
applied
sciences

Article

A General Approach Based on Newton’s Method and
Cyclic Coordinate Descent Method for Solving the
Inverse Kinematics

Yuhan Chen 1 , Xiao Luo 2,*, Baoling Han 1, Yan Jia 1, Guanhao Liang 3 and Xinda Wang 1

1 School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street,
Haidian District, Beijing 100081, China; 3120185244@bit.edu.cn (Y.C.); hanbl@bit.edu.cn (B.H.);
tictac0324@163.com (Y.J.); wangxinda1111@163.com (X.W.)

2 School of Computer Science and Technology, Beijing Institute of Technology, No. 5 Zhongguancun
South Street, Haidian District, Beijing 100081, China

3 School of Mechatronical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street,
Haidian District, Beijing 100081, China; simonleungbit@hotmail.com

* Correspondence: luox@bit.edu.cn; Tel.: +86-010-6891-8856

Received: 22 October 2019; Accepted: 9 December 2019; Published: 12 December 2019
����������
�������

Featured Application: The new approach can be used to solve the inverse kinematics of revolute
and prismatic joint robots with any number of degrees of freedom as well as any configurations.

Abstract: The inverse kinematics of robot manipulators is a crucial problem with respect to
automatically controlling robots. In this work, a Newton-improved cyclic coordinate descent (NICCD)
method is proposed, which is suitable for robots with revolute or prismatic joints with degrees of
freedom of any arbitrary number. Firstly, the inverse kinematics problem is transformed into the
objective function optimization problem, which is based on the least-squares form of the angle error
and the position error expressed by the product-of-exponentials formula. Thereafter, the optimization
problem is solved by combining Newton’s method with the improved cyclic coordinate descent
(ICCD) method. The difference between the proposed ICCD method and the traditional cyclic
coordinate descent method is that consecutive prismatic joints and consecutive parallel revolute
joints are treated as a whole in the former for the purposes of optimization. The ICCD algorithm
has a convenient iterative formula for these two cases. In order to illustrate the performance of the
NICCD method, its simulation results are compared with the well-known Newton–Raphson method
using six different robot manipulators. The results suggest that, overall, the NICCD method is
effective, accurate, robust, and generalizable. Moreover, it has advantages for the inverse kinematics
calculations of continuous trajectories.

Keywords: inverse kinematics; robotics; general manipulators; numerical solution; Newton’s method;
cyclic coordinate descent method; product-of-exponentials formula

1. Introduction

Solving typical robotics problems, such as trajectory planning [1] and motion control [2], requires
that forward and inverse kinematics problems be addressed. The former involves calculating the
position and orientation of a robot’s end-effector frame from its joint values, which can easily be
solved by using the matrix method of analysis [3]. The latter involves determining the joint variables
corresponding to a given end-effector position and orientation. Indeed, the inverse kinematics problem
is more complex than the forward kinematics problem because of the existence of nonlinear and
multiple solutions [4]. Generally, two types of solutions exist: analytical solutions and numerical

Appl. Sci. 2019, 9, 5461; doi:10.3390/app9245461 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9796-0291
http://dx.doi.org/10.3390/app9245461
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/24/5461?type=check_update&version=2

Appl. Sci. 2019, 9, 5461 2 of 29

solutions. Iterative numerical methods can be applied if the inverse kinematics problem in question
does not have any closed-form solutions and if it does not satisfy the Pieper criterion [5]. Even in
cases where closed-form solutions do exist, iterative numerical methods are often used to improve the
accuracy of these solutions.

From the 1980s, the inverse kinematics problem has attracted the attention of a large number
of experts and researchers, all of whom have made remarkable achievements with respect to
providing an adequate solution. Tsai and Morgan equated the kinematics problem of the general
six-degree-of-freedom robot manipulators to that of a system of eight second-degree equations with
eight unknowns solved numerically by polynomial continuation [6]. The authors in [6] conjectured
that this problem has at most 16 solutions, the first conclusive proof of which was given in [7]. In order
to improve the real-time performance of the solution, Manocha and Canny presented an algorithm for
efficient inverse kinematics for a general six revolute (6R) robot manipulator, which performs both
symbolic preprocessing and matrix computations and reduces the problem in question to computing
the eigendecomposition of a matrix [8]. The generality of this algorithm, however, is limited since
it can only be applied to 6R robot manipulators. In order to improve the generality of the inverse
kinematics algorithm, some general approaches are proposed. The representative algorithms are
the Newton–Raphson (NR) method [9] and the damped least-squares approach [10,11], which are
all based on the inverse Jacobian matrix. The common drawback of this kind of algorithm is that
it is sensitive to the initial solution. In order to solve this problem, Goldenberg et al. proposed a
combined optimization method, which is based on a combination of two nonlinear programming
techniques [12]. More specifically, the proposed method uses the cyclic coordinate descent (CCD)
method [13] in order to rapidly find a feasible point approximate to the true solution and then the
Broyden–Fletcher–Shanno variable metric method [13] in order to obtain a solution accurate to the
desired degree of precision. Recently, some novel algorithms have been proposed to solve the inverse
kinematics problem of robot manipulators. Kelemen et al. presented an algorithm for the control of
kinematically-redundant manipulators considering three secondary tasks: a joint limit avoidance task,
a kinematic singularities avoidance task, and an obstacle avoidance task [14]. Indeed, this approach
is practical and results in a significant decrease in computing time. Zaplana and Basanez proposed
an approach for a closed-form solution for the inverse kinematics of redundant manipulators [15].
This approach involves transforming redundant manipulators into non-redundant ones by selecting a
set of joints, identifying the redundant ones, and parametrizing the joint variables. Thereafter, several
closed-form methods previously developed for non-redundant manipulators can be applied in order to
obtain the requisite solutions. This approach, however, is only suitable for manipulators that conform
to the Pieper criterion. Qiao et al. [16] and Menini et al. [17] solved the inverse kinematics problem
using double quaternions and Lie symmetries, respectively. In addition, other methods based on
heuristic search techniques have been developed to solve the inverse kinematics problem, such as
neural networks [18,19], genetic algorithms [20,21], and particle swarm optimization [22], as well as a
combination of these methods [23,24].

On the basis of prior research, there is rarely a general and effective method for solving inverse
kinematics. Therefore, this paper transforms the inverse kinematics problem into the objective function
optimization problem, which is based on the least-squares form of the angle error and the position
error expressed by the product-of-exponentials (PoE) formula. Then the new general approach that is
suitable for the inverse kinematics of revolute and prismatic joint robots with any number of degrees
of freedom as well as any configurations is presented.

The rest of the paper is organized in the following manner. Section 2 provides basic and associated
knowledge, including the kinematics description of robot manipulators, Newton’s method and the
CCD method. Section 3 provides a definition of the objective function with respect to inverse kinematics
and then the necessary formulas for Newton’s method and the iterative procedure for the improved
cyclic coordinate descent (ICCD) method. At the end of this part, the Newton-improved cyclic
coordinate descent (NICCD) method is presented to solve the inverse kinematics problem. Section 4

Appl. Sci. 2019, 9, 5461 3 of 29

provides the simulation results, followed by the discussion. Finally, Section 5 provides the conclusions
and future work.

2. Preliminaries

Generally, this section introduces the preliminary knowledge used in this article. Firstly, the
kinematics description of the robot manipulator is introduced, which plays an important role in
deriving the formulas. The iteration process for Newton’s method and the CCD method are then
described, thereby laying the foundation for the proposed NICCD method.

2.1. Kinematics Description of Robot Manipulator

Generally speaking, two methods of describing the forward kinematics of open chains currently
exist. The first method relies on the Denavit- Hartenberg parameters and the second relies on
the PoE formula. Indeed, the latter method has advantages over the former (e.g., no link frames
are necessary) [25], and it is, therefore, the preferred choice with respect to representing forward
kinematics.

The PoE formula used to describe the forward kinematics (T(Θ), Θ ∈ Rn) of an open chain with
n-degrees of freedom follows Equation (1)

T(Θ) =

[
R(Θ) P(Θ)

0 1

]
= eS1θ1 · · · eSn−1θn−1 eSnθn M. (1)

Specifically, Equation (1) is the space form of the PoE formula, referring to the fact that the screw
axes are expressed in the fixed space frame, R(Θ) ∈ specialorthogonalgroup(SO(3)), P(Θ) ∈ R3×1,
0 denotes the (1× 3) null vector.

To calculate the homogeneous transformation matrics (T(Θ)), which represent both the position
and orientation of the end-effector with respect to the base frame, the elements outlined below
are required.

(a) The end-effector configuration M ∈ Special Euclidean Group (SE(3)) is defined as

M =

[
Rm Pm

0 1

]
, (2)

when the robot manipulator is at its home position.
(b) The screw axes are

si =

[
ωi

vi

]
= [ωi1 , ωi2 , ωi3 , vi1 , vi2 , vi3]

T , (i = 1 · · · n), (3)

where
vi = −ωi × qi (4)

with qi (any arbitrary point on the joint axis i) written in coordinates in the fixed base frame,
corresponding to the joint motions when the robot manipulator is at the home position. Since the
screw axis si is just a normalized twist, Si represents Equation (5)

Si =

[
Ωi vi

0 0

]
, (5)

where Ωi is a 3× 3 skew-symmetric matrix representation of ωi and is defined as

Appl. Sci. 2019, 9, 5461 4 of 29

Ωi =

 0 −ωi3 ωi2
ωi3 0 −ωi1
−ωi2 ωi1 0

 . (6)

(c) The joint variables are represented as follows: Θ = [θ1, θ2, · · · , θn]T .
(d) The matrix exponential eSiθi can be calculated using Equation (7)

eSiθi =

[
Ri(θi) Pi(θi)

0 1

]
, (7)

where Ri(θi) and Pi(θi) are calculated as

Ri(θi) = eΩiθi = I + Ωi sin θi + Ω2
i (1− cos θi), (8)

Pi(θi) =
(
(I + Ω2

i)θi + Ωi(1− cos θi)−Ω2
i sin θi

)
vi, (9)

where I denotes the (3× 3) identity matrix.
The formulas listed in this section will be used for calculating the formulas in the NICCD method.

2.2. Newton’s Method

An effective way to solve nonlinear optimization problems is to use Newton’s method.
This method has quadratic convergence, and it uses both the first-order and second-order partial
derivatives of the objective function, thus taking into account gradient changes. Therefore, it can
comprehensively determine the appropriate search direction, and it has a more rapid convergence rate
than the gradient method [26]. In particular, some scholars have improved the truncation criterion
of Newton’s method, which avoids “over-solving” of the Newton equation as much as possible.
The representative method is the heuristic adaptive truncation criterion proposed by [27,28].

Although Newton’s method requires a Hessian matrix, it is an appropriate method for solving
low-dimensional optimization problems, such as the inverse kinematics of robot manipulators.
The iterative formula for finding the local minimum value of the objective function (f (Θ), Θ ∈ Rn)
using Newton’s method is given by Equation (10)

Θ(k+1) = Θ(k) − pinv(H(Θ(k)))5 f (Θ(k)), (10)

where pinv() is the pseudoinverse, and where5 f (Θ(k)) is the gradient of the k-th iteration of the
objective function, which is defined as

5 f (Θ(k)) = [
∂ f (Θ(k))

∂θ1
,

∂ f (Θ(k))

∂θ2
, · · · ,

∂ f (Θ(k))

∂θn
]T . (11)

Moreover, H(Θ(k)) must be positive definite matrix for the Hessian matrix of the k-th iteration of
the objective function, which is expressed as Equation (12)

H(Θ(k)) =52 f (Θ(k)) =

∂2 f
∂θ2

1

∂2 f
∂θ1∂θ2

· · · ∂2 f
∂θ1∂θn

∂2 f
∂θ2∂θ1

∂2 f
∂θ2

2
· · · ∂2 f

∂θ2∂θn

...
...

. . .
...

∂2 f
∂θn∂θ1

∂2 f
∂θn∂θ2

· · · ∂2 f
∂θ2

n

. (12)

Newton’s method for finding the optimal solution (Θ∗) consists of the step-by-step procedure
outlined below.

Appl. Sci. 2019, 9, 5461 5 of 29

Step 1: determine the gradient5 f (Θ(k)) (see Equation (11)).
Step 2: verify convergence with the final solution as follows,∥∥∥5 f (Θ(k))

∥∥∥ 6 ε, (13)

where ε is a threshold value supplied by the user. If Equation (13) holds, i.e., then Θ∗ = Θ(k) is the
optimal solution, then terminate the process; otherwise, proceed to the next step.

Step 3: determine the Hessian matrix (see Equation (12)) and Θk+1 (see Equation (10)). Then,
let k = k + 1 and return to Step 1.

2.3. The CCD Method

The CCD method, also known as the univariate search technique, is a dimension reduction
method for unconstrained optimization problems. Its iteration process requires that one searches
alternately along different coordinate directions. Indeed, the CCD method is a simpler method of
establishing the search direction than the objective function derivative.

Although the convergence rate of the CCD method is slow for high-dimensional optimization
problems, it is permissible with respect to the inverse kinematics problem of robot manipulators, and
it can reduce the objective function at each iteration.

The CCD method process requires finding the optimal solution for one variable at a time while
keeping the remaining n− 1 variable unchanged. The last point of the previous one-dimensional
search is the starting point of this one-dimensional search. The iterative formula for finding the local
minimum value of the objective function (f (Θ), Θ ∈ Rn) by the CCD method is Equation (14)

Θk
i = Θk

i−1 + α
(k)
i D(k)

i , (i = 1, 2, · · · , n), (14)

where D(k)
i is the search direction, defined as

D(k)
i = [0, · · · , 1, · · · , 0]T , (15)

in which the component of the i-th coordinate direction is 1 and the remaining components are 0,
Moreover, α

(k)
i is the optimal step length in the i-th iteration of the k-th round, which is written as

Equation (16)
α
(k)
i = arg min

α
(k)
i

f (Θk
i−1 + α

(k)
i D(k)

i). (16)

The CCD method for finding the optimal solution (Θ∗) consists of the following step-by-step procedure.
Step 1: let i = 1.
Step 2: determine the optimal step length α

(k)
i (see Equation (16)) and Θk

i (see Equation (14)).
Step 3: check whether the iteration round is over as follows:

i = n. (17)

If Equation (17) holds, i.e., then proceed to the next step, else let i = i + 1 and return to step 2.
Step 4: verify convergence with the final solution as follows,∥∥∥Θ

(k)
n −Θ

(k)
0

∥∥∥ 6 ε, (18)

where ε is a threshold value supplied by the user. If Equation (18) holds, i.e., then Θ∗ = Θ
(k)
n is the

optimal solution, then terminate the process; otherwise, let D(k+1)
i = D(k)

i (i = 1, 2, · · · , n), Θ
(k+1)
0 =

Θ
(k)
n , k = k + 1 and return to Step 1.

Appl. Sci. 2019, 9, 5461 6 of 29

The CCD method does not require the derivative of the objective function in the search process;
rather, it only requires the objective function value information. Moreover, it can be used to analytically
find the optimal value in each search direction, such as the single joint variable optimization for the
objective function proposed in this paper.

3. Numerical Methods for Nonlinear Kinematic Equations

In this section, the inverse kinematics problem is first transformed into the problem of how to get
the value of Θ∗ in order to minimize the objective function, which is based on the least-squares form
of the angle error and the position error expressed by the PoE formula. Accordingly, the equivalence
of these two problems is proven. Then, the necessary formulas for Newton’s method and the ICCD
methods are given. Finally, for the NICCD method, the iterative procedure required to find the local
minimum value of the objective function with respect to inverse kinematics is proposed.

3.1. Definition of Objective Function in Inverse Kinematics

For an open chain with n-degrees of freedom with respect to forward kinematics (T(Θ), Θ ∈ Rn),
the inverse kinematics problem can be stated as follows: Given a homogeneous transformation matrix,
E ∈ SE(3) which is defined as follows

E =

[
Re Pe

0 1

]
, (19)

find solutions (Θ∗) that satisfy
T(Θ∗) = E. (20)

As previously mentioned, this problem can be transformed into the problem of how to get
the value of Θ∗ in order to minimize the objective function (f (Θ)) of inverse kinematics. Formally,
the problem can be defined as Equation (21)

Θ∗ = arg min
Θ

f (Θ), (21)

where the objective function (f (Θ)) of inverse kinematics is written as

f (Θ) = RErr(Θ) + λPErr(Θ)

= trace
(
(R(Θ)− Re)

T(R(Θ)− Re)
)
+ λ (P(Θ)− Pe)

T (P(Θ)− Pe) , (22)

where λ > 0 is a scale factor, and R(Θ) and P(Θ) are expressed as

R(Θ) =
n+1

∏
i=1

Ri(θi), (23)

P(Θ) =
n

∑
k=0

(
k

∏
i=1

Ri(θi)

)
Pk+1(θk+1), (24)

where Ri(θi), Pi(θi)(i = 1, · · · , n) can be calculated using Equations (8) and (9), respectively, and
where Pn+1(θn+1), Rn+1(θn+1) are defined as

Pn+1(θn+1) = Pm, (25)

Rn+1(θn+1) = Rm. (26)

Equation (22) is based on the least-squares cost function. The first part of Equation (22) represents
the sum of the squares of the errors of all elements of the current rotation matrix (R(Θ)) and the

Appl. Sci. 2019, 9, 5461 7 of 29

target rotation matrix (Re). The second part of Equation (22) represents λ times the sum of the errors
of all elements of the current displacement matrix (P(Θ)) and the target displacement matrix (Pe).
Therefore, if a solution does not exist for inverse kinematics, then Θ∗ satisfies the required conditions
as closely as possible in a least-squares sense. However, if a solution exists for inverse kinematics, then
Θ∗ exactly satisfies

f (Θ∗) = min f (Θ) = 0. (27)

A constructive proof of this claim is provided below.

Proof. If a solution of inverse kinematics (Θ∗) exists, then R(Θ∗) = Re and P(Θ∗) = Pe must be
satisfied. So Equation (27) must also be established. On the contrary, if there is Θ∗ so that Equation (27)
holds, then R(Θ∗) = Re and P(Θ∗) = Pe must also be satisfied. So Equation (20) must be established.

For the convenience of calculation, the objective function (f (Θ), Θ ∈ Rn) of inverse kinematics
can also be defined as

f (Θ) = RErr(Θ) + λPErr(Θ)

= trace
(
(Ri(θi)Rai − Rti)

T(Ri(θi)Rai − Rti)
)

+ λ (Ri(θi)Pai + Pi(θi)− Pti)
T (Ri(θi)Pai + Pi(θi)− Pti) , (i = 1, · · · , n), (28)

where Rai, Pai, Rti and Pti are expressed as follows:

Rai =
n+1

∏
j=i+1

Rj(θj), (29)

Pai =
n

∑
k=i

(
k

∏
j=i+1

Rj(θj)

)
Pk+1(θk+1), (30)

Rti =

(
i−1

∏
j=1

Rj(θj)

)−1

Re, (31)

Pti =

(
i−1

∏
j=1

Rj(θj)

)−1(
Pe −

i−2

∑
k=0

(
k

∏
j=1

Rj(θj)

)
Pk+1(θk+1)

)
, (32)

where Pn+1(θn+1) and Rn+1(θn+1) are defined as Equations (25) and (26), respectively. Equation (28)
and Equation (22) are completely equivalent.

3.2. Necessary Formulas for Newton’s Method

Newton’s method involves calculating the gradient and Hessian matrix of the object function,
and its iterative formula for finding the local minimum value of the objective function (Equation (28))
is Equation (10). The important formulas for Newton’s method are given below.

3.2.1. Determining the Gradient of Objective Function

For both prismatic and revolute joints, the gradient of the objective function of inverse kinematics
is calculated using Equation (11), where

∂ f (Θ)

∂θi
= ri1 cos(θi)− ri2 sin(θi) + ri3θi + ri4, (33)

Appl. Sci. 2019, 9, 5461 8 of 29

where

ri1 = 2λ
(
(Pti − Pai)

TΩ2
i vi − PT

tiΩiPai

)
− 2trace

(
RT

tiΩiRai

)
, (34)

ri2 = 2λ
(
(Pai + Pti)

TΩivi − vT
i ΩT

i Ωivi + PT
tiΩ

2
i Pai

)
+ 2trace

(
RT

tiΩ
2
i Rai

)
, (35)

ri3 = 2λvT
i (I + Ω2

i)vi, (36)

ri4 = 2λ(Pai − Pti)
T(I + Ω2

i)vi, (37)

where Rai, Pai, Rti, and Pti are defined as Equations (29), (30), (31), and (32), respectively.
If the robot manipulator joint is a prismatic joint (Ωi = 0), then the elements in Equation (11) are

simplified to
∂ f (Θ)

∂θi
= 2

(
θi + λ(Pai − Pti)

Tvi

)
. (38)

Conversely, if the robot manipulator joint is a revolute joint ((I + Ω2
i)vi = 0), then the elements

in Equation (11) are simplified to

∂ f (Θ)

∂θi
= ri1 cos(θi)− ri2 sin(θi), (39)

where ri1 and ri2 are defined as Equations (34) and (35), respectively.

3.2.2. Determining the Hessian Matrix of Objective Function

The Hessian matrix of the objective function of inverse kinematics defined by Equation (12) is a
symmetric matrix, so

∂2 f
∂θi∂θj

=
∂2 f

∂θj∂θi
. (40)

On the one hand, if the robot manipulator’s i-th joint is a prismatic joint, when i = j is satisfied,
then, according to Equation (38), the elements in the Hessian matrix can be defined as

∂2 f
∂θ2

i
= 2λ. (41)

When i < j is satisfied, the elements in the Hessian matrix can be calculated as

∂2 f
∂θi∂θj

= 2λvT
i hij1

(
hij2hij3 + hij4

)
, (42)

where

hij1 =
j−1

∏
k=i+1

Rk, (43)

hij2 = Ωj cos(θj) + Ω2
j sin(θj), (44)

hij3 =
n

∑
e=j

(
e

∏
k=j+1

Rk

)
Pe+1, (45)

hij4 = Ωjvj sin(θj)−Ω2
j vj cos(θj) + (I + Ω2

j)vj. (46)

When i > j is satisfied, the elements in the Hessian matrix can be calculated according to
Equation (40).

Appl. Sci. 2019, 9, 5461 9 of 29

On the other hand, if the robot manipulator’s i-th joint is a revolute joint, when i = j is satisfied,
the elements in the Hessian matrix can be defined as

∂2 f
∂θ2

i
= −ri1 sin(θi)− ri2 cos(θi), (47)

where ri1 and ri2 are defined as Equations (34) and (35), respectively. When i < j is satisfied, the
elements in the Hessian matrix can be expressed as

∂2 f
∂θi∂θj

= −2λ
(

vT
i dij1 + PT

tidij4

)
hij1

(
dij2hij3 + dij3

)
− 2trace

(
RT

tidij4hij1Ωjdij5

)
cos(θj)− 2trace

(
RT

tidij4hij1Ω2
j dij5

)
sin(θj), (48)

where

dij1 = Ω2
i cos(θi)−Ωi sin(θi), (49)

dij2 = Ωj cos(θj) + Ω2
j sin(θj), (50)

dij3 = Ωjvj sin(θj)−Ω2
j vj cos(θj) +

(
I + Ω2

j

)
vj, (51)

dij4 = Ωi cos(θi) + Ω2
i sin(θi), (52)

dij5 =
n+1

∏
k=j+1

Rk. (53)

When i > j is satisfied, the elements in the Hessian matrix can be calculated according to Equation (40).

3.3. The ICCD Method

For the inverse kinematics problem, the CCD method has an analytical solution for the
optimization of a single joint variable, but all joints are calculated independently, which makes
the convergence slow. In order to improve this problem, this paper proposes the ICCD method in
which multiple joint variables including consecutive prismatic joints and consecutive parallel revolute
joints (Figure 1) can be adjusted concordantly. Although there are analytical solutions when the
consecutive prismatic joints are perpendicular to each other, in order to improve the generality of the
proposed method, the Newton’s method and the CCD method are combined to solve these two special
cases. Associated formulas and the iterative procedure for the ICCD method are given below.

Figure 1. The consecutive prismatic joints and consecutive parallel revolute joints.

3.3.1. Necessary Formulas for Solving a Single Joint Variable

For a single joint variable, each iteration makes the objective function (Equation (28)) get a local
minimum by adjusting only one joint variable, which has an analytical solution. If the joint is a
prismatic joint, then the iteration formula for the ICCD method is calculated as

Appl. Sci. 2019, 9, 5461 10 of 29

θ
(k+1)
i = λ

(
Pti(θ

(k)
i)− Pai(θ

(k)
i)
)T

vi, (54)

where Pti and Pai are defined as Equations (32) and (30), respectively. If the joint is a revolute joint,
then the iteration formula is defined as

θ
(k+1)
i = atan2

(
−ri1(θ

(k)
i),−ri2(θ

(k)
i)
)

, (55)

where ri1 and ri2 are defined as Equation (34) and Equation (35), respectively.
The proof for the iteration formula outlined above is shown in Appendix A.

3.3.2. Necessary Formulas for Solving Consecutive Prismatic Joints

When there are consecutive prismatic joints in a robot manipulator, they are regarded as a whole.
Moreover, these joint variables can be adjusted simultaneously in order to minimize the objective
function of inverse kinematics. Assuming that the robot manipulator in question has consecutive
prismatic joints from the i-th joint to the h-th joint, then the following can be achieved:

Ri = Ri+1 = · · · = Rh = I, (1 6 i < h 6 n). (56)

According to Equations (28), the objective function of inverse kinematics can be simplified to

f (Θi∼h) = trace
((

Rcp − Rti
)T (Rcp − Rti

))
+

h

∑
k=i

θ2
k + 2

h−1

∑
k=i

h

∑
j=k+1

vT
k vjθkθj

+ λ

(
2
(
Pcp − Pti

)T
(

h

∑
k=i

vkθk

)
+
(
Pcp − Pti

)T (Pcp − Pti
))

, (57)

where consecutive prismatic joints (θi · · · θh) are joint variables and other joints are constant, and where

Θi∼h = [θi, · · · , θh]
T , (58)

Rcp =
n+1

∏
j=h+1

Rj, (59)

Pcp =
n

∑
k=h

k

∏
j=h+1

RjPk+1, (60)

Rti and Pti are defined as Equation (31) and Equation (32), respectively.
It’s not hard to conclude that when the joints are perpendicular to each other (vT

k vj = 0), there
is an analytical solution. In order to show the generality of the method, including the case that the
joints are not perpendicular to each other (vT

k vj 6= 0), this paper uses the combination of Newton’s
method and the CCD method to solve this problem. But note that this numerical solution is the same
as the analytical solution when the joint satisfies the mutually perpendicular condition (vT

k vj = 0).
The gradient, the Hessian matrix, and the iteration formula of the CCD method with respect to the
objective function (Equation (57)) are given below.

The gradient of the objective function (Equation (57)) is defined as

5 f (Θi∼h) =

[
∂ f
∂θi

, · · · ,
∂ f
∂θh

]T
, (61)

where
∂ f
∂θj

= 2

(
θj + vT

j

(
h

∑
k=i,k 6=j

vkθk

)
+ λ

(
Pcp − Pti

)T vj

)
, (j = i, · · · , h). (62)

Appl. Sci. 2019, 9, 5461 11 of 29

The Hessian matrix of the objective function (Equation (57)) is defined as

H(Θi∼h) =52 f (Θi∼h) =

∂2 f
∂θ2

i

∂2 f
∂θi∂θi+1

· · · ∂2 f
∂θi∂θh

∂2 f
∂θi+1∂θi

∂2 f
∂θ2

i+1
· · · ∂2 f

∂θi+1∂θh

...
...

. . .
...

∂2 f
∂θh∂θi

∂2 f
∂θh∂θi+1

· · · ∂2 f
∂θ2

h

, (63)

where

∂2 f
∂θ2

j
= 2, (64)

∂2 f
∂θj∂θk

= 2vT
j vk, (j 6= k). (65)

It is not difficult to conclude that the Hessian matrix (H(Θi∼h)) is always positive definite matrix,
so when

5 f (Θi∼h) = 0 (66)

is satisfied, the objective function (Equation (57)) obtains the local minimum value. Accordingly, the
iteration formula of the CCD method of the objective function (Equation (57)) is calculated as

θ
(k+1)
j =

(
λ
(
Pti − Pcp

)
−
(

j−1

∑
l=i

vlθ
(k+1)
l +

h

∑
l=j+1

vlθ
(k)
l

))T

vj, (j = i, · · · , h). (67)

3.3.3. Necessary Formulas for Solving Consecutive Parallel Revolute Joints

When there are consecutive parallel revolute joints in a robot manipulator, they can be regarded
as a whole. Moreover, these joint variables can be adjusted simultaneously in order to minimize
the objective function of inverse kinematics. Assuming that the robot manipulator in question has
consecutive parallel revolute joints from the i-th joint to the h-th joint,

Ωi = Ωi+1 = · · · = Ωh, (1 6 i < h 6 n), (68)

then the rotation matrix satisfies the following property:

RiRi+1 · · ·Rh = eΩiθi eΩi+1θi+1 · · · eΩhθh = eΩi(θi+θi+1+···+θh). (69)

When there are several consecutive parallel revolute joints (θi, · · · , θh) in the robot manipulator
configuration, the several joints are regarded as variables, and the others as constants. Accordingly,
the gradient of the objective function (Equation (28)) is defined as Equation (61) The Hessian matrix of
the objective function(Equation (28)) is also defined as Equation (63).

In order to simplify the calculation, only the main diagonal elements of the Hessian matrix
(H(Θi∼h)) are considered here. When

∂2 f
∂θ2

i
> 0,

∂2 f
∂θ2

i+1
> 0, · · · ,

∂2 f
∂θ2

h
> 0 (70)

and
∂ f
∂θi

=
∂ f

∂θi+1
= · · · = ∂ f

∂θh
= 0 (71)

Appl. Sci. 2019, 9, 5461 12 of 29

are satisfied at the same time, the objective function (Equation (28)) obtains the local minimum.
Thereafter, the iterative formulas of the CCD method for joint angles (Θi∼h) can be calculated as

θ
(k+1)
j = atan2

(
g
(

Θ
(kj−i+1)

i∼h

)
, h
(

Θ
(kj−i+1)

i∼h

))
, (j = i, i + 1, · · · , h), (72)

where g () and h () are functions of Θ
(kt)
i∼h which means that the t-th calculation in the k-round iteration,

and where Θ
(kj−i+1)

i∼h are defined as

Θ
(kj−i+1)

i∼h = [θ
(k+1)
i , · · · , θ

(k+1)
j−1 , θ

(k)
j , · · · , θ

(k)
h]T . (73)

The configuration of more than three consecutive parallel revolute joints is rare in robot
manipulators, Accordingly, necessary formulas with respect to minimizing the objective function
by adjusting two or three consecutive parallel revolute joints at the same time are given in Appendix B.

3.3.4. ICCD Method of the Iterative Procedure

The ICCD method proposed in this section is responsible for finding Θ(k+1) from Θ(k) as shown
in Algorithm 1. In line 1 groups are determined to facilitate subsequent computation. Specifically,
consider a single revolute joint, a single prismatic joint, consecutive parallel revolute joints and
consecutive prismatic joints as the groups, e.g., the UR robot with three consecutive parallel revolute
joints(θ2, θ3, θ4) is grouped into G = {g1, g2, g3, g4} = {{θ1} , {θ2, θ3, θ4} , {θ5} , {θ6}}. In lines 3 ∼ 44,
taking gi as a variable and all others as constants, the goal is to find gi such that the objective function
obtains a local minimum value. In lines 3 ∼ 6, the single revolute joint and prismatic joint are calculated
separately. In lines 8 ∼ 44 consecutive parallel revolute joints and consecutive prismatic joints are
calculated in order to find the minimum value of the objective function. εca is a threshold value to
verify convergence supplied by the user. If the Hessian matrix (H(Θi∼h)) of either the consecutive
parallel revolute joints or the consecutive prismatic joints is positive definite matrix, then Newton’s
method should be used (let flagca2 = 1). Otherwise, Newton’s method and the CCD method are
used simultaneously, and the more effective result of the two methods is adopted (let flagca2 = 2).
The variable flagca2 is a flag used to record which method is used in this iteration. If flagca2 = 1,
it means the former. On the contrary, if flagca2 = 2, it means the latter. In order to ensure that the
Newton’s method and the CCD method converge to the local minimum value at the same time,
flagca1 = 0 is used, so that Newton’s method and CCD method are simultaneously calculated in the
case where the Hessian matrix is positive definite matrix. To be specific, the ICCD method consists of
the step-by-step procedure shown in Algorithm 1.

3.4. The NICCD Method for The Inverse Kinematics Problem

The CCD method has great robustness and simple calculation process [13], but the convergence
rate is slow when the iteration point approaches the optimal point. The ICCD method has the same
problem. Conversely, Newton’s method (with a quadratic rate of convergence) converges quickly
when the iteration point approaches the optimal point. However, Newton’s method often fails to
converge when the initial estimate is not sufficiently close, and cannot search the descent direction
when the second-order Hessian matrix is not positive definite matrix. In order to inherit the advantages
of the two algorithms and discard their disadvantages, the NICCD method is proposed to solve the
inverse kinematics problem. The determination of the scale factor and the iterative procedure for the
NICCD method are given below.

Appl. Sci. 2019, 9, 5461 13 of 29

Algorithm 1 The improved cyclic coordinate descent (ICCD) method.

1: Initialization: Set Errg = +∞, flagca2 = 0, and determine groups G(k) =
{

g(k)1 , g(k)2 , · · · , g(k)l

}
2: for each i ∈ [1, l] do

3: if g(k)i is a group of single revolute joint then

4: Determine g(k+1)
i (see Equation (55))

5: else if g(k)i is a group of single prismatic joint then

6: Determine g(k+1)
i (see Equation (54))

7: else

8: Set flagca1 = 1
9: while Errg > εca or flagca2 6= 2 do

10: if g(k)i is a group of consecutive parallel revolute joints then

11: Calculate5 f (g(k)i) and H(g(k)i) (see Equations (61), (63), and Appendix B)
12: else

13: Calculate5 f (g(k)i) and H(g(k)i) (see Equations (61 ∼ 65))
14: end if
15: if H(g(k)i) is a positive definite matrix and flagca1 = 1 then

16: Set flagca2 = 1
17: Determine g(k+1)

i by Newton’s method (see Equation (10))
18: else

19: Set flagca2 = 2
20: Determine g(k+1)

Ni by Newton’s method (see Equation (10))
21: if g(k)i is a group of consecutive parallel revolute joints then

22: Calculate g(k+1)
Ci by CCD method (see Equation (72) and Appendix B)

23: else

24: Calculate g(k+1)
Ci by CCD method (see Equation (67))

25: end if
26: Set G(k+1)

C =
{

g(k+1)
1 , · · · , g(k+1)

Ci , g(k)i+1, · · · , g(k)l

}
and G(k+1)

N =
{

g(k+1)
1 , · · · , g(k+1)

Ni , g(k)i+1, · · · , g(k)l

}
27: Calculate fcaC = f (G(k+1)

C) and fcaN = f (G(k+1)
N) (see Equation (28))

28: if fcaC < fcaN then

29: Set g(k+1)
i = g(k+1)

Ci
30: else

31: Set g(k+1)
i = g(k+1)

Ni
32: end if
33: end if
34: Set Errg =

∥∥∥g(k+1)
i − g(k)i

∥∥∥
35: if Errg 6 εca then

36: if flagca2 6= 2 then

37: Set flagca1 = 0
38: end if
39: else

40: Set flagca1 = 1
41: end if
42: Set g(k)i = g(k+1)

i
43: end while
44: end if
45: end for
46: Set Θ(k+1) = G(k+1)

Appl. Sci. 2019, 9, 5461 14 of 29

3.4.1. The Scale Factor

There is a scale factor (λ) in the objective function (Equation (22)), which is used to scale the
position error so that the difference between the position error and the angle error is not very large.
This scale factor has an impact on the convergence speed of the proposed approach and the ability to
avoid the local minimum.

From the demonstration in Appendix C, it can be concluded that

max
Θ

RErr(Θ) = max
Θ

trace
(
(R(Θ)− Re)

T(R(Θ)− Re)
)
= 8. (74)

Therefore, the scale factor (λ) can be defined as

λ =
maxΘ RErr(Θ)

maxΘ PErr(Θ)
=

8
maxΘ PErr(Θ)

, (75)

where the PErr(Θ) is defined as Equation (22) and maxΘ PErr(Θ) can be calculated by the robot
manipulator configuration in advance.

3.4.2. The NICCD Approach of the Iterative Procedure

The method proposed in this section seeks a solution Θ∗ to the problem defined by Equation (27)
as shown in Algorithm 2. Some important parameters in Algorithm 2 are introduced as follows.
Parameters t and maxk represent the coefficient of the scale factor (λ) and the maximum number of
iterations respectively. Parameters ε1 and ε2 represent the convergence threshold of objective function
(f) and independent variable (Θ) respectively. The roles of flag1 and flag2 can be analogized to flagca1
and flagca2 in Algorithm 1, respectively. In lines 3 ∼ 17, if the Hessian matrix is positive definite
matrix and flag1 = 1, then Θ(k+1) can be calculated using Newton’s method (let flag2 = 1); otherwise,
Newton’s method and the ICCD method are executed simultaneously, with the more efficient method
being used to calculate Θ(k+1) (let flag2 = 2). Lines 18 and 19 involve the global and local convergence
judgments of the method, respectively. In lines 23 ∼ 30, the method of jumping out of the local optimal
solution is used. The NICCD method consists of the step-by-step procedure shown in Algorithm 2.

4. Simulation and Discussion

In order to illustrate the effectiveness, accuracy, robustness, and generality of the inverse
kinematics approach proposed in this article, five simulations of six robots—a three-link planar
arm (3R), a selective compliance assembly robot arm (SCARA), a Cartesian manipulator (3P), Universal
Robot’s UR5, a Stanford Arm, and Barrett Technology’s WAM7R robot manipulator—are conducted
using the NICCD method, the results of which are compared with the NR method using the Jacobian
matrix. The NR method is described in section 6.2.2 of [25]. The PoE parameters of the six robots
with the current configurations relative to the base frame are shown in Tables 1 and 2. The last
simulation verifies the improvement of ICCD compared with CCD method and the evolution process
of NICCD method. All simulations are performed on a desktop computer (Core i5 3.40GHz, 16GB
RAM, MATLAB 2015b software program).

Appl. Sci. 2019, 9, 5461 15 of 29

Algorithm 2 The Newton-improved cyclic coordinate descent (NICCD) method.

1: Initialization: Set t = 1, flag1 = 1 and determine the scale factor λ (see Equation (75))
2: for each k ∈ [1, maxk] do

3: Calculate5 f (Θ(k)) and H(Θ(k)) (see Equations (11), (12), and (33)∼(39))
4: if H(Θ(k)) is positive definite matrix and flag1 = 1 then

5: Set flag2 = 1
6: Determine Θ(k+1) by Newton’s method (see Equation (10))
7: else

8: Set flag2 = 2
9: Determine Θ

(k+1)
N by Newton’s method (see Equation (10))

10: Determine Θ
(k+1)
C by ICCD method (see Algorithm 1)

11: Calculate fN = f (Θ(k+1)
N) and fC = f (Θ(k+1)

C) (see Equation (28))
12: if fC < fN then

13: Set Θ(k+1) = Θ
(k+1)
C

14: else

15: Θ(k+1) = Θ
(k+1)
N

16: end if
17: end if
18: if

∥∥∥ f (Θ(k+1))
∥∥∥ > ε1 then

19: if
∥∥∥Θ(k+1) −Θ(k)

∥∥∥ 6 ε2 then

20: if flag2 6= 2 then

21: Set t = 1, flag1 = 0
22: else

23: if RErr(Θ(k+1)) < PErr(Θ(k+1)) then

24: Set t = t
2

25: else

26: Set t = 2t
27: end if
28: Set λ = tλ
29: Determine Θ(k+1) by ICCD method (see Algorithm 1)
30: Set λ = λ

t
31: end if
32: else

33: Set flag1 = 1
34: end if
35: else

36: Set Θ∗ = Θ(k+1)

37: break
38: end if
39: end for

Appl. Sci. 2019, 9, 5461 16 of 29

Table 1. The product-of-exponentials (PoE) parameters of three-link planar arm (3R), a selective
compliance assembly robot arm (SCARA), a Cartesian manipulator (3P).

i
3R SCARA 3P

ωT
i vT

i ωT
i vT

i ωT
i vT

i

1 [0, 0, 1] [0, 0, 0] [0, 0, 1] [0, 0, 0] [0, 0, 0] [0, 0, 1]
2 [0, 0, 1] [0,−400, 0] [0, 0, 1] [0,−450, 0] [0, 0, 0] [0, 1, 0]
3 [0, 0, 1] [0,−800, 0] [0, 0, 0] [0, 0,−1] [0, 0, 0] [1, 0, 0]
4 [0, 0, 1] [0,−850, 0]

M

1 0 0 1200
0 1 0 0
0 0 1 1
0 0 0 1

1 0 0 850
0 1 0 0
0 0 1 −420
0 0 0 1

1 0 0 400
0 1 0 400
0 0 1 400
0 0 0 1

Table 2. The PoE parameters of UR5, Stanford Arm, and WAM7R.

i
UR5 Stanford Arm WAM7R

ωT
i vT

i ωT
i vT

i ωT
i vT

i

1 [0, 0, 1] [0, 0, 0] [0, 0, 1] [0, 0, 0] [0, 0, 1] [0, 0, 0]
2 [0, 1, 0] [−89, 0, 0] [1, 0, 0] [0, 0, 0] [0, 1, 0] [0, 0, 0]
3 [0, 1, 0] [−89, 0, 425] [0, 0, 0] [0, 0, 1] [0, 0, 1] [0, 0, 0]
4 [0, 1, 0] [−89, 0, 817] [0, 0, 1] [0,−200, 0] [0, 1, 0] [−550, 0, 45]
5 [0, 0,−1] [−109, 817, 0] [0, 1, 0] [0, 0, 200] [0, 0, 1] [0, 0, 0]
6 [0, 1, 0] [6, 0, 817] [1, 0, 0] [0, 400, 0] [0, 1, 0] [−850, 0, 0]
7 [0, 0, 1] [0, 0, 0]

M

−1 0 0 817
0 0 1 191
0 1 0 −6
0 0 0 1

1 0 0 692
0 1 0 0
0 0 1 400
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 910
0 0 0 1

4.1. Simulation I

This simulation aims to verify the effectiveness of the proposed approach using SCARA and UR5.
The specific values of the target joint variables (Θgoal) and the initial joint variables (Θin1, Θin2) with
respect to SCARA and UR5 are shown in Table 3. According to Equation (1), the goal configurations of
the end-effector frames of the two robot manipulators relative to Θgoal are described as

Tgoal =

−0.8479 −0.5301 0 160.1408
0.5301 −0.8479 0 383.1681

0 0 1.0000 −520.0000
0 0 0 1.0000

 , (SCARA),

Tgoal =

−0.9592 −0.0838 0.2699 −93.1191
0.2823 −0.3247 0.9027 −20.4293
0.0120 0.9421 0.3351 −716.5883

0 0 0 1.0000

 , (UR5).

(76)

Table 3. The specific values of the target and initial joint variables of SCARA and UR5.

SCARA UR5

θ1(rad) θ2(rad) d3(mm) θ4(rad) θ1(rad) θ2(rad) θ3(rad) θ4(rad) θ5(rad) θ6(rad)

Θgoal 0.2169 2.1269 100.0000 0.2391 3.0076 1.3364 0.0030 −0.1817 −2.7670 1.1434
Θin1 −2.1142 2.6458 −11.9929 0.4863 −1.9350 −2.2690 1.2332 −2.5521 0.1596 0.1907
Θin2 −1.5218 −0.6484 −20.0000 1.1567 −1.0585 0.4914 2.2274 0.8946 −0.5020 0.2885

Appl. Sci. 2019, 9, 5461 17 of 29

The inverse kinematics are calculated using the NICCD and the NR method, with Θin1 and Θin2
as initial values. In order to illustrate the effectiveness of the proposed method, the angle error, and
position error are defined as

ErrR =
√

trace
(
(Rgoal − Rout)T(Rgoal − Rout)

)
,

ErrP =
√
(Pgoal − Pout)T(Pgoal − Pout),

(77)

where Rgoal and Pgoal are the elements in Tgoal, and Rout and Pout are the elements in Tout, which are
obtained by the forward kinematics calculated by either the NICCD or the NR method with respect
to Θout. The position and angle errors of the initial selected joint angles of the SCARA and the UR5
versus the convergence times of the NICCD and the NR methods are illustrated in Figure 2.

Figure 2. The position and angle errors of the initial selected joint angles of the SCARA and the UR5
versus the convergence times of the NICCD and the Newton–Raphson (NR) methods.

From Figure 2, when the initial value is Θin1, the NICCD method converges more rapidly than
the NR method with respect to SCARA. However, it is slower with respect to UR5. When the initial
value is Θin2, the NICCD method still converges, but the NR method diverges with respect to the
inverse kinematics of SCARA and UR5. In addition, the NICCD method has less fluctuation in both
the angle error and the position error during the iteration process. Therefore, it can be concluded that
the proposed approach is more stable and effective than the NR method.

4.2. Simulation II

This second simulation involves testing the accuracy of the proposed approach using the Stanford
Arm and Barrett Technology’s WAM7R robot manipulator. The specific values of the target joint
variables (Θgoal) and the initial joint variables (Θin) of the Stanford Arm and the WAM7R manipulator
are shown in Table 4. According to Equation (1), the goal configurations of the end-effector frames of
the two robot manipulators relative to Θgoal are described as

Tgoal =

0.6641 −0.0505 0.7459 549.2836
0.6213 −0.5177 −0.5882 −42.3986
0.4159 0.8541 −0.3124 582.0788

0 0 0 1.0000

 , (Stanford Arm),

Tgoal =

−0.0765 −0.9970 −0.0139 346.4601
0.7721 −0.0504 −0.6335 309.6627
0.6309 −0.0592 0.7736 −381.6887

0 0 0 1.0000

 , (WAM7R).

(78)

Appl. Sci. 2019, 9, 5461 18 of 29

In the case of closing the convergence judgment, 150 iterations of the NICCD and NR methods
were conducted. The position and angle errors of the initial selected joint angles of the Stanford Arm
and the WAM7R manipulator versus the number of iterations of the NICCD and NR methods are
given in Figure 3, where the error is represented on the logarithmic axis. Indeed, from Figure 3, it is
clear that the approach proposed in this paper is more accurate than the NR method with respect to
the position error and angle error.

Figure 3. The position and angle errors of the initial selected joint angles of the Stanford Arm and the
WAM7R manipulator versus the number of iterations of the NICCD and NR methods.

Table 4. The specific values of the target and initial joint variables of Stanford Arm and WAM7R
manipulator.

Stanford Arm WAM7R

θ1(rad) θ2(rad) d3(mm) θ4(rad) θ5(rad) θ6(rad) θ1(rad) θ2(rad) θ3(rad) θ4(rad) θ5(rad) θ6(rad) θ7(rad)

Θgoal −0.1290 0.8754 100.0000 0.9256 0.2757 1.3889 0.4088 2.0346 −2.3493 −1.2559 −3.1283 2.8344 1.6732
Θin −1.0520 2.2184 −0.3619 2.5406 −2.9331 0.2037 −0.5576 2.2993 2.6431 1.8048 −0.9740 −2.7061 1.6552

4.3. Simulation III

This simulation is conducted in order to validate the robustness of the proposed approach by
using the 3P, 3R, SCARA, UR5, and Barrett Technology’s WAM7R robot manipulator. The difference
between this simulation and the prior two is that 500 sets of target joint variables and 500 sets of initial
joint variables are generated randomly. The end-effector configurations of the four robots are calculated
by forward kinematics relative to the target joint variables. Thereafter, the inverse kinematics of the
four robots are solved using the NICCD and NR method. The correct rate of solving the inverse
kinematics of these four robots is shown in Figure 4. Indeed, from Figure 4, for the WAM7R robot
manipulator, it is clear that the approach proposed in this paper has a correct rate that is smaller than
that of the NR method. Moreover, from Figure 4, for the remaining four robots, it is clear that the
approach proposed in this paper has a correct rate that is larger than that of the NR method.

Appl. Sci. 2019, 9, 5461 19 of 29

Figure 4. The correct rate of solving inverse kinematics of these four robots.

4.4. Simulation IV

This simulation aims to illustrate the fact that the proposed approach has offline programming
abilities by using the UR5. The goal here is to create a trajectory that will allow the UR5 to draw the
letter ‘F’ (the red trajectory in Figure 5) in 20 s. The orientation of the end-effector is constant, with
the y-axis parallel to that of the base frame and the x- and z-axes opposite to that of the base frame.
Specifically, the desired trajectory of UR5 is shown in the left figure of Figure 5, and the actual trajectory
is shown in the right figure. The latter is obtained after discrete and smooth processing of the former.
The inverse kinematics solution for each sample point is calculated. and the position, velocity, and
acceleration of the joints are given in Figure 6.

Figure 5. The UR5 motion trajectory.

The proposed approach takes an average of 0.0057 s with respect to the calculation process, which
demonstrates how efficient it is. By comparing Figure 6 of Simulation IV and Figure 2 of Simulation
I, the average calculation time of the former is shorter than the latter. This is because Simulation IV
follows a continuous trajectory, which means that the solution of the last step is taken as the initial
value of the next step. In other words, the difference between the initial joint variables and the target
joint variables is smaller in Simulation IV than in Simulation I. Accordingly, it can be concluded that
the proposed approach is appropriate for offline programming and that it is advantageous with respect
to the inverse kinematics of continuous trajectories.

Appl. Sci. 2019, 9, 5461 20 of 29

Figure 6. The position, velocity, and acceleration of joints.

4.5. Simulation V

This simulation aims to verify the improvement of ICCD method (consider consecutive prismatic
joints or consecutive parallel revolute joints as the group) compared with the traditional CCD method
(each joint is adjusted individually) and the evolution process of NICCD method. UR5 manipulator
with consecutive parallel revolute joints meets the configuration requirements. The specific values
of its target and initial angles of UR5 are the same as the data of Θgoal and Θin2 in Simulation I (see
Table 3). According to Equation (1), the goal configuration of the end-effector frame of UR5 relative to
Θgoal is described as Equation (76).

The inverse kinematics are calculated using the CCD, ICCD, and NICCD methods, with Θin2 as
initial value. The position and angle errors of the initial selected joint angles of the UR5 versus the
convergence times of the CCD, ICCD, and NICCD methods are illustrated in Figure 7 and versus the
number of iterations are illustrated in Figure 8, where the error is represented on the logarithmic axis.

From Figures 7 and 8, ICCD method is better than CCD method in convergence time and iteration
times. Especially at the initial iteration, the ICCD method drops much more rapidly than the CCD
method in terms of positional error. Specifically, the ICCD method has a position error of 5.8159 after
2 iterations (0.0032 s), while the CCD method needs to iteration 29 times (0.0364 s) to achieve the same
error. A similar conclusion can be drawn for angle error.

It is not difficult to conclude from Figures 7 and 8 that the convergence rate of the NICCD method
is significantly more rapidly than that of the other two methods. To analyze this reason, Figure 9 shows
the evolution process of the NICCD method. From Figure 9, the NICCD method converges after four
iterations among which the ICCD method is used for the first two iterations and Newton’s method
is used for the last two iterations. NICCD method proposed in this paper uses the ICCD method to
rapidly find a feasible point that is near to the true solution and then uses Newton’s method to obtain a
solution that achieves the desired precision. This avoids the common disadvantage of CCD and ICCD
methods, that is, the convergence rate is slow when the iteration point approaches the optimal point.

Appl. Sci. 2019, 9, 5461 21 of 29

Figure 7. The position and angle errors of the initial selected joint angles of the UR5 versus the
convergence times of the CCD, ICCD, and NICCD methods.

Figure 8. The position and angle errors of the initial selected joint angles of the UR5 versus the number
of iterations of the CCD, ICCD, and NICCD methods.

Figure 9. The evolution process of NICCD method.

5. Conclusions and Future Work

This article presented an efficient approach for inverse kinematics that is suitable for any
configurations of robots with either revolute or prismatic joints with any arbitrary number of degrees
of freedom. Compared with the traditional method, this paper transformed the inverse kinematics
problem into the objective function optimization problem, which is based on the least-squares form of
the angle error and the position error expressed by the PoE formula. Moreover, the necessary gradient

Appl. Sci. 2019, 9, 5461 22 of 29

and Hessian matrix required to solve the formula are given. Finally, the NICCD method was proposed
to solve the proposed objective function optimization problem.

Five simulations were given in order to illustrate the effectiveness, accuracy, robustness, and
generality of the proposed method. Simulation I verified the effectiveness of the proposed method,
the results of which suggest that it has less fluctuation and is more effective than the NR method.
Simulation II tests the accuracy of the proposed method. The results of which suggest that the approach
proposed in this paper can accurately calculate the error of position and the angle to reach 10−13 and
10−15 respectively, but the NR method provides the error of the angle within 10−11. This also proves
the validity of the objective function constructed in Section 3.1. Simulation III demonstrated the fact
that the proposed approach is not sensitive to the initial joint variables. Indeed, the correct rate for
inverse kinematics calculations with respect to 3P, 3R, SCARA, UR5, and WAM7R are approximately
100%, 100%, 100%, 94.5%, and 93.1%. Simulation IV illustrated the fact that the proposed approach
has offline programming abilities and that it is advantageous with respect to the inverse kinematics
of continuous trajectories since each iteration only takes 0.0057 s to calculate. Simulation V verified
that the ICCD method drops much more rapidly than the CCD method in positional and angle errors
in the initial iteration, and the NICCD method combines the respective advantages of the ICCD and
Newton’s methods while trying to avoid their shortcomings.

The future work will mainly focus on the following aspects. First of all, we will introduce the
heuristic adaptive truncation criterion [27] into the NICCD method to improve the convergence rate.
Next, we will improve the NICCD method to become a more effective method with respect to avoiding
a singularity location and local minimum, which, in turn, will enhance the accuracy and robustness of
the method. Last but not least, the NICCD method will be applied to practical applications such as
trajectory planning and motion control of the robot.

Author Contributions: Y.C. and X.L.: necessary formula and algorithm design; B.H. and Y.J.: programming; G.L.
and X.W.: simulations and data analysis.

Funding: This research was funded by National Key R & D Program of China (2016YFC0803000, 2016YFC0803005)

Acknowledgments: Thanks to Shuo Wang and Jiaqi Feng for providing language help and all our colleagues for
providing all types of help during the preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NICCD Newton-improved cyclic coordinate descent
ICCD improved cyclic coordinate descent
CCD cyclic coordinate descent
NR Newton–Raphson
6R six revolute
PoE product-of-exponentials
3R three-link planar arm
SCARA selective compliance assembly robot arm
3P Cartesian manipulator

Appendix A

The two iteration formulas (Equations (54) and (55)) of the ICCD algorithm for a single prismatic
joint and a single revolute joints are analytical solutions.

Proof. The second-order sufficient condition for the local minimization of the objective function (f) of
inverse kinematics is the following: suppose that52 f is continuous in an open neighborhood of θ∗

and that5 f (θ∗) = 0 and52 f (θ∗) is positive definite matrix; then θ∗ is a strict local minimization of
f [26].

Appl. Sci. 2019, 9, 5461 23 of 29

Injecting Equation (54) in Equation (38), we obtain

∂ f
∂θi

= 2
(

λ (Pti − Pai)
T vi + λ(Pai − Pti)

Tvi

)
= 0. (A1)

According to Equation (41), it can be concluded that

∂2 f
∂θ2

i
= 2λ > 0. (A2)

Accordingly, Equation (54) is the iteration formula for a single prismatic joint.
Injecting Equation (55) in Equation (39) to get

∂ f
∂θi

= r1i
−r2i

r2
1i + r2

2i
− r2i

−r1i

r2
1i + r2

2i
= 0. (A3)

Injecting Equation (55) in Equation (47), we obtain

∂2 f
∂θ2

i
= −r1i

−r1i

r2
1i + r2

2i
− r2i

−r2i

r2
1i + r2

2i
= 1 > 0. (A4)

Accordingly, Equation (55) is the iteration formula for a single revolute joint.

Appendix B

Here, the required formulas for minimizing the objective function by adjusting two and three
consecutive parallel revolute joints at the same time are given.

When there are two consecutive parallel revolute joints (θi, θi+1) in the robot manipulator
configuration, the two joints are regarded as variables, and the others are regarded as constants.
Accordingly, the gradient of the objective function (Equation (28)) is defined as

5 f (Θi∼i+1) =

[
∂ f
∂θi

,
∂ f

∂θi+1

]T
, (A5)

where

∂ f
∂θi

= a12 cos(θi + θi+1) + b12 sin(θi + θi+1) + a1 cos(θi) + b1 sin(θi), (A6)

∂ f
∂θi+1

= a12 cos(θi + θi+1) + b12 sin(θi + θi+1) + a2 cos(θi+1) + b2 sin(θi+1), (A7)

where

a12 = 2λ
(
−PT

ai+1Ω2
i vi − PT

tiΩiPai+1 + PT
tiΩ

2
i vi+1 + vT

i+1Ωivi

)
− 2trace(RT

tiΩiRai+1), (A8)

b12 = 2λ
(
−PT

ai+1Ωivi − PT
tiΩ

2
i Pai+1 − PT

tiΩivi+1 + vT
i+1ΩT

i Ωivi

)
− 2trace(RT

tiΩ
2
i Rai+1), (A9)

a1 = 2λ
(

PT
tiΩ

2
i (vi − vi+1)− vT

i+1Ωivi

)
, (A10)

b1 = 2λ (Ωivi − Pti)
T Ωi (vi − vi+1) , (A11)

a2 = 2λ
(

PT
ai+1Ω2

i (vi − vi+1)− vT
i+1Ωivi

)
, (A12)

b2 = 2λ (Pai+1 −Ωivi+1)
T Ωi (vi − vi+1) , (A13)

Appl. Sci. 2019, 9, 5461 24 of 29

where Rai+1, Pai+1, Rti, and Pti are defined as Equations (29), (30), (31), and (32), respectively.
The Hessian matrix of the objective function (Equation(28)) is defined as

H(Θi∼i+1) =52 f (Θi∼i+1) =

 ∂2 f
∂θ2

i

∂2 f
∂θi∂θi+1

∂2 f
∂θi+1∂θi

∂2 f
∂θ2

i+1

 , (A14)

where

∂2 f
∂θ2

i
= −a12 sin(θi + θi+1) + b12 cos(θi + θi+1)− a1 sin(θj) + b1 cos(θi), (A15)

∂2 f
∂θi∂θi+1

=
∂2 f

∂θi+1∂θi
= −a12 sin(θi + θi+1) + b12 cos(θi + θi+1), (A16)

∂2 f
∂θ2

i+1
= −a12 sin(θi + θi+1) + b12 cos(θi + θi+1)− a2 sin(θi+1) + b2 cos(θi+1). (A17)

When
∂ f
∂θi

= 0,
∂ f

∂θi+1
= 0 (A18)

and
∂2 f
∂θ2

i
> 0,

∂2 f
∂θ2

i+1
> 0 (A19)

are satisfied at the same time, the objective function (Equation (28)) obtains the local minimum.
Accordingly, the iterative formula of the CCD method for joint angles (θi, θi+1) can be calculated as

θ
(k+1)
i = atan2

(
−a12 cos(θ(k)i+1)− b12 sin(θ(k)i+1)− a1, b12 cos(θ(k)i+1)− a12 sin(θ(k)i+1) + b1

)
, (A20)

θ
(k+1)
i+1 = atan2

(
−a12 cos(θ(k+1)

i)− b12 sin(θ(k+1)
i)− a2, b12 cos(θ(k+1)

i)− a12 sin(θ(k+1)
i) + b2

)
. (A21)

When there are three consecutive parallel revolute joints (θi, θi+1, θi+2) in the robot manipulator
configuration, the three joints are regarded as variables, and the others are regarded as constants.
Accordingly, the gradient of the objective function (Equation (28)) is defined as

5 f (Θi∼i+2) =

[
∂ f
∂θi

,
∂ f

∂θi+1
,

∂ f
∂θi+2

]T
, (A22)

where

∂ f
∂θi

= a123 cos(θi + θi+1 + θi+2) + b123 sin(θi + θi+1 + θi+2)

+ a12 cos(θi + θi+1) + b12 sin(θi + θi+1) + a1 cos(θi) + b1 sin(θi), (A23)

∂ f
∂θi+1

= a123 cos(θi + θi+1 + θi+2) + b123 sin(θi + θi+1 + θi+2)

+ a12 cos(θi + θi+1) + b12 sin(θi + θi+1)

+ a23 cos(θi+1 + θi+2) + b23 sin(θi+1 + θi+2) + a2 cos(θi+1) + b2 sin(θi+1), (A24)

∂ f
∂θi+2

= a123 cos(θi + θi+1 + θi+2) + b123 sin(θi + θi+1 + θi+2)

+ a23 cos(θi+1 + θi+2) + b23 sin(θi+1 + θi+2) + a3 cos(θi+2) + b3 sin(θi+2), (A25)

Appl. Sci. 2019, 9, 5461 25 of 29

where

a123 = 2λ
(
−PT

ai+2Ω2
i vi − PT

tiΩiPai+2 + PT
tiΩ

2
i vi+2 + vT

i+2Ωivi

)
− 2Trace

(
RT

tiΩiRai+2

)
, (A26)

b123 = 2λ
(
−PT

ai+2Ωivi − PT
tiΩ

2
i Pai+2 − PT

tiΩivi+2 − vT
i+2Ω2

i vi

)
− 2Trace

(
RT

tiΩ
2
i Rai+2

)
, (A27)

a12 = 2λ
(

PT
tiΩi − vT

i

)
Ωi (vi+1 − vi+2) , (A28)

b12 = 2λ
(

PT
ti + vT

i Ωi

)
Ωi (vi+2 − vi+1) , (A29)

a23 = 2λ
(

PT
ai+2Ωi − vT

i+2

)
Ωi (vi − vi+1) , (A30)

b23 = 2λ
(

PT
ai+2 + vT

i+2Ωi

)
Ωi (vi − vi+1) , (A31)

a1 = 2λPT
tiΩ

2
i (vi − vi+1)− 2λvT

i+1Ωivi, (A32)

b1 = 2λ
(

PT
ti + vT

i Ωi

)
Ωi (vi+1 − vi) , (A33)

a2 = −2λvT
i+1Ωi (vi − vi+2) + 2λvT

i+2Ωivi, (A34)

b2 = −2λ
(

vT
i+1 − vT

i+2

)
Ω2

i (vi+1 − vi) , (A35)

a3 = −2λPT
ai+2Ω2

i (vi+2 − vi+1)− 2λvT
i+2Ωivi+1, (A36)

b3 = 2λ
(

PT
ai+2 + vT

i+2Ωi

)
Ωi (vi+1 − vi+2) , (A37)

where Rai+2, Pai+2, Rti, and Pti are defined as Equations (29), (30), (31), and (32), respectively.
The Hessian matrix of the objective function (Equation (28)) is defined as

H(Θi∼i+2) =52 f (Θi∼i+2) =

∂2 f
∂θ2

i

∂2 f
∂θi∂θi+1

∂2 f
∂θi∂θi+2

∂2 f
∂θi+1∂θi

∂2 f
∂θ2

i+1

∂2 f
∂θi+1∂θi+2

∂2 f
∂θi+2∂θi

∂2 f
∂θi+2∂θi+1

∂2 f
∂θ2

i+2

 , (A38)

Appl. Sci. 2019, 9, 5461 26 of 29

where

∂2 f
∂θ2

i
= −a123 sin(θi + θi+1 + θi+2) + b123 cos(θi + θi+1 + θi+2)

− a12 sin(θi + θi+1) + b12 cos(θi + θi+1)− a1 sin(θi) + b1 cos(θi), (A39)

∂2 f
∂θi∂θi+1

=
∂2 f

∂θi+1∂θi
= −a123 sin(θi + θi+1 + θi+2) + b123 cos(θi + θi+1 + θi+2)

− a12 sin(θi + θi+1) + b12 cos(θi + θi+1), (A40)

∂2 f
∂θi∂θi+2

=
∂2 f

∂θi+2∂θi
= −a123 sin(θi + θi+1 + θi+2) + b123 cos(θi + θi+1 + θi+2) (A41)

∂2 f
∂θ2

i+1
= −a123 sin(θi + θi+1 + θi+2) + b123 cos(θi + θi+1 + θi+2),

− a12 sin(θi + θi+1) + b12 cos(θi + θi+1)− a23 sin(θi+1 + θi+2)

+ b23 cos(θi+1 + θi+2)− a2 sin(θi+1) + b2 cos(θi+1), (A42)

∂2 f
∂θi+1∂θi+2

=
∂2 f

∂θi+2∂θi+1
= −a123 sin(θi + θi+1 + θi+2) + b123 cos(θi + θi+1 + θi+2)

− a23 sin(θi+1 + θi+2) + b23 cos(θi+1 + θi+2), (A43)

∂2 f
∂θ2

i+2
= −a123 sin(θi + θi+1 + θi+2) + b123 cos(θi + θi+1 + θi+2)

− a23 sin(θi+1 + θi+2) + b23 cos(θi+1 + θi+2)− a3 sin(θi+2) + b3 cos(θi+2). (A44)

When

∂ f
∂θi

= 0,
∂ f

∂θi+1
= 0,

∂ f
∂θi+2

= 0 (A45)

and
∂2 f
∂θ2

i
> 0,

∂2 f
∂θ2

i+1
> 0,

∂2 f
∂θ2

i+2
> 0 (A46)

are satisfied at the same time, the objective function (Equation (28)) obtains the local minimum.
Accordingly, the iterative formula of the CCD method for joint angles (θi, θi+1, θi+2) can be calculated as

θ
(k+1)
i = atan2

(
−a123 cos(θ(k)i+1 + θ

(k)
i+2)− b123 sin(θ(k)i+1 + θ

(k)
i+2)− a12 cos(θ(k)i+1)− b12 sin(θ(k)i+1)− a1,

b123 sin(θ(k)i+1 + θ
(k)
i+2)− a123 cos(θ(k)i+1 + θ

(k)
i+2) + b12 cos(θ(k)i+1)− a12 sin(θ(k)i+1) + b1

)
, (A47)

θ
(k+1)
i+1 = atan2

(
−a123 cos(θ(k+1)

i + θ
(k)
i+2)− b123 sin(θ(k+1)

i + θ
(k)
i+2)− a12 cos(θ(k+1)

i)

− b12 sin(θ(k)i+1)− a23 cos(θ(k)i+2)− b23 sin(θ(k)i+2)− a2,

b123 sin(θ(k+1)
i + θ

(k)
i+2)− a123 cos(θ(k+1)

i + θ
(k)
i+2) + b12 cos(θ(k+1)

i)

−a12 sin(θ(k+1)
i) + b23 sin(θ(k)i+2)− a23 cos(θ(k)i+2) + b2

)
, (A48)

θ
(k+1)
i+2 = atan2

(
−a123 cos(θ(k+1)

i + θ
(k+1)
i+1)− b123 sin(θ(k+1)

i + θ
(k+1)
i+1)− a23 cos(θ(k+1)

i+1)− b23 sin(θ(k+1)
i+1)− a3,

b123 sin(θ(k+1)
i + θ

(k+1)
i+1)− a123 cos(θ(k+1)

i + θ
(k+1)
i+1) + b23 cos(θ(k+1)

i+1)− a23 sin(θ(k+1)
i+1) + b3

)
. (A49)

Appendix C

Prove that Equation (74) is established.

Appl. Sci. 2019, 9, 5461 27 of 29

Proof. It’s obvious that this proof can be transformed into proof

max
θa ,θb ,ωa ,ωb

g (θa, θb, ωa, ωb) = 8, (A50)

where

g (θa, θb, ωa, ωb) = trace
(
(Ra(θa, ωa)− Rb(θb, ωb))

T (Ra(θa, ωa)− Rb(θb, ωb))
)

, (A51)

where both R(θa, ωa) and R(θb, ωb) can be calculated by Equation (8) and θa, θb, ωa, ωb are all arbitrary.
Injecting Equation (8) in Equation (A51), we can obtain

g (θa, θb, ωa, ωb) = −2trace
(

Ω2
a + Ω2

b −ΩaΩb sin(θa) sin(θb)−Ω2
a cos(θa)−Ω2

b cos(θb)

+ Ω2
aΩ2

b(1− cos(θa))(1− cos(θb))
)

. (A52)

Because of

trace
(

Ω2
a

)
= −2, (A53)

trace
(

Ω2
b

)
= −2, (A54)

trace
(

Ω2
aΩ2

b

)
= 1 + (ωa ·ωb)

2 , (A55)

trace (ΩaΩb) = −2 (ωa ·ωb) , (A56)

Equation (A52) can be simplified as follows,

g (θa, θb, t) = (6− 2t2) + (2t2 − 2) cos(θa) + (2t2 − 2) cos(θb)

− 4t sin(θa) sin(θb) + (2 + 2t2) cos(θa) cos(θb), (A57)

where
t = ωa ·ωb ∈ [−1, 1]. (A58)

In order to find the extreme value,5g
(
θ∗a , θ∗b , t∗

)
= 0 must be satisfied.

∂g
∂t

∣∣∣∣
θa=θ∗a ,θb=θ∗b ,t=t∗

= −4
(

t∗ − t∗ cos(θ∗a)− t∗ cos(θ∗b) + sin(θ∗a) sin(θ∗b) + t∗ cos(θ∗a) cos(θ∗b)
)

= 0, (A59)

∂g
∂θa

∣∣∣∣
θa=θ∗a ,θb=θ∗b ,t=t∗

= −(2t∗2 − 2) sin(θ∗a)− 4t∗ cos(θ∗a) sin(θ∗b) + (2 + 2t∗2) sin(θ∗a) cos(θ∗b) = 0, (A60)

∂g
∂θb

∣∣∣∣
θa=θ∗a ,θb=θ∗b ,t=t∗

= −(2t∗2 − 2) sin(θ∗b)− 4t∗ sin(θ∗a) cos(θ∗b) + (2 + 2t∗2) cos(θ∗a) sin(θ∗b) = 0. (A61)

In order to solve Equations (A59)∼(A61), we can add Equation (A60) and Equation (A61) to get(
∂g
∂θa

+
∂g
∂θb

) ∣∣∣∣
θa=θ∗a ,θb=θ∗b ,t=t∗

= 2(1− t)
(
(1 + t) (sin(θ∗a) + sin(θ∗b)) + (1− t) sin(θ∗a + θ∗b)

)
= 0. (A62)

Appl. Sci. 2019, 9, 5461 28 of 29

Therefore, Equation (A62) is established if and only if the following conditions are met.

t∗ = −1, θ∗a + θ∗b = 0; (A63)

t∗ = 1; (A64)

t∗ = −1, θ∗a + θ∗b = π; (A65)

t∗ = 1, θ∗a − θ∗b = π; (A66)

θ∗a = 0, θ∗b = 0. (A67)

Equations (A63) and (A64) do not satisfy Equation (A59), but others all satisfy
Equations (A59)∼(A61). Injecting Equations (A65)∼(A67) in Equation (A57), we can obtain

g (θa, θb, t) = 8, (θ∗a + θ∗b = π, t∗ = −1); (A68)

g (θa, θb, t) = 8, (θ∗a − θ∗b = π, t∗ = 1); (A69)

g (θa, θb, t) = 0, (θ∗a = 0, θ∗b = 0). (A70)

Therefore, Equation (74) is established.

max
θa ,θb ,ωa ,ωb

g (θa, θb, ωa, ωb) = max
θa ,θb ,t

g (θa, θb, t) = 8. (A71)

References

1. Jahanpour, J.; Motallebi, M.; Porghoveh, M. A Novel Trajectory Planning Scheme for Parallel Machining
Robots Enhanced with NURBS Curves. J. Intell. Robot. Syst. 2016, 82, 257–275. [CrossRef]

2. Pivarciova, E.; Bozek, P.; Turygin, Y.; Zajacko, I.; Shchenyatsky, A.; Vaclav, S.; Cisar, M.; Gemela, B. Analysis
of control and correction options of mobile robot trajectory by an inertial navigation system. Int. J. Adv.
Robot. Syst. 2018, 15. doi:10.1177/1729881418755165. [CrossRef]

3. Hartenberg, R.S.; Denavit, J. Kinematic Synthesis of Linkages; McGraw-Hill: New York, NY, USA, 1965.
4. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics Modelling, Planning and Control; Springer: London,

UK, 2009.
5. Pieper, L.D. Kinematics of Manipulators under Computer Control. Ph.D. Thesis, Stanford University,

Stanford, CA, USA, 1968.
6. Tsai, L.W.; Morgan, A.P. Solving the kinematics of the most general six- and five-degree-of-freedom

manipulators by continuation methods. J. Mech. Des. 1985, 107, 189. [CrossRef]
7. Primrose, E.J.F. On the input-output equation of the general 7R-mechanism. Mech. Mach. Theory 1986,

21, 509–510. [CrossRef]
8. Manocha D, C.J.F.. Efficient inverse kinematics for general 6R manipulators. IEEE Trans. Robot. Autom. 1994,

10, 648–657. [CrossRef]
9. Khatib, O. A unified approach for motion and force control of robot manipulators: The operational space

formulation. IEEE J. Robot. Autom. 1987, 3, 43–53. [CrossRef]
10. Chiaverini, S.; Siciliano, B.; Egeland, O. Review of damped least squares inverse kinematics with experiments

on an industrial robot manipulator. IEEE Trans Control. Syst. Technol. 1994, 2, 123–134. [CrossRef]
11. Xu, W.; Zhang, J.; Liang, B.; Bing, L. Singularity analysis and avoidance for robot manipulators with

non-spherical wrists. IEEE Trans. Ind. Electron. 2015, 63, 277–290. [CrossRef]
12. Goldenberg, A.A.; Benhabib, B.; Fenton, R.G. A complete generalized solution to the inverse kinematics of

robots. IEEE J. Robot. Autom. 1985, 1, 14–20. [CrossRef]
13. Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming; Springer: Berlin, Germany, 2008.
14. Kelemen, M.; Virgala, I.; Lipták, T.; Miková, L.; Filakovský, F.; Bulej, V. A novel approach for a inverse

kinematics solution of a redundant manipulator. Appl. Sci. 2018, 8. doi:10.3390/app8112229. [CrossRef]

http://dx.doi.org/10.1007/s10846-015-0239-6
http://dx.doi.org/10.1177/1729881418755165
http://dx.doi.org/10.1115/1.3258708
http://dx.doi.org/10.1016/0094-114X(86)90134-5
http://dx.doi.org/10.1109/70.326569
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/87.294335
http://dx.doi.org/10.1109/TIE.2015.2464176
http://dx.doi.org/10.1109/JRA.1985.1086995
http://dx.doi.org/10.3390/app8112229

Appl. Sci. 2019, 9, 5461 29 of 29

15. Zaplana, I.; Basanez, L. A novel closed-form solution for the inverse kinematics of redundant manipulators
through workspace analysis. Mech. Mach. Theory 2018, 121, 829–843. [CrossRef]

16. Qiao, S.; Liao, Q.; Wei, S.; Su, H.J. Inverse kinematic analysis of the general 6R serial manipulators based on
double quaternions. Mech. Mach. Theory 2010, 45, 193–199. [CrossRef]

17. Menini, L.; Tornambè, A. A Lie symmetry approach for the solution of the inverse kinematics problem.
Nonlinear Dyn. 2012, 69, 1965–1977. [CrossRef]

18. Köker, R.; Öz, C.; Çakar, T.; Ekiz, H. A study of neural network based inverse kinematics solution for a
three-joint robot. Robot. Auton. Syst. 2004, 49, 227–234. [CrossRef]

19. Köker, R.; Çakar, T.; Sari, Y. A neural-network committee machine approach to the inverse kinematics
problem solution of robotic manipulators. Eng. Comput. 2014, 30, 641–649. [CrossRef]

20. Kalra, P.; Mahapatra, P.B.; Aggarwal, D.K. An evolutionary approach for solving the multimodal inverse
kinematics problem of industrial robots. Mech. Mach. Theory 2006, 41, 1213–1229. [CrossRef]

21. Tabandeh, S.; Melek, W.W.; Clark, C.M. An adaptive niching genetic algorithm approach for generating
multiple solutions of serial manipulator inverse kinematics with applications to modular robots. Robotica
2010, 28, 493–507. [CrossRef]

22. Rokbani, N.; Alimi, A.M. Inverse kinematics using particle swarm optimization, a statistical analysis.
Procedia Eng. 2013, 64, 1602–1611. [CrossRef]

23. Koker, R. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic
manipulators based on error minimization. Inf. Sci. 2013, 222, 528–543. [CrossRef]

24. Köker, R.; Çakar, T. A neuro-genetic-simulated annealing approach to the inverse kinematics solution of
robots: a simulation based study. Eng. Comput. 2016, 32, 1–13. [CrossRef]

25. Lynch, K.; Park, F. Modern Robotics: Mechanics, Planning, and Control; Cambridge Univeristy Press: Cambridge,
UK, 2017.

26. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin, Germany, 2006.
27. Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. An adaptive truncation criterion, for linesearch-based

truncated Newton methods in large scale nonconvex optimization. Oper. Res. Lett. 2017, 46, 7–12. [CrossRef]
28. Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. Data and performance profiles applying an adaptive

truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex
optimization. Data Brief 2018, 17, 246–255. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mechmachtheory.2017.12.005
http://dx.doi.org/10.1016/j.mechmachtheory.2009.05.013
http://dx.doi.org/10.1007/s11071-012-0400-8
http://dx.doi.org/10.1016/j.robot.2004.09.010
http://dx.doi.org/10.1007/s00366-013-0313-2
http://dx.doi.org/10.1016/j.mechmachtheory.2005.11.005
http://dx.doi.org/10.1017/S0263574709005803
http://dx.doi.org/10.1016/j.proeng.2013.09.242
http://dx.doi.org/10.1016/j.ins.2012.07.051
http://dx.doi.org/10.1007/s00366-015-0432-z
http://dx.doi.org/10.1016/j.orl.2017.10.014
http://dx.doi.org/10.1016/j.dib.2018.01.012
http://www.ncbi.nlm.nih.gov/pubmed/29387739
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Kinematics Description of Robot Manipulator
	Newton's Method
	The CCD Method

	Numerical Methods for Nonlinear Kinematic Equations
	Definition of Objective Function in Inverse Kinematics
	Necessary Formulas for Newton's Method
	Determining the Gradient of Objective Function
	Determining the Hessian Matrix of Objective Function

	The ICCD Method
	Necessary Formulas for Solving a Single Joint Variable
	Necessary Formulas for Solving Consecutive Prismatic Joints
	Necessary Formulas for Solving Consecutive Parallel Revolute Joints
	ICCD Method of the Iterative Procedure

	The NICCD Method for The Inverse Kinematics Problem
	The Scale Factor
	The NICCD Approach of the Iterative Procedure

	Simulation and Discussion
	Simulation i
	Simulation ii
	Simulation iii
	Simulation iv
	Simulation v

	Conclusions and Future Work
	
	
	
	References

