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Abstract: This paper addresses anomaly detection and monitoring for swarm drone flights. While
the current practice of swarm flight typically relies on the operator’s naked eyes to monitor health of
the multiple vehicles, this work proposes a machine learning-based framework to enable detection of
abnormal behavior of a large number of flying drones on the fly. The method works in two steps:
a sequence of two unsupervised learning procedures reduces the dimensionality of the real flight
test data and labels them as normal and abnormal cases; then, a deep neural network classifier with
one-dimensional convolution layers followed by fully connected multi-layer perceptron extracts
the associated features and distinguishes the anomaly from normal conditions. The proposed
anomaly detection scheme is validated on the real flight test data, highlighting its capability of
online implementation.
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1. Introduction

Coordination of multiple drones has been intensively studied in the field of military surveillance,
smart agriculture, logistics, disaster response, and artistic drone shows [1,2]. The use of swarm of
small aerial vehicles allows for extended mission area, flexible mission capability, robustness to single
point failure, and cost effectiveness. Research areas related to swarm drones have been very diverse,
including development of small-scale aerial vehicles [3–5], ad hoc communication backbone tailored to
swarm operation [6–8], path generation to ensure collision avoidance [9–11], mission-level planning
and scheduling to achieve high-level autonomy [12–15], and interaction/interface between the human
operator and the swarm drones [16–19]. It should be noted that while earlier literature focused on
technologies to enhance performance and capabilities, recent work has been looking into more safe,
secure, and reliable operations of such swarm systems [20–23]. In order to operate in a more advanced,
robust, scalable and flexible manner, research with self-regulation and environmental adaptation is
expanding into the design of new coordination algorithms that combine biological processes [24].

For the safe and reliable operation of swarm drones, it is crucial to be able to monitor/manage
the health of the vehicles and to take prognostic actions when needed. The system health may be
affected by many aspects such as faults in the actuator and sensors in the drone system, defects in
the communication link, and possibly cyberattacks by malicious entities; identification of the culprit
requires incorporation of detailed knowledge of the system, mission, and the environment. That said,
the first step toward health management is to detect an anomaly in the system behavior—in other
words, to recognize something goes wrong (even without clear identification of what went wrong).
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Unfortunately, the current practice of health monitoring for swarm drones often relies solely on
the human operator’s experience and expertise—eyeballing flying drones’ motion and/or looking at
the trajectory data on the ground station screen. Deeper post-flight investigation can certainly be
performed, but on-site monitoring of vehicle health is critical to enable execution of an appropriate
contingency plan and to avoid secondary damage due to a chain reaction of failures. As such, it is
imperative to devise an automated procedure to monitor and detect an anomaly of flying swarm
drones to support the operator’s correct situational awareness and responsive decision making.

Traditional model-based methods have been intensively studied in the context of fault detection and
isolation (FDI) particularly for safety-critical aerospace systems [25,26]. This has recently been extended
to multi-unmanned aerial vehicle (UAV) systems from the perspective of safe operations [27–29] and
also for resilience against cyberattacks [30–33]. In a multi-UAV system, the design and experimental
verification methods and strategies have been studied to perform fault detection, identification, and
recovery (FDIR) by constructing a cooperative virtual sensor (CVS) system for each UAV through
on-board sensor signals [34]. These model-based schemes work well when normal behavior of the
system is well-understood and predicted using (physics-based) models and also when the potential
fault modes are well-identified a priori so that a finite number of hypotheses on the faultiness can be
posed. However, this is not often the case for a flight of swarm drones. From the mission perspective,
one reason to utilize the swarm is their robustness to single-point failure; however, it is still critical
to ensure the safety and health of each vehicle that may affect the overall performance. In particular,
a least thus far, small-sized drones are not designed under a high-reliability requirement; thus, the
main parameters associated with motion models of the drones are prone to uncertainties. Also, these
drones are relatively new in the market, compared to long-life large aircraft; as such, the fault modes
are not well understood and identified. Therefore, a data-driven scheme that does not explicitly rely
on the physics-based model of the vehicles can be a promising solution to anomaly detection of swarm
of small-sized drones.

Several noticeable studies have been performed to take advantage of data-driven machine-learning
techniques for fault and/or anomaly detection of aerial vehicles. A multivariate Gaussian mixture
model (mGMM) was proposed to detect and monitor airborne abnormalities in aircraft systems in
real time [35], and a recurrent neural networks (RNN) method was proposed to identify events and
trends that may reduce safety margins of the system out of the data collected from the flight data
recorder (FDR) and/or flight operational quality assurance (FOQA) data [36]. A K nearest neighbor
(KNN)-based method was presented to estimate the cause of failure and potential degradation of UAV
performance on the fly [37]. Research carried out kernel principal component analysis(KPCA)-based
sensor anomaly detection using drone sensor signals [38]. It should be noted that these previous
studies mostly dealt with health management of a single UAV; there has not been a systematic machine
learning-based methodology proposed to effectively detect anomaly in swarm flights, addressing the
aforementioned difficulty in behavior of multiple vehicles.

As such, this work presents a learning-based data-driven approach for anomaly detection in
swarm flights. The approach primarily tries to tackle the issue of a lack of labeled data in swarm
flights, and imbalance in the normal and abnormal data. A sequence of unsupervised learning
methods is first applied: a principal component analysis (PCA) [39] procedure first reduces the
dimensionality of the time series of flight data, and a K-means clustering groups the data and label
them into four categories—true anomaly, uncertain anomaly, uncertain normal, and true normal. Then,
a deep neural network, which is concatenation of a one-dimensional convolutional neural network
(1D-CNN) [40] and a multi-layer perceptron for logistic regression, is trained to extract features and
to detect anomaly. In general, supervised learning methods have better classification performance
than unsupervised methods; a very recent form of self-supervised learning that outperforms the fully
supervised method is reported in the context of anomaly detection [41]. While the authors of [41]
devised highly sophisticated self-supervised framework that performs best, they also pointed out
that the fully supervised method ranks the second by dominating all other unsupervised methods.
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The present paper is in line with this observation that the supervised learning approach is still a
viable top-performing framework if a sufficient amount of labeled data is available and/or appropriate
labeling procedure can be accompanied. The proposed method in this paper is tested against real flight
data to demonstrate its accuracy in detection of anomaly and also applicability as an online monitoring
scheme. The main contributions of this paper are: (a) to propose a systematic procedure of data-driven
anomaly detection for swarm flights, and (b) to validate the method against real flight test data.

2. Problem Description

Anomaly detection (AD) for swarm flights considered in this work involves two decisions: (a) to
detect symptom of anomaly of the overall swarm, and (b) to identify which particular drone behaves
in an abnormal manner. The anomaly detection scheme makes these decisions by monitoring the time
series of the kinematic variables (i.e., position and velocity) of the drones. In particular, this AD scheme
lies in the ground station that manages the overall health and flight status of the swarm vehicles; in
other words, if implemented in practice, transmitted data from the drones down to the ground station
go through the AD scheme to indicate the normality of the flights.

This work aims at developing such an AD scheme by learning from the data collected in real flight
tests. The swarm flight data on which this work is based was collected via a series of flight tests of
swarm drones; this swarm system features the use of real-time kinematic (RTK) global positioning
system (GPS)-based precision navigation methods proposed in [42]. The flight test data utilized in
this work were obtained from a series of swarm flights completed between 26 April 2018 and 22 June
2018; as many as 30 quadcopter drones were used in these flight tests. About 60 tests were conducted,
including individual and several groups of test vehicles. From these test results, data were selected
that could be used as learning data suitable for the purpose of detecting abnormal behavior during the
performance of a swarm mission. Figure 1 illustrates an example mission of the swarm drones (left)
and the RTK-GPS navigation architecture of the swarm system (right).
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The output data from each flight sortie consists of 248 parameters, and the data are in the form
of time series of these parameters some of which include multiple measurements. In this study, the
following parameters that are thought to be crucial in monitoring anomalies in motion are chosen:
three position coordinates and their set point values, three velocity components of the vehicles, and
the vehicle status. The position coordinates (xa, ya, za) and the velocity components in three axes are
obtained from RTK-GPS measurements whose accuracy was verified in [42]; the set point values (xs, ys,
zs) in three coordinates generated from the mission controller are also considered as anomalies that are
likely to be associated with the errors between the desired and the actual behavior in vehicle motion,
i.e., the following three terms:

x = xa − xs, y = ya − ys, z = za − zs (1)

Accelerometer and gyro reads obtained from the inertial navigation system (INS) are also
considered as mechanical defects in drone systems that may typically yield abrupt and unpredictable
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behavior in acceleration and angular rates. The vehicle status parameter is included for basic checks for
data compatibility and calibration. It should be noted that this work tries to devise an anomaly-detection
scheme that is not dependent on the specific type and characteristics of a particular drone; as such,
the data is not labeled with vehicle IDs. The characteristics of the parameters used in this study are
tabulated in Table 1. The vehicle status variables are used to extract data that are collected during the
flight when the navigation state is not “manual” and the arming state is “armed” indicating every
device in the drone is fully powered. The data is collected with a 10 Hz rate.

Table 1. Extracted parameters for flight analysis.

Parts Variable Attribute Type

RTK–GPS Inertial Position and Velocity
ContinuousINS Gyro (Body frame rate and their integrals)

Accelerometer (xyz-axis values and integrals)
Setpoint Position (xs, ys, zs)

Vehicle status Navigation state
Arming state Discrete

It should be pointed out that these kinematic variables may not be the complete and comprehensive
set of variables needed to detect all possible anomalies in swarm flights. However, these are certainly
critical variables in detecting anomalies caused by some types of failures and faults. Thus, this work
expresses the anomaly detection problem as the detection and identification of abnormal behavior on
the basis of kinematic variables, and focuses on such a problem. Also, this particular flight data is
partially labeled, meaning that some of the faulty events identified during the test are identified as
anomaly. However, the method in this work does not take into account these pre-identified labels as
they are not comprehensive.

3. Preliminaries

This section summarizes four machine learning algorithms that are primarily utilized to develop
a data-driven anomaly detection scheme in this work. The first two are categorized as unsupervised
learning that are devised to handle unlabeled data, and the last two are supervised learning algorithms
that take advantage of labeled data for classification tasks.

3.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a multivariate statistical projection technique applied for
dimensionality reduction [39]. The key idea of PCA is to represent the statistical distribution of data
vector using the basis vectors, defined by the eigenvectors of the sample covariance matrix. Let the
zero-mean data matrix S be defined as the row concatenation of n samples of d-dimensional row data
vectors shifted as zero-mean. Then, the sample covariance matrix is computed as Σ = STS. The PCA
learns the transform:

Tq = SWq (2)

where Wq is the column concatenation of the q largest eigenvectors of Σ. Each column of Tq is called
the score vector of the d-dimensional data vector. The PCA is known to be robust against noises and
frequently utilized as a feature extraction method [43].
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3.2. K-Means Clustering

K-means clustering [44] is a well-established technique to group similar data together. This
algorithm finds out the clusters and binds the data to the closest cluster. Mathematically, the clustering
is conducted by solving the following optimization:

min
{rnk},{µk}

J =
∑N

n=1

∑K

k=1
rnk ‖ Xn − µk ‖

2 (3)

where N denotes the number of data; k denotes the number of clusters; µk denotes the center of the
k-th cluster; rnk becomes 1 if the n-th data belongs to the k-th cluster and 0 otherwise. The K-means
algorithm works in two steps. First, a random value is given to µk as an initial value. In the expectation
(E) stage, rnk is set to minimize J while fixing µk. Moreover, rnk allocates all the data, n, to the cluster
with the smallest distance among all the clusters. In the maximization (M) stage, the newly obtained rnk
is fixed and µk calculates the mean of the k-th cluster. The calculation is repeated until the two values
converge within an appropriate range. The two steps together are called the expectation–maximization
(EM) algorithm.

3.3. One-Dimensional Convolutional Neural Network (1D-CNN)

Convolutional neural networks (CNN) have been developed mostly in the context of classification.
The basic concept of CNN is to take advantage of locality in the process of feature extraction. While
many advancements in CNN has been made to deal with two-dimensional image data, the same
concept of locality/sparsity can be equivalently applied in handling one-dimensional time-series
data [40]. The network layout of 1D-CNN is similar to the 2D counterpart; it consists of a stack of
one-dimensional convolution and max-pooling layers at the end of which is connected a global-pooling
layer or a flattened layer.

Often, another fully connected layers (i.e., multi-layer perceptron) are connected to the output
layer of the 1D-CNN to perform classification or regression [45]; then, standard learning schemes such
as stochastic gradient descent methods can be used to optimize the weights of the CNN and the MLP
simultaneously. Note that the classification model in this work also takes this type of structure.

3.4. Logistic Regression

Logistic regression (LR) [46] is one of the simplest and commonly utilized machine learning
algorithms for two-class classification. LR is a statistical method for predicting binary classes whose
results or target variables are inherently dichotomous—say, one and zero. The hypothesis of logistic
regression can be written as

y = 1/(1 + exp(−(β0 + β1X1 + β2X2 + . . . + βmXm))) (4)

where Xm is the explanatory variables (or features), and βi’s are associated coefficients to be optimized
through a learning process. As the range of y is between 0 and 1; this output can be interpreted as the
probability of belonging to class 1.

The typical loss function to optimize the coefficients is to maximize the likelihood of the output,
which takes the form of:

loss(z, y) = −
∑n

i=1
(zi log yi + (1− zi) log(1− yi)) (5)

where n is the number of data and z is the target value. It can be shown that this loss can also be
interpreted as cross-entropy between z and y.

The logistic regression can be done in a stand-alone manner, but it is also common to have this
sigmoidal activation function at the output not of a neural network to perform classification. In this
case, the network is learned to minimize the cross-entropy loss. This paper also takes this approach.
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4. Learning-Based Anomaly Detection

4.1. Model Concept

The overall architecture of the anomaly detection model in this work is illustrated in Figure 2. It is
assumed that the flight test data, which may be collected in advance and/or being fed in a real-time
manner, are not necessarily labeled. This is common in anomaly detection cases as the data can be
clearly labeled only if there exists a working anomaly detector or if human investigators have looked
into the data carefully. Therefore, a clustering algorithm is first used to group the data and to label them
into several meaningful categories. In this work, given the uncertainty in decisions on anomaly, four
categories are considered in the labeling procedure: true normal (TN), true anomaly (TA), uncertain
normal (UN), and uncertain anomaly (UA). The latter two categories are introduced as there are cases
in which it is not clear whether it is possible to assess if the flight behavior is normal/abnormal or not
with solely the given data. Once the labeled data is secured, a 1D-CNN-based binary classifier is trained
to learn the key features in determining the anomaly in the data using a set of training data. When the
training is completed, the learned model is tested and verified with a separate set of data reserved
for this purpose. Then, the learned model can be used as an anomaly detection scheme for both the
post-flight analysis and on-line anomaly monitoring. We used the python language (version 3.5, Python
Software Foundation, Wilmington, DE, USA) and the open-source library tensorflow (version 1.14.0,
Google Brain, Mountain view, CA, USA) framework to implement this deep-learning network.
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4.2. Data Preprocessing

Since the data preprocessing process directly affects the analysis results, it is important to obtain
data that is refined in order to develop good algorithms, since the correct analysis results require
the correct data to be entered [47,48]. Data preprocessing consists of data cleaning, integration and
transformation, and a total of 84,850 time series are obtained as the outcome of this pre-processing.

(1) Data Cleaning
In this process, data is refined by filling missing values, filtering excessive noises, removing
outliers, and resolving inconsistencies. As explained in Section 2, the difference between the
actual position and the reference position, and the actual velocity are used as input data. To match
the time stamp of the two different data sources, a linear interpolation technique is used. A linear
interpolation of reference data, which is relatively low noise compared to the actual signals, is
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performed to derive a difference value from the actual data at the same time stamp. Excessively
large values that may be caused by noise aberrations are removed from the training data set. In
addition, some portion of data exhibiting noises are cut out to reduce noise values across the data.

(2) Data Integration
Data from multiple drones are integrated into a single dataset with vehicle IDs. The vehicle ID is
not explicitly used in the learning process but is useful in analyzing the performance of the learned
model. Then, the input data includes 1 label information, 1 time stamp, and 6 kinematic variables.

(3) Data Transformation
Normalization is performed to bring the range of values of the selected parameters within a
certain level. The well-known standardization method is used in this paper. The standardization
method normalizes each data sequence by calculating the mean value (Xmean) and the standard
deviation value (Xstdev):

Xstandard = (X − Xmean)/Xstdev (6)

4.3. Clustering and Labeling

Sensor data are often multi-dimensional and exhibit complicated correlation, making it difficult to
characterize the system’s state solely on the basis of this data. A principal component analysis (PCA)
is utilized for appropriate dimensionality reduction of the data by resolving the major correlation
structure between the variables. The underlying rationale of PCA is that most system states can
be sufficiently well-represented by the behavior of a few principal components [39]; PCA has been
an effective feature extraction scheme in many contexts. In this work, the six-dimensional data
representing the kinematic information is represented in terms of principal component axes with a rate
of cumulative dispersion of at least 90% using PCA.

This work utilizes clustering to facilitate labeling of the data that are not labeled in their raw form.
Labeling allows for implementation of a supervised learning method in anomaly classification. The
clustering procedure provides a grouping of data in terms of some type of similarity and distance
metric so that human experts are readily able to label the data. It should be noted that the clustering
result does not directly lead to classification; the role of clustering is rather limited as an aiding tool for
the processing of the data in this work. Specifically, K-means clustering on the reduced space defined
by the principal component analysis method is proposed in this work. The time-series data that we
used for PCA comprised six variables (x, y, z; vx, vy, vz) and attached one drone label displayed after
PCA. Since the principal component axis is selected so that the cumulative dispersion ratio is 90%
or more, the number of dimensions reduced as a result of PCA may be different for each flight data.
Clustering is performed using dimension reduced data, and the number of clusters is optimized with
the elbow method [49]. By checking the clustered results, the status of each drone in the group is
labeled into normal (TN) and abnormal (TA). In other words, the related variables were extracted by
dividing into two cases: (i) check the results of performing a given scenario as a mission (RTK–GPS;
setpoint data) or (ii) check the sensor signals to detect any anomaly in the vehicle (INS data). These
processes including PCA and clustering label the unlabeled data to acquire a labeled data set for
learning. As a result, unlabeled dataset can be labeled with two categories, TN and TA. The numbers
of data samples in each category are 34,612 (TN) and 31,377 (TA).

4.4. Classification

(1) Standardization
After labeling the normal and abnormal state, we removed the drone-label information and used
a total of six variables. The range of input variable values are normalized by a standardization
method similar to the pre-processing for clustering.
Logistical regression algorithms can be used for binary-categorized variables such as the data
labeled in this study. The two possible dependent-variable values, represented by 0 and 1,
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correspond to the “normal” and “abnormal” results. Binary logistical models are used to estimate
the probability of a binary response based on one or more predictor (or independent) functions.

(2) 1D-CNN Classifier
The overall architecture of the classifier for anomaly detection is illustrated in Figure 3. The time
series data of kinematic variables described in Section 2 is first standardized with the procedure
described earlier in this section. The data first passes through 1D-CNN consisting of six hidden
layers; at the output end of CNN is connected to dense multi-layer perceptron with sigmoid
activation function. The output of this sigmoid activation function is compared with the target
label value, and their cross-entropy error as explained in (5) is used to learn the overall neural
network by propagating the error backwards. A stochastic gradient method with minibatch is
used for learning. Table 2 represents more detailed attributes of the neural network layers, and
also parameters used to learn the network. The total number of parameters in the training process
is 114,198, which is 446 KB in size. The architecture laid out in Table 2 is determined by at first
building a sufficiently large network and then implementing batch normalization [50] to regulate
the network.

(3) Mini-batch sampling in Adaptive moment estimation (Adam) optimization
Most neural network algorithms work best when learning with the same (or similar) amount of
data for each class because most algorithms are designed to maximize accuracy and reduce errors.
However, if the number of normal and abnormal individuals is considerably different such as
in defect classification or abnormal detection, binary classification in such a class-imbalanced
circumstance does not produce good results [51]. To mitigate this imbalance, this work generates
additional samples to achieve one-to-one ratio of normal and abnormal data when creating
batches for Adam [52] optimization adopted for training of the network.
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Let denote the number of data labeled as normal (TN) and abnormal (TA) as mn and ma, respectively.
If sampling to construct a minibatch of size b in the stochastic gradient calculation is done in a uniform
way, the expected ratio of the number of data of the two classes will be ma/mn, which can be very small
as an anomaly, as it is rare. Therefore, this work suggests copying the abnormal data set k times and
then sample from this expanded set of data. This way the expected ratio between the two classes
can be increased to kma/mn. By appropriately choosing k, the effect of imbalance can be mitigated.
Numerical results in Section 5.2 demonstrate the effectiveness of this sampling scheme.



Appl. Sci. 2019, 9, 5477 9 of 17

Table 2. Neural network parameters and learning parameters (n: batch size).

Layer Input Output Operation

Input (n, timestamp, 6) (n, 160, 6) Standardization

Hidden 1 (n, 160, 6) (n, 80, 12)
1D Convolution (strides 2, kernel size 3),
1D Batch normalization, Rectified Linear

Unit (ReLU) [53]

Hidden 2 (n, 80, 12) (n, 40, 24) 1D Convolution (strides 2, kernel size 3),
1D Batch normalization, ReLU

Hidden 3 (n, 40, 24) (n, 20, 48) 1D Convolution (strides 2, kernel size 3),
1D Batch normalization, ReLU

Hidden 4 (n, 20, 48) (n, 10, 96) 1D Convolution (strides 2, kernel size 3),
1D Batch normalization, ReLU

Hidden 5 (n, 10, 96) (n, 5, 128) 1D Convolution (strides 2, kernel size 3),
1D Batch normalization, ReLU

Hidden 6 (n, 5, 128) (n, 5, 128) 1D Convolution (strides 1, kernel size 3),
1D Batch normalization, ReLU

Hidden 7 (n, 5, 128) (n, 128) Global Average Pooling (GAP) [54]

Hidden 8 (n, 128) (n, 64) Dense, Batch normalization, ReLU

Output (n, 64) (n, 2) Dense, Sigmoid

Hyper-parameters for learning model

Batch size Time length Epoch number Learning rate
128 160 50 0.00004

5. Numerical Results

This section presents illustrative case studies for the proposed methodology using the flight test
data. Section 5.1 summarizes the results of PCA-based clustering; the generalization performance of
the proposed classification method is reported in Section 5.2. Section 5.3 demonstrates the applicability
of the proposed method as a means to monitor anomaly on the fly.

5.1. PCA and Clustering

Figure 4 represents PCA and K-means clustering results for data on a certain illustrative day,
25 May 2018. The distribution of the data points in the reduced space defined by the first and the
second principal components are shown; the left plot is based on the RTK-GPS data and the right
plot is based on the INS data. The dimension is reduced to principal component axes with a rate of
cumulative dispersion of at least 90% through the PCA process, and the clusters are identified by
K-means clustering. The two plots in Figure 5 depict the distribution of data points in the reduced
space defined by the first and the second principal components. It can be seen in both plots that the
data for one drone (x76) is distributed in a significantly different way from those for the other drones.
Thus, it can be conjectured that data from x76 are likely to contain the time series that exhibits anomaly.
However, it is not directly apparent how the clustering result is related to an anomaly, as it is not
likely that all the data from a potentially faulty vehicle belong to a single cluster. Figure 5 represents
what portion of data of each drone belong to a particular cluster. It can be seen that most of data
from all the drones belong to Clusters 1 and 5, but the distributions between x76 and the others are
different. According to the ratio of data belonging to Clusters 1 and 5, x76 behaves differently from the
others—significantly more data belong to Cluster 1 than 5, as opposed to the other drones. Another
noticeable observation is that any data from x76, potentially a problematic drone, do not belong to
Clusters 4, 6, 7, and 8. As such, it can be conjectured that although the clustering does not clearly
indicate which drone may have behaved abnormally, the distribution of data across the clusters may
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be an indicator of anomaly in the data. Clusters 1, 2, and 3 are the indicators for abnormal data and
Clusters 4, 5, 6, 7, and 8 indicate normal data. Along this line, data from each drone in Clusters 1~3 are
labeled “TA” and the other data in Clusters 4~8 are labeled “TN” for the further procedure. In case of
indistinct data such as Cluster 0 and uncertain data like as x56 in Cluster 3, a human expert may check
the flight data to use as labeled data.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 17 
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Figures 6 and 7 represent equivalent results for the data obtained from a flight test on another
date, 5 June 2018. From the distribution of data point across the clusters, it can be first found that data
from ×70 exhibit very different characteristics from the others—the majority of this data belong to
Clusters 0~6 to which only small portion of data from the other drones belong. On the other hand,
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significantly more data for ×70 belong to Clusters 7 and 8. Thus, we can predict ×70 includes some
anomaly behavior. From the clustering results, data from each drone in Clusters 0~6 are labeled “TA”
and the others in Clusters 7and 8 are labeled “TN”. While for the space reason this article only reports
a couple of representative cases, a similar PCA and clustering procedure is done on all the flight tests
for labeling. It should be noted that the clustering method herein does not aim for fully automated
labeling but supporting an auxiliary means to aid human experts to conveniently label a large amount
of unlabeled data.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 17 
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5.2. Classification Accuracy

The proposed 1D-CNN-based classifier is trained until the cross-entropy loss value converges
with the learning parameters tabulated in Table 2. Flight test data obtained on several dates are used
as the training set of size 65,989; 80% of this set is used for training the neural network and 20% for
validation. Flight data obtained on the other two days are used as a test set of size 31,846.

To verify the relevance of the sampling scheme described in Section 4.4., the test accuracy with test
data (5 June 2018) is compared with varying imbalance rate, i.e., the ratio of the abnormal data to the
normal data in the original dataset. When the proposed sampling is not implemented, the abnormal
data are used in the learning process with this imbalance rate compared to the normal data; if the
sampling is applied, the abnormal data set is copied by the factor of the inverse of imbalance rate.
Figure 8a compares the classification accuracy, defined as the number of correct classification over the
total cases, depending on the use of sampling scheme for difference imbalance rate of the original data
set. Figure 8b,c compares the anomaly detection results for the case when the original imbalance rate is
0.1. This is the case when the ×70 drone exhibits an abnormal flight behavior; it can been seen that only
the result with sampling clearly indicates anomaly in ×70 data. It can be clearly seen that the proposed
sampling technique significantly improves the classification accuracy, achieving zero classification
error. It can be also noted that classification accuracy is around 50% when the sampling scheme is not
implemented. One thing to note is that this is not improved even for larger imbalance rate of 0.5.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17 

if the sampling is applied, the abnormal data set is copied by the factor of the inverse of imbalance 
rate. Figure 8a compares the classification accuracy, defined as the number of correct classification 
over the total cases, depending on the use of sampling scheme for difference imbalance rate of the 
original data set. Figure 8b,c compares the anomaly detection results for the case when the original 
imbalance rate is 0.1. This is the case when the x70 drone exhibits an abnormal flight behavior; it can 
been seen that only the result with sampling clearly indicates anomaly in x70 data. It can be clearly 
seen that the proposed sampling technique significantly improves the classification accuracy, 
achieving zero classification error. It can be also noted that classification accuracy is around 50% 
when the sampling scheme is not implemented. One thing to note is that this is not improved even 
for larger imbalance rate of 0.5. 

 
(a)Test accuracy with respect to original imbalance rate 

 
(b) Imbalance rate 0.1 (with additional sampling) 

 
(c) Imbalance rate 0.1 (without sampling) 

Figure 8. Effect of imbalance rate and sampling: (a) test accuracy with respect to original imbalance 
rate; (b,c) illustrative anomaly detection result for imbalance rate 0.1 (N: normal, A: abnormal). 

5.3. Anomaly Detection 

The overall anomaly detection scheme is verified by checking whether or not the learned neural 
network classifier provides a valid indication for the time series input from the real flight test data. 
Figures 9 and 10 represent the results for a representative test data case when the input time series is 
not included in the training set. The swarm flight test data on 5 June 2018, whose clustering results 
are shown in Figures 6 and 7, are considered. Figure 9a depicts the output value of the neural network 
corresponding to the data of drone ID x70 that turns out to be in failure, when the input time series 
is continuously entered into the network. As the 1D-CNN takes an input of length 160 and the data 
rate is 10 Hz, the first output is obtained in response to the kinematic variables over the first time 
segment of 16 s. Then, the neural network continuously computes the output in response to the latest 
160 time points. It can be found that the probability of being normal is oscillating for some period of 
time and then becomes zero constantly. Figure 9b compares the average value of the normal 
probability of the data of five drones flown in this flight test, when the average is taken over the 
whole flight time. It can be clearly seen that the abnormal probability of this problematic drone is 
much greater than the normal probability. Figure 10 depicts the time history of the kinematic input 
variables corresponding to x70. Note that this drone does not effectively respond to the changes in 
the setpoints in x- and z-directions around the times 90 s and 75 s, respectively; as such, the anomaly 
detection scheme shown in Figure 9 indicates that the system may not be normal from the initial data 
point at time 85 s, which is obtained based on the behavior of the past 16 s; then, from time 100 s and 
onwards, it clearly says that the system is in the abnormal state with almost probability 1. It should 
be pointed out that investigation of the original flight log indicates that drone x70 actually crashed 
during the flight test. 

N Y N Y N Y N Y N Y
0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

Ac
cu

ra
cy

 N : Not sampled
 Y : Sampled

Imbalance rate

Figure 8. Effect of imbalance rate and sampling: (a) test accuracy with respect to original imbalance
rate; (b,c) illustrative anomaly detection result for imbalance rate 0.1 (N: normal, A: abnormal).

5.3. Anomaly Detection

The overall anomaly detection scheme is verified by checking whether or not the learned neural
network classifier provides a valid indication for the time series input from the real flight test data.
Figures 9 and 10 represent the results for a representative test data case when the input time series is
not included in the training set. The swarm flight test data on 5 June 2018, whose clustering results are
shown in Figures 6 and 7, are considered. Figure 9a depicts the output value of the neural network
corresponding to the data of drone ID ×70 that turns out to be in failure, when the input time series is
continuously entered into the network. As the 1D-CNN takes an input of length 160 and the data rate
is 10 Hz, the first output is obtained in response to the kinematic variables over the first time segment
of 16 s. Then, the neural network continuously computes the output in response to the latest 160 time
points. It can be found that the probability of being normal is oscillating for some period of time and
then becomes zero constantly. Figure 9b compares the average value of the normal probability of the
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data of five drones flown in this flight test, when the average is taken over the whole flight time. It can
be clearly seen that the abnormal probability of this problematic drone is much greater than the normal
probability. Figure 10 depicts the time history of the kinematic input variables corresponding to ×70.
Note that this drone does not effectively respond to the changes in the setpoints in x- and z-directions
around the times 90 s and 75 s, respectively; as such, the anomaly detection scheme shown in Figure 9
indicates that the system may not be normal from the initial data point at time 85 s, which is obtained
based on the behavior of the past 16 s; then, from time 100 s and onwards, it clearly says that the
system is in the abnormal state with almost probability 1. It should be pointed out that investigation of
the original flight log indicates that drone ×70 actually crashed during the flight test.
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From the perspective of on-line anomaly monitoring, the two plots in Figure 9 may be considered
as two extreme ways of monitoring. Continuous monitoring of the normal or abnormal probability as
in Figure 9a provides the assessment of system anomaly in a high-frequency manner. This approach
allows for responsiveness in the anomaly detection as it continuously provides updated information
on the normality of the system. However, as can be seen in the figure, the output signal is particularly
noisy in the transient phase. The average probability over the entire time span, as shown in Figure 9b
provides a smoothed/collective decision on anomaly in the system. This approach may be least sensitive
to noise, but the decision frequency may be too low.
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To mitigate the noise in continuous monitoring at the same time to allow for responsive detection
of anomaly, this work investigates moving average-based monitoring with finite time window. The
normal/abnormal probability is averaged over some specified time horizon, and is updated with a
new set of data. The time window of the adjacent averaging window can be overlapped. The four
subplots of Figure 11 represent the change in the normal probability of different drones as the time
proceeds. The average is taken over 30 s, and every 20 s the average value is updated, meaning that 1/3
of data are overlapped between the consecutive time windows. It can be observed that the abnormal
probability of ×70 is about 40% in the first time window, increases to about 55% in the second window,
and eventually becomes greater than 90% in the third time window. This way, the anomaly can be
monitored in a relatively high frequency without being subject to noise.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17 

 
Figure 11. Moving average monitoring example. 

6. Conclusions 

This paper has presented a machine learning-based anomaly detection scheme for swarm drone 
flights. The proposed method features two major steps: the labeling step to label the unlabeled data 
based on lower-dimensional features, and the binary classification step based on a one-dimensional 
convolutional neural network with cross-entropy loss function. The deep neural network is trained 
and verified with real flight test data. It is also demonstrated that moving horizon-based monitoring 
can be a viable option for on-line monitoring of a system anomaly with a mitigated noise effect. 
Future work will include integration of anomaly monitoring in the overall health-management 
framework of swarm drones. 

Author Contributions: Conceptualization, H.A. and H.-L.C.; Investigation, H.A. and S.T.M.; Methodology, H.A. 
and H.-L.C.; Data curation, S.M. and H.A.; Software, H.A. and M.K.; Visualization, H.A. and M.K.; Writing—
original draft, H.A.; Writing—review and editing, H.A., and H.-L.C.; Supervision, H.-L.C. 

Funding: This research was funded by Korea Aerospace Research Institute (grant number 1711094369, 
Development of Artificial Intelligence-Based Anomaly Detection Method for Aerospace Systems). 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 
AD Anomaly detection 
AI Artificial intelligence 
CNN Convolutional neural network 
GPS Global positioning system 
INS Inertial navigation system 
KNN K nearest neighbor 
LR Logistical regression 
ML Machine learning 
PCA Principal component analysis 
PHM Prognostics and health monitoring 
RNN Recurrent neural network 
RTK Real time kinematic 
TA True anomaly 
TN True normal 

Figure 11. Moving average monitoring example.

6. Conclusions

This paper has presented a machine learning-based anomaly detection scheme for swarm drone
flights. The proposed method features two major steps: the labeling step to label the unlabeled data
based on lower-dimensional features, and the binary classification step based on a one-dimensional
convolutional neural network with cross-entropy loss function. The deep neural network is trained
and verified with real flight test data. It is also demonstrated that moving horizon-based monitoring
can be a viable option for on-line monitoring of a system anomaly with a mitigated noise effect. Future
work will include integration of anomaly monitoring in the overall health-management framework of
swarm drones.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Anomaly detection
AI Artificial intelligence
CNN Convolutional neural network
GPS Global positioning system
INS Inertial navigation system
KNN K nearest neighbor
LR Logistical regression
ML Machine learning
PCA Principal component analysis
PHM Prognostics and health monitoring
RNN Recurrent neural network
RTK Real time kinematic
TA True anomaly
TN True normal
UA Uncertain anomaly
UN True normal
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