical pulse current but different polarization angle
of the ND filter are shown in Figure 2. Arc behavior can clearly be seen in Figure 2b (translucent arc).
With the increase in current, the arc becomes brighter; however, the droplet is covered by the arc at
peak current. After that, the contour of droplet surrounded by the translucent arc becomes clear when
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the brightness of the arc decreases. In contrast, a clear contour of the droplet but no arc can be found in
Figure 2c (transparent arc). Arc light is totally removed by the narrow-band filter and ND filter.

Arc behavior is necessary for studying metal transfer, as the droplet is mainly pushed into the
molten pool by the arc force [20]. For the image processing of droplets, it is not expected to have the
interference of arc light in images, as seen in Figure 2b. Thus, Figure 2c, which filters all the arc light,
would have an advantage in the image processing. However, the arc does play a significant role in
droplet transfer. Although a clear droplet profile and less interference of arc light can be found in
Figure 2c, the key information of the arc for analyzing the droplet transfer is lost.

Therefore, for the research of droplet transfer, it is a better choice to keep the information of the
arc and droplet at the same time in images. From this point of view, Figure 2b, which has both a
translucent arc and clear droplet, is more appropriate for comprehensively studying droplet transfer.
As a result, images with a translucent arc like Figure 2b were selected as the study object of the image
processing in this paper.

The ER50-6 wire of 1.2 mm diameter was used, and the CTWD (contact tube-to-work distance)
was selected as 18 mm. Additionally, Table 1 shows the other welding conditions of the pulsed GMAW.

Table 1. Welding conditions of the pulsed gas metal arc welding (GMAW).

Average Current (A) Average Voltage (V) Welding Speed (mm/s) Gas Type Flow Rate of Gas (L/min)

110 24 4 82% Ar + 18% CO2 18
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3. Extraction of Droplet Region by Image Processing

In this part, images with a translucent arc such as that shown in Figure 2b were selected as the
study object of the image processing. Certainly, the interference of the arc in images undoubtedly
increases the difficulty of image processing. In order to solve this problem successfully, a droplet
region-extracting algorithm based on image processing is proposed. By observing the recorded video,
the droplet transfer process in pulsed GMAW can be divided into the two following periods:

1. The period with an undetached droplet;
2. The period with a detached droplet.

When in the period with an undetached droplet, the droplet is yet to detach from the wire, but
eventually detaches under the actions of arc force and heat. Then, the droplet moves into the period
with a detached droplet, during which the droplet is disconnected from the wire and transferred to the
molten pool at a certain speed.

3.1. The Period with an Undetached Droplet

The droplet and wire are still connected in the period with an undetached droplet, as seen in
Figure 3. As observed in Figure 2b, the droplet is disconnected from the wire at the neck. That is to
say, the detached droplet comes from the part below the minimum neck of the droplet in the period
with an undetached droplet. Thus, in this study, the droplet was divided at the minimum diameter of
the neck. The residual droplet part of the solid wire was above the dividing line, while the droplet
below the dividing line was taken as the research object for the subsequent extraction of kinematic
characteristics. For the convenience of study, the droplet below the dividing line is called the target
droplet in this paper.

Based on the above ideas, the following image-processing scheme is proposed for the recognition
of the target droplet in the period with an undetached droplet: (1) image enhancement; (2) position
identification of the minimum diameter of the neck; (3) droplet cutting and recognition.
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Figure 3. A typical image in the period with an undetached droplet.

3.1.1. Image Enhancement

The image color does not affect the droplet position information. To simplify the process, the first
step was to convert the color image into a grayscale image. Taking Figure 3 as an example, Figure 4
displays the grayscale of the original image after conversion. Additionally, the image around the
droplet in Figure 4 was selected as the region of interest (ROI) to highlight the key points and further
simplify the process (see Figure 5).
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Figure 5. Region of interest (ROI) of a grayscale image in the period with an undetached droplet.

The method of thresholding is a widely used method in image segmentation, which sets the gray
value “f (x)” of pixel “x” to the minimum or the maximum by comparing it with the threshold “T” (see
Equation (1)). The purpose here is to distinguish the wire and droplet from the background in Figure 5.
Therefore, the intermediate gray value of the wire and background was selected as the threshold, and
the effect of image segmentation is shown in Figure 6a. It can be found that only the wire and the
part of the droplet without the arc can be separated from the background. However, the part of the
droplet with arc is lost in the background, because of the interference of the bright arc. In addition, the
method of Otsu’s adjustable thresholding [21] was also applied to Figure 5, and the effect is displayed
in Figure 6b. The result shows that the wire cannot be separated from the background by using the
method of adjustable thresholding.
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It is not possible to remove the interference of the arc and obtain a high-quality image of the
segmentation effect using only the threshold method. To solve this problem, an algorithm based on the
histogram image balance method is proposed.

f (x) =
{

0 (x < T)
255 (x > T)

. (1)

Next, different edge operators were applied in the ROI region (Figure 5) in order to try to extract
the droplet edge, and the processing results are shown in Figure 7. The edge of the gray image is often
the place where the gray value of the pixel changes suddenly. The typical operators of edge recognition
mainly include first-order differential edge operators (like the Sobel operator [22], Prewitt operator [23],
Roberts operator [24]) and second-order differential edge operators (like the Laplacian of Gaussian
(LoG) operator [25], Canny operator [26]). It can be seen that, due to the interference of the arc, the
Sobel operator, Prewitt operator, and Roberts operator only extracted the upper half of the droplet,
and the information of the lower half was lost, which is obviously not applicable. The LoG operator
and Canny operator basically recognized the whole picture of the droplet, but a small part of the area
on the left side of the droplet was still missing, leading to an incomplete outline. Therefore, before
using the LoG operator and Canny operator to extract the droplet edge, a suitable image enhancement
method should be applied to get a more continuous and complete edge.

Edge recognition of the lower part of droplet failed due to the high brightness of the arc, as shown
in Figure 7. By observing the gray histogram of the ROI in Figure 8, lots of detail in the image was
lost, because the high-brightness part (grayscale near 250) and the low-brightness part (grayscale near
120) were both excessively centralized. For the sake of magnifying detail and contrast, the method
of adaptive histogram equalization was utilized in the ROI, followed by gamma transformation to
compress the lower gray level and stretch the higher gray level [27] (see Figures 9 and 10).
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After the above image enhancement processing, the LoG operator and Canny operator were used
to distinguish the edge of the droplet in the processed image. As we can see in Figure 11a, although the
discontinuous part of the lower left edge of droplet was repaired, the lower right edge of the droplet
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was broken by the LoG operator. For comparison, a clear and complete edge of the droplet can be seen
in Figure 11b using the Canny operator. The Canny operator showed better performance than the LoG
operator here.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17 

droplet can be seen in Figure 11b us

(a) (b) 

Figure 11. Edge recognition effects after image enhancement: (a) Laplacian of Gaussian (LoG) 
operator; (b) Canny operator. 

As Figure 12 shows, using the above enhancement algorithm and Canny edge operator to 
process Figure 4, better contrast and continuity of the droplet edge can also be obtained. 

(a) (b) 

Figure 12. Results of applying enhancement algorithm and Canny edge operator: (a) effect of 
enhancement algorithm; (b) effect of Canny edge operator. 

In conclusion, image enhancement can enlarge the contrast and improve the detail of the arc and 
droplet, while the Canny operator can better identify the edge of the droplet, obtaining a clear and 
continuous edge. Above all, the image enhancement algorithm during the period with an undetached 
droplet can be summarized as follows: 

Step 1: Grayscale transformation; 
Step 2: ROI selection; 
Step 3: Edge operator test; 
Step 4: Adaptive histogram equalization; 
Step 5: Gamma transformation; 
Step 6: Edge operator verification. 

3.1.2. Position Identification of the Minimum Diameter of the Neck 

In the period with an undetached droplet, the droplet and wire are still connected as a whole. 
As a result, the region of the droplet needs to be segmented artificially, which is the purpose of 
identifying the position of the minimum diameter of the droplet neck. Position identification of the 
minimum diameter of the neck is the premise of image cutting and detaching the region of the target 
droplet. 

Figure 11. Edge recognition effects after image enhancement: (a) Laplacian of Gaussian (LoG) operator;
(b) Canny operator.

As Figure 12 shows, using the above enhancement algorithm and Canny edge operator to process
Figure 4, better contrast and continuity of the droplet edge can also be obtained.
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In conclusion, image enhancement can enlarge the contrast and improve the detail of the arc and
droplet, while the Canny operator can better identify the edge of the droplet, obtaining a clear and
continuous edge. Above all, the image enhancement algorithm during the period with an undetached
droplet can be summarized as follows:

Step 1: Grayscale transformation;
Step 2: ROI selection;
Step 3: Edge operator test;
Step 4: Adaptive histogram equalization;
Step 5: Gamma transformation;
Step 6: Edge operator verification.
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3.1.2. Position Identification of the Minimum Diameter of the Neck

In the period with an undetached droplet, the droplet and wire are still connected as a whole. As
a result, the region of the droplet needs to be segmented artificially, which is the purpose of identifying
the position of the minimum diameter of the droplet neck. Position identification of the minimum
diameter of the neck is the premise of image cutting and detaching the region of the target droplet.

Firstly, a new ROI near neck in Figure 3 was selected, which is the rectangle box region shown in
Figure 13. Secondly, distances from all points in one edge of the neck to the other edge in this ROI
were calculated. The minimum distance was the minimum diameter of neck, while the corresponding
two points were the endpoints of the minimum diameter.
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The whole white neck in Figure 15b could be extracted by finding the largest connected domain,
and the extraction result is shown in Figure 16a. As a result, the background was divided into two
parts. Next, these two parts were turned into white pixels, while the original white pixels were turned
into black pixels. Thus, the edge of the two half areas could be identified by the Canny operator, so as
to separate the two edges of the neck, as shown in Figure 16.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 
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In order to calculate the minimum distance between the two edges, the algorithm used in this
study calculated all the distances from each pixel on one edge to each pixel on the other (Equation (2))
and found the minimum Lmin by comparison (Equation (3)).

di, j =
√
(xi − x′j)

2 + (yi − y′j)
2. (2)

Lmin = min(di, j). (3)

In the two equations, di,j is the distance from pixel i on the left edge to pixel j on the right edge.
xi and yi are the abscissa and ordinate, respectively, of pixel i, while x′j and y′j are the abscissa and
ordinate of point j. If i = I and j = J when di,j is the minimum value, then the two edge coordinates of
the minimum diameter of neck are (xI, yI) and (xJ, yJ). However, (xI, yI) and (xJ, yJ) are the coordinates
of the ROI in Figure 14, which can be further converted into the coordinates (XI, YI) and (XJ, YJ) of the
original image to locate the position of the minimum diameter of the droplet neck.

In conclusion, for position identification of the minimum diameter of the neck, the key point is
to divide the two edges of the neck and find the minimum distance of the pixels on the two edges.
Above all, the position identification of the minimum diameter of the neck during the period with an
undetached droplet can be summarized as follows:

Step 1: ROI selection near the neck;
Step 2: Edge recognition;
Step 3: Sealing the area of the neck;
Step 4: Filling the area of the neck;
Step 5: Neck recognition;
Step 6: Image inversion;
Step 7: Identification of the left and right background;
Step 8: Separation of edges of the neck;
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Step 9: Calculation of the minimum distance between two edges;
Step 10: Obtaining the coordinates at the minimum necking point;
Step 11: Coordinate conversion.

3.1.3. Droplet Cutting and Recognition

After the above image process, the position of the minimum diameter of droplet neck was found
using the coordinates (XI, YI) and (XJ, YJ). The target droplet is cut off and recognized from the wire in
this section.

Taking Figure 12 as the operation object, (XI, YI) and (XJ, YJ) were connected by a straight line
using white pixels to seal the target droplet first. Then, pixels around the droplet connection line were
set to black in order to cut off the connection between the target droplet and the wire. The processed
effect and partial enlarged image are shown in Figure 17.
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The target droplet was cut off and had a complete and continuous contour, which meant it has the
necessary conditions to become hollow. Thus, the following step was to fill the hollow target droplet
with a hole-filling algorithm. As shown in Figure 18, the hollow target droplet was filled with white
pixels, whose area was the largest compared to the other white regions of the background. Therefore,
the target droplet could be recognized by extracting the largest white connected domain (see Figure 19).
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Figure 19. The effect of recognition of the target droplet.

To sum up, for droplet cutting and recognition, the target droplet was sealed and detached by
connecting (XI, YI) and (XJ, YJ), which were endpoint coordinates of the minimum distance at the
neck. Above all, droplet cutting and recognition during the period with an undetached droplet can be
summarized as follows:

Step 1: Sealing the target droplet;
Step 2: Detaching the target droplet;
Step 3: Filling hollow areas;
Step 4: Recognition of the target droplet.

3.2. The Period with a Detached Droplet

Unlike the period with an undetached droplet, the droplet disconnects from the wire during the
period with a detached droplet, as displayed in Figure 20. As a result, the process of the recognition of
the droplet could be simplified, with no need to cut off the connection between the droplet and wire.
Moreover, the interference of the arc was not as notable as before because of the decrease in current
and arc brightness in this period. However, the first step was also to convert the color image into a
grayscale image (see Figure 21).
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Figure 21. Grayscale of an original image in the period with a detached droplet.

Then, different edge operators were used to process the grayscale image directly. The edge
extraction effect of the full image and the partial enlarged images near the droplet are shown in
Figures 22 and 23, respectively.
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Figure 22. Edge recognition effects in the period with a detached droplet: (a) Sobel operator; (b) Prewitt
operator; (c) Roberts operator; (d) Laplacian of Gaussian (LoG) operator; (e) Canny operator.
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Figure 23. The partial enlarged images near the droplet after edge recognition: (a) Sobel operator; (b)
Prewitt operator; (c) Roberts operator; (d) Laplacian of Gaussian (LoG) operator; (e) Canny operator.

As displayed in Figure 22, the Sobel operator, Prewitt operator, and Roberts operator were not
sensitive to background interference, and the background was relatively clean. However, some gaps could
be found on the contour of droplet in Figure 23a–c. In contrast, the LoG operator and Canny operator
had a strong ability to recognize edges. Although the background interference was relatively large in
Figure 22d,e, it can be seen from Figure 23d,e that the droplet contour was complete and continuous.

Therefore, a hole-filling algorithm could be used on the image shown in Figure 22d,e to fill the
droplet region, and the result is shown in Figure 24. It can be seen that the droplet was filled with
white pixels. There were barely other white connected domains in the background in Figure 24a, while
a few dispersive white connected domains can be found in Figure 24b. However, in common, these
areas of the connected domains in the background were too small for the droplet. When the biggest
area of connected domains was found, the droplet was also found (see Figure 25).
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Canny operator.
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As a result, thanks to the relative weak intensity of the arc, there was no need to divide the droplet
artificially in the images. Hence, the whole image process in the period with a detached droplet was
simpler than that in the period with an undetached droplet. The LoG operator and Canny operator
both showed excellent effects for recognizing the complete droplet edge. Above all, recognition of the
droplet during the period with a detached droplet can be summarized as follows:

Step 1: Grayscale transformation;
Step 2: Edge operator test;
Step 3: Filling hollow areas;
Step 4: Recognition of the droplet.

4. Extraction of Droplet Kinematic Characteristics

The droplet can be approximately regarded as an object with uniform mass, such that the centroid
of the droplet coincides with the center of mass. The motion state of the center of mass reflects the
motion state of the whole droplet. Therefore, the centroid of the droplet can be studied to extract the
kinematic characteristics of the droplet.

According to the above content, the droplet was recognized accurately as a region of white pixels
in the period with an undetached droplet (see Figure 19) and the period with a detached droplet
(see Figure 25), while the other parts were all black pixels. Thus, the centroid coordinates (X0, Y0) of
the droplet could be calculated according to Equations (4)–(6), while f(X, Y) is the value of the pixel
corresponding to the coordinates of pixel points (X, Y) in images.

f (X, Y) =
{

1 (when a pixel is white)
0 (when a pixel is black)

. (4)

X0 =

∑
X · f (X, Y)∑

f (X, Y)
. (5)

Y0 =

∑
Y · f (X, Y)∑

f (X, Y)
. (6)

A series of droplet centroid coordinates can be obtained by processing a series of high-speed
photographic images during the droplet transfer. If (Xi,0, Yi,0) represents the centroid coordinates of
droplet at frame i, then Xi+1,0 − Xi,0 and Yi+1,0 − Yi,0 are the displacements in the X- and Y-directions
of the droplet centroid from frame i to frame i + 1, respectively. However, the displacement is based on
the pixel coordinates, not the real value. There is a proportional relationship between the displacement
based on the pixel coordinates and the real value. The real wire diameter Dreal is known, as well as
the wire diameter Dimage (in pixels) in the image. Thus, the proportional relationship K = Dreal/Dimage

can be calculated. Therefore, the velocity of the droplet at frame i in the X- and Y-directions can be
expressed as Equations (7) and (8), where ∆T is the time interval between the previous frame and the
next frame. Moreover, total velocity can be calculated using Equation (9).

vi,X = K
Xi+1,0 −Xi,0

∆T
. (7)

vi,Y = K
Yi+1,0 −Yi,0

∆T
. (8)

vi =
√

v2
i,X + v2

i,Y. (9)

In addition, the projected area of the droplet in image Simage can be obtained. If the droplet
is approximately regarded as a sphere, the diameter of the droplet in image Rimage and the real
diameter of droplet R can be calculated using Equations (10) and (11), respectively. Furthermore, other
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relative parameters can also be calculated to study the kinematic characteristics of the droplets, such as
acceleration, external force, volume, mass, momentum, kinetic energy, etc.

Rimage =

√
Simage

π
. (10)

R = K ·Rimage. (11)

5. Conclusions

(1) A monitoring scheme of pulsed GMAW based on a high-speed camera and laser backlight was
proposed. The interference of the high-brightness arc was weakened by using a narrow band filter and
ND filter. Finally, the droplet and translucent arc could both be observed clearly.

(2) An effective image-processing algorithm was proposed to extract the edge and region of the
droplet. It is unable to remove the interference of the arc and obtain a high-quality image segmentation
effect using only the threshold method. However, by comparison, the interference of the arc can be
removed, and the droplet can be extracted precisely using the proposed image-processing method.

(3) During the period with an undetached droplet, the problem of recognizing the droplet was
solved by precisely cutting the droplet at the minimum diameter of the neck. Thus, the centroid
coordinates of the undetached and detached droplets could both be calculated accurately, which
broadened the scope of obtaining the effective information of the droplet.

(4) Based on the proposed algorithm, a series of kinematic parameters of the droplet can be
obtained, such as velocity, acceleration, size, momentum, and so on. This gives a simple and feasible
method to investigate the kinematic characteristics and mathematic descriptions of the droplet flight
trajectory. This paper also provides a new possible application for developing a precise automatic
welding system.
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