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Abstract: This paper presents the application of a value-set-based graphical approach to robust
stability analysis for the ellipsoidal families of fractional-order polynomials with a complex structure
of parametric uncertainty. More specifically, the article focuses on the families of fractional-order
linear time-invariant polynomials with affine linear, multilinear, polynomic, and general uncertainty
structure, combined with the uncertainty bounding set in the shape of an ellipsoid. The robust stability
of these families is investigated using the zero exclusion condition, supported by the numerical
computation and visualization of the value sets. Four illustrative examples are elaborated, including
the comparison with the families of fractional-order polynomials having the standard box-shaped
uncertainty bounding set, in order to demonstrate the applicability of this method.

Keywords: robust stability analysis; fractional-order systems; ellipsoidal parametric uncertainty;
ellipsoidal polynomial family; complicated uncertainty structure; value set

1. Introduction

Robustness plays a fundamental role in automatic control theory and practice [1-4]. Parametric
uncertainty represents a natural, effective, but also a relatively simple tool for the mathematical
description of real-life systems with potentially complex behavior (including nonlinearities, fast
dynamics or changes in physical parameters) by means of linear time-invariant (LTI) models.
The systems with parametric uncertainty are frequently given by so-called families of plants or
families of polynomials, which have known structure but only imprecisely known parameters that
are supposed to vary “slowly” within prescribed bounds. For example, the family of closed-loop
characteristic polynomials is a typical object of interest. The crucial question is if a family of polynomials
with parametric uncertainty remains stable for all possible variations of uncertain parameters. Thus,
the methods for analyzing the robust stability of the systems with parametric uncertainty have been
researched for several decades [5,6].

The family of polynomials is determined by two main factors: its structure (especially the structure
of uncertainty), and the uncertainty bounding set. There is a wide range of parametric uncertainty
structures with various complexity, generality, and specific needs for their robust stability analysis.
The uncertainty structures can be classified as independent, affine linear, multilinear, polynomic,
and general [5,7-9]. Moreover, the uncertainty needs to be quantified a priori in order to know its
“size”. For this purpose, three main types of the uncertainty bounding set can be utilized, namely,
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the vector of uncertain parameters can be bounded either by a box, or by an ellipsoid (a sphere as
a specific case), or by a diamond [5]. Anyway, a box version is the most popular, but an ellipsoidal
bound is also of great importance. The corresponding families of polynomials are called the ellipsoidal
polynomial families [10,11], or spherical polynomial families [5,12-17]. Strictly speaking, many
works, e.g., [5,12,15], use the term “spherical polynomial family” solely for a family with the simplest
independent uncertainty structure and uncertainty bounding set in the shape of an ellipsoid. In
such a case, it can be considered as the analogy to the standard interval polynomial. However, the
term “spherical polynomial family” or more frequently “ellipsoidal polynomial family” is used in
more general meaning in this paper, i.e., for a family with any parametric uncertainty structure
and uncertainty bounding set in the shape of a sphere or an ellipsoid, respectively. Thus, the term
“spherical/ellipsoidal polynomial family” itself is considered not to give any information about the
uncertainty structure, but only notifies that the family has a spherical/ellipsoidal uncertainty bounding
set. The information about the uncertainty structure must be added. Note that the spherical/ellipsoidal
parametric uncertainty itself is, by its definition, always dependent, but the (in)dependency of the
uncertainty structure is discussed here.

Despite the fact that the spherical/ellipsoidal parametric uncertainty has not been researched
so often as the classical box-shaped parametric uncertainty, there is still a range of works dealing
with the spherical/ellipsoidal parametric uncertainty and related problems, but, to the best of the
authors” knowledge, only for integer-order (IO) systems and not for fractional-order (FO) systems
yet, apart from the works addressing the more general infinite-dimensional systems, e.g., [18,19].
Robust pole-placement technique for plants with ellipsoidally uncertain parameters, based on a convex
minimax programming, was proposed in [20]. Connection of the identification (performed in the
bounded-error context) and controller design (using He optimization) through ellipsoidal descriptions
of parameter uncertainty was discussed in [21]. The similar problem of connecting the prediction
error identification methods, which leads to ellipsoidal parametric uncertainty regions, and robust
state feedback control was also presented in [22], but via linear matrix inequalities (LMIs). Before
that, the paper [23] showed that robust stabilization of a scalar plant affected by ellipsoidal parametric
uncertainty could be treated as a convex LMI problem. Furthermore, various identification and robust
control methods for systems with ellipsoidal parametric uncertainty are addressed in [24-27]. Looking
more deeply to robust stability analysis of systems with parametric uncertainty and uncertainty
bounding set in the shape of a sphere/ellipsoid, there are several techniques available in the literature.
The Soh-Barger-Dabke theorem [5,28] represents the method for spherical polynomial families with
independent uncertainty structure, i.e., it is the spherical analogy to the classical Kharitonov theorem.
Moreover, extensions that are applicable for solving the robust stability for closed-loop systems
with affine linear structure of uncertainty are provided by the theorem of Biernacki, Hwang and
Bhattacharyya [5,29] and by the theorem of Barmish and Tempo [5,30], which is based on the idea of
the spectral set. Furthermore, well-known Tsypkin-Polyak criterion [31] can be utilized for testing the
robust stability or rather for computing the robustness margin under spherical uncertainty. It should
be noted that the spherical version of Tsypkin-Polyak criterion is directly connected with the results
given by Soh-Berger-Dabke theorem [5].

There is a relative lack of robust stability analysis methods for systems with complicated structures
of parametric uncertainty. Fortunately, the combination of the value set concept and the zero exclusion
condition [5] is applicable for a wide range of uncertainty structures, including the most complex
ones [7,8,32]. Its IO version [8] was extended to the FO cases in, e.g., [33-36], and subsequently applied
to the FO polynomials with complicated uncertainty structure (and standard box-shaped uncertainty
bounding set) in [9].

The FO calculus [37-39] and its applications in many fields [40] have been intensively researched
lately. Obviously, the area of control engineering has been deeply influenced by the FO calculus as
well—remind just a few works among many others [41-45]. It is understandable that a combination
of robust and FO control represents very attractive research direction nowadays—see the detailed
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literature review of robust stability analysis for FO LTI systems with parametric uncertainty in the
introduction of the paper [9].

Besides the classical control systems, there is an interesting class of problems related to control of
quantum systems that model the evolution characterizing physical phenomena at atomic scales [46,47].
Naturally, the robustness of quantum control systems belongs among the studied topics as well [48,49].

To sum up, to the best of the authors” knowledge, it has been already published works dealing
with robust stability of the spherical/ellipsoidal families of IO polynomials as well as works focused on
the families of FO polynomials with box-shaped uncertainty bounding set, even with complicated
uncertainty structure, but there are currently no works directly addressing the robust stability of
spherical/ellipsoidal families of FO polynomials, except for potentially applicable techniques for more
general infinite-dimensional systems.

Therefore, this paper is intended to deal with robust stability analysis of the ellipsoidal families of
FO polynomials with complex parametric uncertainty structure, namely with affine linear, multilinear,
polynomial, or general uncertainty structure. The investigation of the robust stability is performed by
means of the graphical approach using the value set concept and the zero exclusion condition, which is
exceptionally universal and which is applicable to the spherical/ellipsoidal families of IO or FO (as
shown here) polynomials as well. This paper is the extended version of the previously published
conference contributions [10,11], in which the value sets of ellipsoidal families of IO polynomials with
affine linear and multilinear uncertainty structures were studied, respectively, and [50], which was
aimed at FO polynomials with independent uncertainty structure. Even before, the robust stability of
spherical families of IO polynomials with independent uncertainty structure was addressed in [16,17],
and in their extended journal version [15]. The publications [15-17] used the relevant function of the
Polynomial Toolbox for Matlab [12].

The paper is organized as follows. In Section 2, the families of FO polynomials are introduced.
Section 3 then presents a classification of the structures of parametric uncertainty. The uncertainty
bounding set, with the emphasis on its ellipsoid-shaped type, is described in Section 4. Further, robust
stability analysis of families of FO polynomials with ellipsoidal parametric uncertainty is discussed in
Section 5. The extensive Section 6 demonstrates the applicability of the value-set-based approach to
robust stability testing via four illustrative examples with the ellipsoidal families of FO polynomials
with various complicated uncertainty structures (affine linear, multilinear, polynomic, and general
one). And finally, Section 7 offers some concluding remarks.

As stated before, some preliminary results related to this article were presented at the 8th Computer
Science On-line Conference 2019 [10], 3rd Computational Methods in Systems and Software 2019 [11],
and 30th International DAAAM Symposium [50].

2. Families of Fractional-Order Polynomials

The FO calculus represents the real or even complex order generalization of the IO calculus. It can
be formally introduced by the unified continuous integro-differential operator (differintegral), which is
defined as follows [40,43-45]:

% Rea >0
1 Rea =0
aD? = t (1)

[(d1)™ Rea<0

a
where « is the order of the differintegration that is restricted to a real number in this paper, ¢ is the
independent variable and a is a lower bound of it. If « > 0 and a = 0, the notation a can be omitted.
Similarly, the independent variable ¢ can also be omitted if there is no other variable. The differintegral
itself can be defined in several ways. The three most widely used definitions bear the names of
Riemann-Liouville (RL), Griinwald-Letnikov (GL), and Caputo. The RL and GL definitions are more
suitable to problems under zero initial conditions, and they are equivalent for engineering applications.
On the other hand, the Caputo’s definition is particularly useful for problems under nonzero initial
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conditions because the nonzero initial values of the function f(t) are not handled satisfactorily in RL
and GL definitions [45].
The RL definition is given by [43-45]:

t
o 1 a f(7)
aDt f(t) - F(Tl - 0() ﬁf (t _ T)tx—nJrl dt (2)

where « is supposed to lie within the interval n —1 < a < n and where I'(.) is the Gamma function.
The Laplace transform of the RL derivative is given as [38,43,44]:

* n—-1

L{DEf (1)) = f e~ DI f(t)dt = SF(s) - Y s" DI F(B)], 3)

0 m=0

forn —1 < a < n, where s is the complex frequency variable.
Under zero initial conditions, the Laplace transform of all three mentioned fractional derivatives
is reduced to [44]:

L{,Dff(t)} = s*F(s) 4)

The FO polynomial with parametric uncertainty has the form [9]:

p(s,9) = pn(q)s™ + pu-1(q)s™ " + -+ p1(q)s™ + po(q)s™ (5)

where g € RF is the vector of real uncertain parameters (or just uncertainty in short), a” > a1 > .- >
al > a0 are real numbers and p;(q) fori = 0,1,...,n are coefficient functions.
The family of FO polynomials is defined as [5]:

P={p(s,q):9€Q} (©)

where Q represents the uncertainty bounding set.
As can be seen, the families of FO polynomials are determined by the combination of the uncertain
FO polynomial (5) (with emphasis on its uncertainty structure) and the uncertainty bounding set Q.

3. Parametric Uncertainty Structure

The parametric uncertainty structure is given by the form of coefficient functions p;(g) in (5).
Generally, the more complicated coefficient functions and the more complicated interconnections
among them mean the more complex task of the robust stability analysis. In other words, the level
of complexity of p;(q) is the deciding factor of the convenient robust stability analysis technique.
The parametric uncertainty structures for IO systems can be classified as follows [5,7-9]:

e Independent uncertainty structure
e  Affine linear uncertainty structure
e  Multilinear uncertainty structure
e  Polynomic uncertainty structure

e  General uncertainty structure

Moreover, there are some special cases, such as:

e  Single parameter uncertainty
e  Retarded quasi-polynomials

A relatively detailed description of these uncertainty structures (with emphasis on the uncertainty
bounding set in the shape of a box) can be found in [9]. To summarize it:
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For the independent uncertainty structure, each uncertain parameter may enter into the one and
only coefficient function. Nevertheless, the FO case of this “independent” uncertainty structure is
more complex as the real and imaginary parts can be mutually dependent in fact, and consequently,
the classical IO version of the Kharitonov theorem is not applicable for FO families [33].

The affine linear uncertainty structure represents the scenario in which more parameters may
enter into the same coefficient function, but the structure of the functions has to be affine linear one.
A possible method for robust stability of a class of FO systems with affine linear uncertainty structure
has been presented in [51].

For the multilinear uncertainty structure, if all but one uncertain parameter are fixed, then the
coefficient function becomes affine linear in this non-fixed parameter. In short, the coefficient functions
may include the products of parameters. The robust stability of FO systems with multilinear uncertainty
structure is solved, e.g., in [36].

The polynomic structure of uncertainty means that the coefficient functions are represented by
the multivariable polynomials in uncertain parameters. Investigation of robust stability is a nontrivial
task. Formally, the polynomic structure can be transformed into the multilinear structure with a
new uncertainty bounding set, but it is not much helpful from the viewpoint of robust stability
investigation. [9]

And finally, the general uncertainty structures contain the coefficient functions in the form of
arbitrary multivariable functions of uncertain parameters under the assumption that the functions
are continuous on relevant intervals. Generally, there are no analytical robust stability analysis tools
available. [9]

The mentioned classification of parametric uncertainty structures is independent of the shape
of the uncertainty bounding set (see below), so it is valid also for spherical/ellipsoidal families of
polynomials. Strictly speaking, the spherical/ellipsoidal parametric uncertainty is always dependent
by its definition, but it can still be combined with the independent uncertainty structure.

4. Uncertainty Bounding Set

An a priori bound Q for the vector of real uncertain parameters g is assumed for systems with
parametric uncertainty. This Q is called the uncertainty bounding set and it is supposed as a ball in an
appropriate norm. The typical shapes of Q are a box (for L., norm), a sphere or an ellipsoid (for L,
norm or weighted L, norm, respectively), and a diamond (for L; norm). [5,10,11,15].

The most common case uses the Lo, norm [5,10,11,15]:

gl = ml,axlqil @)

and aball in this norm is referred to as a box. In practice, the box is given by its components, that is, by the
real intervals determining the minimal and maximal bounds for the individual uncertain parameters.

The second important case utilizes the L, norm or weighted L, norm [5,10,11,15]. Standard
Euclidean norm is:

llall, = 8)

and the weighted Euclidean norm has the form:

||I7||2,W = \MTWQ )

2
k

constitutes the weighting matrix. Assuming r < 0 and q° € R, the ellipsoid in R centered at 4° can be
defined by the inequality:

where g € Rk and W = diag(w%, w%, e, W ) is a positive definite symmetric matrix of size k X k that

(9-4°) W(g-q°) < 2 (10)
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or equivalently:
llg - qO”z,W <r (11)

For example, the special case of the two-dimensional ellipse of uncertain parameters (k = 2) can be
readily visualized for:

w? 0
[V "

The corresponding ellipse is shown in Figure 1 [5,15].

A
q,
gy +r/w;
g,
qs —r/w;
@ -r/we ¢ @ +r/w g

Figure 1. Ellipsoidal geometry defined by weighted Euclidean norm [5,15].

It is worth to discuss the choice of the Q shape, i.e., if a box or an ellipsoid should be preferred for a
given problem. In a number of engineering applications, the variations of the real physical parameters
mutually independent, and consequently, it is natural to suppose Q as a box. Nevertheless, according
to [5], the ellipsoids can be convenient under “imprecise description” of the uncertainty bounds, in
other words, if the true Q lies between some minimally perturbed Q,,;, and maximally perturbed
Qmax (both given by the boxes) and an ellipsoid can interpolate them. Moreover, the selection should
respect available methods for the solution of the problem at hand [5]. Besides, as stated in [52], the
mathematical models based on the physical principles typically have Q in the shape of a box, but the
identification techniques mostly lead to Q in the shape of an ellipsoid (see also [20]).

5. Robust Stability of Families of Fractional-Order Polynomials with Ellipsoidal
Parametric Uncertainty

It was already shown that the family of FO polynomials is described generally by (6). Obviously,
this family is robustly stable if and only if p(s, q) is stable for all 4 € Q. In this paper, uncertainty
bounding set Q is supposed to be an ellipsoid and the FO uncertain polynomial (5) is assumed to have
some complicated parametric uncertainty structure (affine linear, multilinear, polynomial, or general).
Thus, the resulting families of FO polynomials studied in this paper are called the ellipsoidal families
of FO polynomials with complex uncertainty structure. From the robust stability viewpoint, there
are two main complications that significantly reduce the number of suitable tools for analyzing such
families: the complexity of the uncertainty structure, and FO. As mentioned above in the Introduction,
many existing methods, such as the Soh-Barger-Dabke theorem [5,28], Biernacki-Hwang-Bhattacharyya
theorem [5,29], Barmish-Tempo theorem [5,30], and Tsypkin-Polyak criterion [31] are applicable to the
IO families with relatively simple uncertainty structures.

However, there is a versatile graphical technique combining the value set concept with the
zero exclusion condition [5] available. It fundamentally works not only for the complex uncertainty
structures [7,8] (including a class of retarded quasi-polynomials [53], anisochronic models with
internal delays [32] and FO systems [9,33-36], but also for (IO) systems with ellipsoidal parametric
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uncertainty [5,10,11,15]. The robust stability of FO polynomials with a complicated structure of
parametric uncertainty and box-shaped uncertainty bounding set by means of the universal graphical
approach was studied in [9]. On the other hand, the ellipsoidal families of FO polynomials represent
the topic of interest in this work.

Given the family of polynomials (6), the value set at the frequency @ € R is defined in [5] as:

p(jw, Q) = {p(jw,q) : q € Q} (13)

ie., p(jw,Q) is the image of Q under p(jw,q). In other words, the value set can be obtained by
substituting s for jw, fixing w, and letting g range over the set Q.

The zero exclusion condition is formulated as [5]: Suppose that a family of polynomials (6) has an
invariant degree with associated Q that is pathwise connected, continuous p;(q) fori =0,1,...,n and
at least one stable member p(s,4°). Then the family (6) is robustly stable if and only if the origin (zero
point) is excluded from the value set p(jw, Q) at all frequencies w > 0, that is, (6) is robustly stable if
and only if:

0¢p(jw,Q) Yw>0 (14)

It was derived in [5] that the value set for an ellipsoidal family of IO polynomials with independent
parametric uncertainty structure can be expressed analytically as follows. Assume the ellipsoidal
polynomial family with invariant degree n > 1 described by:

n .
p(s,q) = po(s) + ;O gis'

po(s) = p(s,°) = ¥ as' (15)
i=0

||QH2,VV <r
W= diag(w%, w%, ... ,w%)
Then, the value set at each frequency w > 0 is given by an ellipse centered at the nominal py(jw)
with major axis in the real direction having a length:

1/2
R = Zr[ Z wl.zwzi] (16)

ieven

and major axis in the imaginary direction having a length:

1/2
I= 2r[2 wl.za)Zi] (17)

iodd

Furthermore, for the degenerate event of w = 0, the value set is defined by the real interval:

p(j0,Q) = (ao—r, ap + 1) (18)

Incidentally, these computations are implemented in the routine “spherplot” in the Polynomial
Toolbox for Matlab (available from the version 2.5) [12]. Nevertheless, the application of this technique
is limited to the IO case and independent uncertainty structure.

In this paper, the computation and visualization of the value sets for the ellipsoidal families of
FO polynomials with complex parametric uncertainty structure are based on random or fixed-step
sampling (gridding) the uncertain parameters and on the subsequent direct calculation of the related
partial points of the value sets for an assumed range of non-negative frequencies. These straightforward
sampling approaches are used because it is generally very difficult to find the meaningful areas in the
space of uncertain parameters a priori—e.g., the examples in the following Section 6 will demonstrate
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that some parts of boundaries of the value sets may be mapped from the internal points in the parameter
space. The probabilistic methods in the analysis and design of systems subject to deterministic and
stochastic uncertainty are discussed e.g., in [54,55]. When the value sets are plotted, the robust stability
can be readily checked with the necessary and sufficient condition. The utilized brute-force sampling
method of calculating the value sets is relatively easy-to-use even for the ellipsoidal families of FO
polynomials with very complex uncertainty structures. On the other hand, a large computational time
is requested for a high number of uncertain parameters and/or their dense sampling (gridding). The
similar fixed-step sampling principle of obtaining the value sets has been already used e.g., in [9,32,53]
for different classes of systems.

6. Illustrative Examples

The applicability of the value-set-based approach to robust stability investigation for the ellipsoidal
families of FO polynomials is demonstrated in this Section through four illustrative examples. With
respect to the information in the previous Section 5, the Examples 1 and 2 (with affine linear and
multilinear uncertainty structure, respectively) use the combination of fixed-step (for value set
boundaries) and random (for representatives of internal points) sampling the uncertainty bounding
sets. The Example 3, with polynomic uncertainty structure, utilizes just fixed-step gridding the
surface area of the uncertainty bounding set in the shape of a (three-dimensional) ellipsoid. Finally,
the Example 4 (general uncertainty structure) applies only the random sampling of the elliptical
uncertainty bounding set.

All figures within this Section were plotted in the Matlab environment. The colors of points, lines,
or areas in these figures have no strict meaning, and they are used for visual purposes only.

6.1. Example 1—Affine Linear Uncertainty Structure

First, suppose the family of FO polynomials defined by the combination of the uncertain polynomial
with affine linear uncertainty structure (inspired by its IO version in [10]):

pLar(s,q) =™+ 20 + 42 +2)5*% + (91 + 292+ 1)s° + (1 + 42) (19)
and two kinds of uncertainty bounding set:

1.  Weighted L, norm (an ellipsoid, or actually an ellipse in this two-dimensional case):

llg =%l < 1

0
g =[2,2]
20
wo|w o]_[10 (20)
L0 w] |0 2
that is, equivalently:
2 2
(11 -49) +2{a2-ag) <1 1)
7’ =[2,2]
2. Lo norm (a box, or actually a rectangle in this two-dimensional case):
g1 €[1,3]
22
4 € [15,2.5] 22)

The two-dimensional elliptical uncertainty bounding set (20), (21), with two uncertain parameters
g1 and g that may vary within given bounds, is visualized in Figure 2, which shows not only the
boundary (blue curve) but also 1000 randomly chosen internal points. Moreover, the rectangle formed
by the displayed axes in Figure 2 concurs with the rectangular uncertainty bounding set (22).
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Figure 2. Elliptical uncertainty bounding set (20) with 1000 randomly chosen internal points.

The value set of the ellipsoidal family of FO polynomials with affine linear uncertainty structure
given by (19) and (20) for the frequency w = 1 is shown in Figure 3. The horizontal axis, labeled as
“Real Axis”, represents the real parts of the value set generally defined by (13), and the vertical axis,
labeled as “Imaginary Axis” represents the imaginary parts of this value set. The same notation is also
used in all the following relevant figures. The plotted value set consists of its boundaries, which are
related to the boundaries of the elliptical uncertainty bounding set (20) from Figure 2, and the images
of 1000 randomly selected points within this elliptical uncertainty bounding set. As can be seen, all
internal points from the parameter space remain inside the value set in the complex plane as well. In
other words, the boundaries of the value set are mapped only from the boundaries of the uncertainty
bounding set (in the parameter space) for the studied case of the ellipsoidal family of FO polynomials.
However, it should be noted that some parts of the boundaries in the uncertain parameter space can
generally (in more than two-dimensional case) be mapped into the interior of the value set—see the
example at page 142 in [5] where an edge of an uncertain cuboid is mapped to the inside the value set,
and see also the Section 6.3 (Example 3). Anyway, it still holds true that the value set boundaries are
mapped only from the uncertainty bounding set boundaries. The abovementioned results are valid for
the affine linear uncertainty structure (and simpler “independent” one), but they need not be true for
more general and more complex uncertainty structures as will be shown later.

Furthermore, Figure 4 compares the value set of the ellipsoidal version of the family (19), (20)
(blue solid curve) with the value set of the classical box version of the family (19), (22) (black dashed
curve)—both for w = 1. The same comparison but for the value sets in the range of frequencies from 0
to 2.2 with the step 0.1 is shown in Figure 5 (the value sets would reach the fourth quadrant for higher
frequencies since the highest order in (19) is 3.1). In compliance with the zero exclusion condition,
which is described in the previous Section 5, both ellipsoidal and box version of the family of FO
polynomials are robustly stable because all preconditions including the existence of a stable member
are fulfilled and the complex plane origin (zero point) is excluded from the plotted value sets.
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Figure 3. The value set of the family (19), (20) for @ = 1 with the images of 1000 randomly chosen

internal points from the elliptical uncertainty bounding set (Figure 2).
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Figure 4. Comparison of the value sets of the family (19), (20) (blue solid curve) and of the family (19),

(22) (black dashed curve) for w = 1.
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Imaginary Axis

Real Axis

Figure 5. Comparison of the value sets of the family (19), (20) (blue solid curves) and of the family (19),
(22) (black dashed curves) forw =0:0.1:2.2.

6.2. Example 2—Multilinear Uncertainty Structure

In the second example, assume the family of FO polynomials given by the uncertain polynomial
with multilinear uncertainty structure (based on its 1O version from [11]):

puuc(s,q) =7 + (49192 +2)s*" + (@142 + @1 + 42 +5)" + (g1 + 92 +3) (23)
and, similarly to the Example 1, two types of uncertainty bounding set:

1.  Weighted L, norm:

llg =%l < 1

0=10,0
! [ wl 0 1 0 (24)
W=| 1 =
el o]
ie..:
2 2
(g1-a)) +2q-a3) <1 (25)
9" = 10,0]
2. Loo norm:
q € [-1,1]
g2 € [0.5,0.5] (26)

Both elliptical and rectangular uncertainty bounding sets could be visualized easily. The resulting
drawing would be almost identical to the Figure 2, except for the range of parameters/axes that would
be different.

The value set of the ellipsoidal family of FO polynomials with multilinear uncertainty structure
defined by (23) and (24) for the frequency w = 1.5 is shown in Figure 6. Just as in the Example 1,
the value set consists of its boundaries connected with the boundaries of the elliptical uncertainty
bounding set (24) and the images of 1000 randomly selected points within this uncertainty bounding
set. However, unlike the Example 1, not only that the value set is a non-convex shape, but moreover,
some internal points from the parameter space create the boundary of the value set in the complex
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plane. In other words, the boundaries of the value set can be mapped not only from the boundaries in
the parameter space but possibly also from the internal points. Obviously, it generally complicates the
robust stability analysis of the (FO) polynomial family, because the boundary-guard-based tests are not
directly available. Fortunately, the zero exclusion condition is valid.

4

2.5

Imaginary Axis

Real Axis

Figure 6. The value set of the family (23), (24) for = 1.5 with the images of 1000 randomly chosen
internal points from the elliptical uncertainty bounding set.

Comparison of the values set parts that are related to the boundaries in the uncertain parameter
space of the ellipsoidal version of the family (23), (24) (blue solid curve) and the box version of the
family (23), (26) (black dashed curve) for w = 1.5 is depicted in Figure 7.

4.5

4,

3.5+

3,

2.5¢

Imaginary Axis

Real Axis

Figure 7. Comparison of the value set parts that are related to the boundaries in the uncertain parameter
space for the family (23), (24) (blue solid curve) and the family (23), (26) (black dashed curve) for
w = 1.5.

Then, the full value sets (including the parts mapped from the internal points in the uncertain
parameter space) of the ellipsoidal version of the family (23), (24) (inner blue area) and the box version
of the family (23), (26) (outer black area) for w = 1.5 are compared in Figure 8.
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Figure 8. Comparison of the complete values sets of the family (23), (24) (inner blue area) and the
family (23), (26) (outer black area) for v = 1.5.

The value sets of the ellipsoidal family of FO polynomials with multilinear uncertainty structure
(23), (24) for the scale of frequencies from 0 to 3 with step 0.1 is shown in Figure 9. Obviously, the family
is robustly unstable because the origin of the complex plane (zero point) is included in the value sets.

Imaginary Axis

3-01 5 -10 -5 0 5 10
Real Axis

Figure 9. The value sets of the family (23), (24) forw =0:0.1: 3.
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6.3. Example 3—Polynomic Uncertainty Structure

In the third example, consider the ellipsoidal family of FO polynomials with polynomic uncertainty
structure:

proL(s,q) = s*% + (q‘;’ +5+q95+ 2)53'3 + (Sqi’ngg +q19293 + 5)51'8 +---

o+ (%9202 + 19305 + 1)s%° + qrg095 + 1
llg =%l < 1

7° = [0.5,0.5,0.5] (27)
w? 0 0 100

W=| 0 w2 0 [=|0 20
0 0 wj 003

Note that the uncertainty bounding set is three-dimensional in this event (not just two-dimensional
as in the previous two examples). It can be depicted by means of the ellipsoid from Figure 10.

Figure 10. Ellipsoidal uncertainty bounding set for the family (27).

The value sets of the family (27) for the frequencies from 0 to 1.59 with step 0.03 are depicted in
Figure 11 (the value sets would reach the fifth quadrant for higher frequencies since the highest order
in (27) is 4.2). In this case, it is obtained via gridding the surface area of the ellipsoid from Figure 10
and subsequent calculation of the related value set points. Obviously, the boundary of the uncertainty
bounding set is mapped to both the boundary and the interior of the value sets (see the comment in
Section 6.1 (Example 1)). According to the zero exclusion condition, the family (27) is robustly stable as
it satisfies all preconditions as well as the exclusion of the complex plane origin from the value sets.
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Imaginary Axis

B 1 | 1 1 1
i) R
Real Axis

Figure 11. The value sets of the family (27) for @ = 0: 0.02 : 1.59.
6.4. Example 4—General Uncertainty Structure

Finally, assume the ellipsoidal family of FO polynomials with a general uncertainty structure
(based on its box version in [9]):

peen(s0) =2 + (cos(gag) +2)521 + (5.ylr] - 3sin(g2) — cos(@r2) + 3% +

+( q1| + sin(q2) + cos(q192) —1—2)

llg — ‘70 |2,w <1 (28)
7°=10,0

w? 0 1 0
_= 1 =
w=l T =0 1]

—

As can be seen from the Figure 12, which shows the value sets for the frequencies from 0 to 3 with
the step 0.1, the family (28) is not robustly stable since the zero exclusion condition is violated.

Imaginary Axis

-6 14 12 10 -8 6 4 -2 0 2 4
Real Axis

Figure 12. The value sets of the family (28) forw = 0:0.1: 3.
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7. Conclusions

This paper was aimed at the application of the value-set-based graphical technique for analyzing
the robust stability of the ellipsoidal families of FO polynomials with complicated parametric uncertainty
structure. A set of four extensive illustrative examples was elaborated and discussed in order to
demonstrate the applicability of this versatile and effective method to the families of FO polynomials
having the ellipsoid-shaped uncertainty bounding set and affine linear, multilinear, polynomic, or
general structure of parametric uncertainty. The comparison of the ellipsoidal families with their
corresponding box-bounded counterparts was also included.

Since the FO calculus enables considerable improvement in mathematical modeling and (robust)
control of dynamical systems compared to the classical IO scenarios, the number of practical applications
of FO control systems is expected to increase. Thus, the tools that facilitate the analysis of robust
stability for various classes of FO uncertain systems are of growing importance as well. This paper
intended to contribute to this mosaic with the application of the value-set-based robust stability
investigation method to the ellipsoidal families of FO (characteristic) polynomials with a complicated
structure of parametric uncertainty.

The main advantage of the utilized graphical approach is that the robust stability analysis results
are obtained with the necessary and sufficient condition by a relatively easy-to-use procedure even for
very complicated parametric uncertainty structures. A disadvantage can be seen in the necessity of
large computational time for a high number of uncertain parameters or for a dense sampling (gridding)
of them.

A potential topic for future research can be seen, among others, in the extension of selected robust
stability analysis principles to quantum control systems.
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