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Abstract: In seismic refraction exploration, travel time tomography is the most widely used method
in engineering and environmental geophysical exploration. In this paper, we mainly optimize the
travel time tomography of refraction. First, with respect to the forward algorithm, we introduce a
new travel time calculation method to improve the accuracy and efficiency of forward calculation.
Based on the fast marching method (FMM), we introduce an improved forward calculation method
called the multi-stencil fast marching method (MSFM). In the process of inversion, we propose a
dynamic prior model composite constraint (DPMCC) method based on the T0 difference method
from the idea of multi-scale inversion. Meanwhile, we use the prior information to improve the
accuracy of inversion. Furthermore, we use the dynamic regularization factor selection method to
make the inversion solution more stable and reliable. Finally, we test and analyze the synthetic data
and the measured data to verify the effectiveness of the optimized travel time tomography algorithm.

Keywords: refraction travel time tomography; T0 differential method; MSFM (multi-stencil
fast marching method); DPMCC (dynamic prior model composite constraint); dynamic
regularization factor

1. Introduction

In the near-surface seismic exploration, the refraction exploration has been widely used due to its
simplicity and high efficiency. The refracted wave exploration is mainly based on the basic theory that
the velocity of the underlying stratum is higher than that of the overlying stratum. By recording the
wave’s arrival time, the physical parameters such as the thickness and velocity of the subterranean
stratum structure can be estimated. The refracted wave exploration method first appeared in the 1930s
and was developed for computer automated interpretation in the 1970s [1]. At present, the engineering
refracted wave method is commonly used to detect the thickness of the cover layer [2], study the
undulation of the bedrock surface [3], identify the hidden fault, measure the depth of the diving surface,
and detect underground cavities and tunnels [4]. Rucker pointed out that the seismic refracted wave
method can provide the near-surface geological information for engineering geological applications [5].
In an actual survey, Wang applied a set of engineering seismic refracted wave exploration methods to
explore dam diseases, which achieved good results [6].

Tomography was first used in the medical field. It was subsequently introduced into the field of
seismic exploration. In the 1970s, Aki et al. first used the seismic first arrival tomography method to
invert the deep crust structure of the Earth [7]. This method was then widely used in the study of deep
structure imaging of the Earth [8–16]. Seismic tomography is also used in the field of engineering and
exploration geophysics. Due to its dependence on ray density, cross-well tomography research has
also achieved good results [17–20].
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Surface tomography is mainly used to invert the near-surface velocity structure and provide
an initial model for the more accurate waveform inversion method [21–23]. Ellefsen compared the
effectiveness of phase waveform inversion and travel time tomography [24]. Li et al. introduced the
first arrival wave travel tomography method based on the double square root function Equation [25].
Jordi et al. introduced wide-angle tomography methods at different scales [26]. Zelt et al. solved the
model non-uniqueness problem by using the traditional minimum structure regularization technique
and proved the superiority of frequency-dependent tomography (FDTT) [27].

In the forward modeling of refracting tomography, the traditional ray method is used to solve
the travel time along the ray direction and then interpolate that information to obtain the travel time
of each node of the underground section, but this method cannot adapt to complex underground
structures [28–30]. Vidale proposed a method of approximating the eikonal equation by using the
finite difference method [31,32]. The core idea of this method is to calculate the travel time of each
node by tracing the front of the wave. After subsequent research and development, there are several
kinds of travel time calculations and ray tracing methods based on high frequency approximation,
such as the fast scan method (FSM) [33] and the fast marching method (FMM) [34,35].

In the process of refraction tomography inversion, regularization is usually used to overcome
the instability of the inversion solution [36,37]. Fomel used the regularization method to smooth the
model and obtain good results [38]. Liu et al. introduced prior information into the inversion process
as well as internal constraints on the model [39]. Refraction travel time tomography utilizes the travel
time information of the seismic wavefield without being affected by the characteristics of its source
and detector. At the same time, the computational efficiency of refraction travel time tomography is
much higher than that of the full waveform inversion method. Based on its mature theory and high
efficiency, this method is widely used to establish the near-surface and deep velocity models.

Herein, in this paper, the refraction tomography method is optimized to improve the accuracy
of inversion. Firstly, the T0 difference method was chosen for the prior constrained modeling for
tomography. Then, a forward modeling method based on FMM is introduced which is called
Multistencil fast marching method (MSFM). The accuracy and efficiency between FMM and MSFM are
then compared and analyzed. Next, a composite constrained inversion method based on T0 difference
method is proposed. Furthermore, we use dynamic regularization factors in inversion. We use the
synthetic data for trial calculation and analysis, which results verify the effectiveness of the optimized
travel time tomography algorithm. Finally, the refracted wave data of highway tunnel portal are
processed, and two layers of velocity interface are found out from the results. The tunnel entrance is
located at the speed interface. This problem should be considered in construction to prevent possible
geological hazards at the entrance. At the same time, the practicability of the algorithm is proven,
which can solve actual geological problems.

2. Methods

The technical route of this paper mainly includes the following five contents:

1. First, T0 difference method is used to calculate the prior model.
2. MSFM is used as forward calculation method instead of FMM.
3. Inversion method.
4. In the process of inversion, the combination of the smallest disturbance constraint and the

smoothest constraint is used.
5. Dynamic selection of regularization factor.

Therefore, the following section separately introduces the above contents.

2.1. T0 Difference Method

The T0 difference method was proposed by Hagedorn et al. [40] in 1959. It defines two time
values: t+ and t−.
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As shown in Figure 1, i is the incident angle and the three ray paths are O1ABS, O2DCS, O1ADO2,
respectively. t+ and t− are expressed as:

t+ = tO1ABS + tO2DCS − tO1ADO2 (1)

t− = tO1ABS − tO2DCS + tO1ADO2 (2)

We remove the same part of the ray path, t+ can be expressed as:

t+ = tBS + tCS − tBC (3)

The interface depth of point S is hS, the velocity of the upper layer is v1, the refractive layer velocity
is v2, t+ and hS can be expressed as:

t+ =
2hs(1− sin2 i)

v1 cos i
=

2hs cos i
v1

(4)

hS =
v1

2 cos i
t+ (5)

According to Snell’s theorem, we can get the following formula:

hS =
v1v2

2
√
(v2 + v1)(v2 − v1)

t+ (6)

where t1 represents the travel time of the path O1ABS, t2 represents the travel time of the path O2DCS,
T represents the travel time of the path O1ADO2, then

t− = t1 − t2 + T (7)

Therefore,
∆t−
∆x

=
∆t1

∆x
−

∆t2

∆x
(8)

Therefore, the apparent velocity of refraction accepted in the forward direction and the apparent
velocity of refraction accepted in the reverse direction can be expressed as:

V∗− = −
∆t2

∆x
(9)

V∗+ =
∆t1

∆x
(10)

From the apparent velocity theorem of refraction wave, Formula (8) can be obtained as follows:

∆t−
∆x

=
2
v2

(11)

The normal depth of refraction interface of Formula (6) can be calculated by calculating v2.
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Figure 1. Schematic diagram of T0 difference method.

Two Layer Undulating Interface Model

As shown in Figure 2, there are two layers of random undulating interface model. The model
parameters are as follows: 200 m in the transverse direction, 20 m in the longitudinal direction, the
interface depth varies from 5 m to 10 m. The velocity of the model is 1000 m/s for the first layer, the
velocity of the model is 3000 m/s for the second layer. The red star shaped mark is the shot point,
the red triangle mark is the detection point, the shot detection distance is 2 m, group interval is 2 m,
100 geophones.
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Figure 2. Two-layer undulating interface model and T0 difference method results.

The red prismatic points are calculated results, which are basically consistent with the random
interface fluctuation of the model. The calculated velocity is 1126.9 m/s for the first layer and 2992.9
m/s for the second layer, which has a small error with the original model. Therefore, the results of T0
difference method are very accurate. Therefore, we will use T0 difference method as a prior constraint
of refraction travel time tomography.

2.2. Multistencil Fast Marching Method

In order to improve the accuracy of the eikonal equation in the Cartesian domain, this paper
introduces a Multistencil fast marching method (MSFM) based on FMM [41].

Figure 3 shows two templates used by the MSFM, where template 1 is used by the FMM, covering
the neighboring points in the direction of the coordinate axis. Template 2 is generated by the coordinate
transformation of the FMM template, covering the adjacent points in the diagonal direction. Let
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→
r 1 = [r11, r12]

T and
→
r 2 = [r21, r22]

T denote the unit vectors along p2p1 and q2q1 directions, respectively.
U1 and U2 represent the travel time directional derivatives along

→
r 1 and

→
r 2, respectively. Then, U1 and

U2 can be expressed as
U1 =

→
r 1 · ∇T(x, y) = r11Tx + r12Ty (12)

U2 =
→
r 2 · ∇T(x, y) = r21Tx + r22Ty (13)

where Tx = ∂T
∂x and Ty = ∂T

∂y represent the partial derivatives of T to x and y, respectively. Therefore,
Formulas (12) and (13) can be written in the form of matrix multiplication:[

U1

U2

]
=

[
r11 r12

r21 r22

][
Tx

Ty

]
(14)

Assuming that ∆x = ∆y = h, then the angle between
→
r 1 and

→
r 2 is 90◦, the following formula can

thus be obtained:
U2

1 + U2
2 = S2(x, y) (15)

For Templates 1 and 2, when the first-order finite difference forms are selected, Formula (15) can
be expressed as Formulas (16) and (17):

max
(Ti, j − T1

h
, 0

)2

+ max
(Ti, j − T2

h
, 0

)2

= S2
i, j (16)

max
(Ti, j − T1
√

2h
, 0

)2

+ max
(Ti, j − T2
√

2h
, 0

)2

= S2
i, j (17)

where T1 = min
(
Ti−1, j, Ti+1, j

)
and T2 = min

(
Ti, j−1, Ti, j+1

)
.
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Figure 3. Two templates used by the multi-stencil fast marching method (MSFM) algorithm. (a)
Template 1; (b) Template 2.

For Templates 1 and 2, when the second-order finite difference forms are selected, Formula (15)
can be expressed as Formulas (18) and (19):

max
( 3

2h
(Ti, j − T1), 0

)2
+ max

( 3
2h

(Ti, j − T2), 0
)2

= S2
i, j (18)

max
(

3

2
√

2h
(Ti, j − T1), 0

)2

+ max
(

3

2
√

2h
(Ti, j − T2), 0

)2

= S2
i, j (19)

where T1 = min
(

4Ti−1, j−Ti−2, j
3 ,

4Ti+1, j−Ti+2, j
3

)
and T2 = min

(
4Ti, j−1−Ti, j−2

3 ,
4Ti, j+1−Ti, j+2

3

)
.
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Numerical simulation comparison between MSFM and FMM

The homogeneous model is shown in Figure 4. The number of grids is 100 × 100. The vertical and
horizontal grid spacing is 10 m, and the source point position is (51). The theoretical value Ta of the
travel time at each grid node is

Ta =

√
(x− x0)

2 + (y− y0)
2 (20)

where (x0, y0) is the coordinate of the source, and Figure 4b is the theoretical travel time contour of the
homogeneous model.
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Figure 5 shows a comparison between the theoretical travel time and the calculated travel time of
FMM and MSFM. The red line represents the theoretical travel time and the blue line represents the
calculated travel time. Figure 5a,c shows the first-order and second-order computational and theoretical
travel time contours of the FMM algorithm, respectively. Figure 5b,d shows the first-order and
second-order computational and theoretical travel time contours of the MSFM algorithm, respectively.
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It can be seen from the graph that when the two algorithms offer the same first-order approximation
or the same second-order approximation, the difference between the calculated value and the theoretical
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value of MSFM is smaller than that of FMM. In the case of the second-order approximation, the difference
between the calculated value and the theoretical value of the two algorithms is obviously smaller
than that of the first-order approximation. Among them, the travel time calculation value of the
second-order MSFM almost coincides with its theoretical value, which shows that its calculation
accuracy is the highest.

In order to compare the computational accuracy and efficiency of the two algorithms, two mesh
spacings and three error indices are used to test the first-order and second-order of FMM and MSFM,
respectively. The error indexes are as follows:

L1 =
1
n

n∑
i=1

|T − Ta| (21)

L2 =
1
n

n∑
i=1

|T − Ta|

2

(22)

Lmax = max(|T − Ta|) (23)

where Ta is the theoretical travel time, T is the computational travel time, and n is the total number of
grid nodes.

Table 1 lists the error and time-consuming data of the 2 m and 10 m grid spacing, the first-order
FMM (FMM1), the second-order FMM (FMM2), the first-order MSFM (MSFM1), and the second-order
MSFM (MSFM2). The data in the analysis table (Table 1) show that: From the perspective of calculation
accuracy, the three kinds of errors in FMM and MSFM are very small, indicating a very high calculation
accuracy. By observing the table data vertically, we can see that the error fluctuation of FMM and
MSFM is small, demonstrating that both methods are relatively stable.

Table 1. Computational accuracy and efficiency of FMM and MSFM.

Grids 100 × 100

Method/Error L1 L2 Lmax Time/seconds

FMM1 0.746 0.697 1.315 1.011

MSFM1 0.607 0.446 0.973 1.164

FMM2 0.197 0.042 0.329 1.054

MSFM2 0.040 0.003 0.188 1.288

Grids 500 × 500

Method/Error L1 L2 Lmax Time/seconds

FMM1 1.055 1.538 2.062 24.428

MSFM1 0.915 1.116 1.657 29.334

FMM2 0.175 0.035 0.329 26.674

MSFM2 0.049 0.004 0.188 32.638

When the table data are observed longitudinally, it can be seen that FMM1 > MSFM1 > FMM2 >

MSFM2. The error of the second-order difference format is smaller than that of the first-order difference
format, which fully verifies that the MSFM algorithm has higher calculation accuracy.

From the perspective of computational efficiency, there are two main parts: the time-consuming
calculation and the time-consuming operation. The MSFM algorithm requires two templates, while
the FMM algorithm only needs to use one template for calculation. In theory, the MSFM algorithm
should consume twice as much time as the FMM algorithm. However, the operations for inserting and
removing the two algorithms in the narrow band are the same. Table 1 shows that the time-consuming
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ratio of the MSFM over FMM increases as the number of grids increases, which further verifies that the
MSFM algorithm has higher computational efficiency.

As can be seen from Figure 6, although the second-order format FMM improves calculation
accuracy, the diagonal direction region error rapidly increases. The MSFM method improves the error
of the FMM algorithm and improves its adaptability to complex models.
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Figure 6. Absolute error contour map: (a) first-order FMM; (b) first-order MSFM; (c) second-order
FMM; (d) second-order MSFM.

2.3. Inversion Methods

The theoretical basis of travel time tomography is the Radon transform. Assuming that v(x, y) is a
continuous velocity field, the travel time can be expressed as

t =
∫
L

s(x, y)dL (24)

where t is travel time, s(x, y) = 1
v(x,y) is the slowness field, and the integral path L is the ray path from

the source point to the receiving point. The first step in solving this problem is to discretize the slow
field. In this way, Formula (25) can be obtained:

ti =
∑

j

lijS j (25)

where i is the ith ray, j is the jth discrete slowness grid, and l is the length of the ray segment in each
slowness grid. lij is the distance traveled by the ith ray in the jth grid, as shown in Figure 7.
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Therefore, we can transform the nonlinear problem of travel time tomography into a linear
problem. When there are M rays passing through the region to be inverted, Equation (25) becomes a
linear system of M equations:
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where ti(i = 1, 2, . . . , M) is the travel time vector, si(i = 1, 2, . . . , N) is the slowness vector, and the
distance matrix LM×N is generally a large sparse matrix.

Then the Tikhonov regularization function [42] is introduced to transform the inversion problem
into the minimum value problem for solving the following objective functions:

Φ(s) = Φd(s) + λ2Φm(s) (27)

where Φd(s) and Φm(s) are the objective functions in the data space and the model space, respectively.
λ is the regularization factor, which is used to adjust the weight between the data space Φd(s) and the
model space Φm(s).

In the travel time tomography inversion of refracted waves, Φd(s) can be expressed as follows:

Φd(s) = ‖Wd[t− d(s)]‖2 =
1
2

Nd∑
i, j

[ti − di(s)]Wd
ij

[
t j − d j(s)

]
(28)

Further, Φm(s) can be expressed as follows:

Φm(s) = ‖Wm
[
s− s0

]
‖

2
=

1
2

Nm∑
i, j

[
si − si

0
]
Wm

ij

[
s j − s j

0
]

(29)

where Wd and Wm are the data weighting matrix and the model weighting matrix, respectively. t and
d(s) are the observation travel time data and the calculation travel time data, respectively.
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2.4. Combination of the Smallest Disturbance Constraint and the Smoothest Constraint

In order to reduce ill-posed and inversion multi-solution problems, we introduce the Tikhonov
function with a priori information to solve the continuous medium inversion problem. The Tikhonov
regularization function can be written as follows:

Φ(s) = ‖Wd[t− d(s)]‖2 + λ2
‖Wm

[
s− s0

]
‖

2
(30)

Before inversion, three parameters need to be determined, the data weighting matrix Wd, the
model weighting matrix Wm, and the regularization factor λ.

Generally, Wd selects the M ×M-order unit matrix. In refraction travel time tomography, the
observed travel time data are uniformly weighted.

The selection of Wm is different. The commonly used regularization constraints can be divided
into the following four types:

1. Smallest model constraints: Wm = ‖m‖2;

2. Flattest constraints: Wm = ‖m′‖2, where m′ is the first derivative of the model space;

3. Smoothest constraints: Wm = ‖m′′ ‖2, where m′′ is the second derivative of the model space;

4. Smallest perturbation constraints: Wm = ‖m− m̃‖2, where m̃ is a priori reference model;

In this paper, the results of the t0 difference method are used as an a priori slowness model for
presumptive information. However, because of the limitations of the t0 difference method, we will
adopt the composite constraint method, which combines the smallest perturbation constraints and the
smoothest constraints. This method not only guarantees the uniqueness and rationality of the solution
but also guarantees the stability and convergence of the solution.

2.5. Dynamic Selection of Regularization Factor

The regularization factor λ determines the relative weight relationship between the data space
and the model space in the objective function. When λ trends toward zero, the fitting degree of the
data is better, but the model is rougher. When λ trends toward infinity, the fitting degree of the data is
worse, but the model is smoother.

The method of selecting regularization factors is usually L-curve method, as shown in Figure 8.
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This curve represents the relationship between data fitness and model fitness with different
regularization factors. It requires many experiments to select λ [14]. Generally, the regularization factor
at the maximum curvature of the L-shaped curve is the optimal regularization factor [37]. As shown in
Figure 8, λ = 6 is the optimum solution.
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Because the process of selecting the most regularization factors needs a large number of calculation
experiments, this paper proposes an improved method for selecting regularization factors.

The value of the regularization factor represents the weight relationship between the degree of
data fitting and the degree of model fitting. In order to improve the degree of data fitting and model
fitting, we need to adjust the value of the regularization factor in the iterative process. According to
the above reasons, this paper designs a method to select dynamic regularization factors.

In the iterative process, the large-scale shape of the model is outlined by using a larger regularization
factor, and the inversion result is smoother at this time. Then the regularization factor is continuously
reduced to accurately describe the disturbance of the small-scale slowness model, and the inversion
result will be closer to the real model. This method not only ensures the convergence and stability of
the inversion results, but also improves the fitting degree of the data.

Assuming that there is a simple linear relationship in the fitting difference between the data and
the model and regularization factor λ, we can select the next λ according to the variation of the fitting
difference of each iteration inversion. λ decreases with the decrease of data fitting difference. So,
regularization factor λ can be selected dynamically.

3. Fault Model Inversion

We will select a representative and geologically reasonable near surface velocity model to test the
feasibility and reliability of the improved travel time tomographic inversion algorithm proposed in
this paper. The synthetic data is a three-layer fault model. The selection of algorithms and parameters
are as follows:

1. The maximum signal-to-noise ratio method is used for the first arrival travel time extraction.
2. A second-order MSFM method with the highest accuracy is used for the forward travel

time calculation.
3. Selecting the unit matrix as the data weighting matrix.
4. The weighted matrix of the model chooses a composite constraint matrix, which combines

the second-order differential Laplacian with the prior information model obtained by the t0
difference method.

5. The dynamic change of regularization factor selection with the iteration process.
6. Sparse linear equations and least square problems (LSQRs) with the highest efficiency and stability

for solving a large sparse matrix.
7. The number of iterations is 10.

The fault model is shown in Figure 9. The lateral distance is 100 m, and the vertical depth is 40 m.
There is a steep inclined reverse fault interface between 40 m and 60 m. The interface depth of the
first refractive layer increases from 8 m to 16 m, and the interface depth of the second refractive layer
increases from 16 m to 20 m. The first layer has a speed of 1500 m/s, the second layer has a speed of
3500 m/s, and the third layer has a speed of 5500 m/s. The size of the grid is 1 m. The observation
system refers to shooting and receiving conditions on the surface. The offset distance is 4 m, the shot
spacing is 2 m, and the trace spacing is 1 meter. A total of 49 seismic sources and 97 receivers are used.
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Figure 9. Synthetic model.

Figure 10a is a preliminary interpretation result of the t0 difference method for a real model.
In order to avoid the local extremum in the inversion process, Figure 10b is obtained by an inverse
distance gradient weighted interpolation of the interval velocity on the interface of the velocity mutation
from the t0 difference method. Then, the model is used as an a priori model in the inversion process.
Figure 10c is the inversion result. Figure 10d is the corresponding ray path and Figure 11 is the fitting
curve of the inversion iteration error. The error curve is used to evaluate the applicability of the model.

From the inversion results, the layered morphology fitting is very accurate, and the velocity values
of each layer are also consistent with those of the real model. Errors mainly occur at the interface of
the fault location, and the inversion results show a smooth effect. Steep faults become gentle, which
is one of the characteristics of refraction travel time tomography. In addition, the uncertainty of the
depth and velocity of the stratum interface increases towards the edge of the model, which is caused
by insufficient ray coverage at the edge of the model. From the ray path, the ray tends to gather at the
high-speed area and basically glide along the high-speed interface. It can be seen that the depth of the
three-layer interface depicted is more accurate. From the error fitting curve, after 10 iterations, the root
mean square error converges quickly and drops to a very small level, which shows that the data fitting
is very good. In general, the three-layer fault structure has been reconstructed well, which verifies the
effectiveness and reliability of the algorithm.
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4. Inversion Effect Analysis

We next verify the reliability and effectiveness of the algorithm proposed in this paper and
then discuss the differences before and after optimization. This study mainly analyzes the inversion
effect from the forward travel time calculation method and the constraint method in the iterative
inversion process.

4.1. Effect of Forward Travel Time Algorithms

We present two forward travel time calculation methods, FMM and MSFM. In this section, we will
compare the inversion effects of these two algorithms in a fault model. In order to control the variables,
we set the default constraint method as the dynamic prior model composite constraints (DPMCC)
and selected an efficient and stable LSQRs algorithm for linear inversion. Both methods use the t0
difference method to obtain the priori model. The offset distance is 4 m, the shot spacing is 2 m, and
the trace spacing is 1 meter. A total of 49 seismic sources and 97 receivers are used.

Figure 12a is the inversion result of the FMM algorithm, and Figure 12b is the inversion result
of the MSFM algorithm. We can see from the figure that when FMM is used as the forward travel
time calculation method, there are more false anomalies in the reconstructed velocity field, which are
mainly concentrated near the fault.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 19 

4. Inversion Effect Analysis 

We next verify the reliability and effectiveness of the algorithm proposed in this paper and then 

discuss the differences before and after optimization. This study mainly analyzes the inversion effect 

from the forward travel time calculation method and the constraint method in the iterative inversion 

process. 

4.1. Effect of Forward Travel Time Algorithms 

We present two forward travel time calculation methods, FMM and MSFM. In this section, we 

will compare the inversion effects of these two algorithms in a fault model. In order to control the 

variables, we set the default constraint method as the dynamic prior model composite constraints 

(DPMCC) and selected an efficient and stable LSQRs algorithm for linear inversion. Both methods 

use the t0 difference method to obtain the priori model. The offset distance is 4 m, the shot spacing is 

2 m, and the trace spacing is 1 meter. A total of 49 seismic sources and 97 receivers are used. 

Figure 12a is the inversion result of the FMM algorithm, and Figure 12b is the inversion result 

of the MSFM algorithm. We can see from the figure that when FMM is used as the forward travel 

time calculation method, there are more false anomalies in the reconstructed velocity field, which are 

mainly concentrated near the fault. 

As shown in Figure 13, the effect of MSFM is better than that of FMM when the number of 

iterations is the same. In summary, the MSFM proposed in this paper is a better choice for 

tomography forward calculations. 

 

Figure 12. Tomographic inversion results of the fault models using different forward travel time 

algorithms. (a) FMM inversion result; (b) MSFM inversion result. 

 

Figure 13. Error fitting curves using different forward travel time algorithms. 

4.2. Effect of the Constraint Method 

Figure 12. Tomographic inversion results of the fault models using different forward travel time
algorithms. (a) FMM inversion result; (b) MSFM inversion result.



Appl. Sci. 2019, 9, 5439 14 of 19

As shown in Figure 13, the effect of MSFM is better than that of FMM when the number of
iterations is the same. In summary, the MSFM proposed in this paper is a better choice for tomography
forward calculations.
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4.2. Effect of the Constraint Method

Four inversion regularization constraints are presented: smallest model constraints (SMC), flattest
constraints (FC), smoothest constraints (SC), and dynamic prior model composite constraint (DPMCC).
The dynamic prior model composite constraint use the t0 difference method to obtain the a priori
model. The parameters of the four methods are the same. Offset distance is 4 m, shot spacing is 2 m.
Trace spacing is 1 meter. A total of 49 seismic sources and 97 receivers are used.

In this section, we will compare the constraints of these four constraints in the travel time
tomography inversion of the fault model. In order to control the variables, we set the default forward
travel time method as MSFM, with its higher accuracy and efficiency. The LSQRs algorithm was chosen
for solving a large sparse matrix.

As is shown in Figure 14a, there are many false anomalies and the boundaries of the layers are not
clear enough. Figure 14b,c are both in better smoothness than that of Figure 14a. The inversion result
of the algorithm we proposed is shown in Figure 14d. It can be seen that the interface of the layer is
most clearly depicted, and there are few false anomalies. The inversion speed is closer to the real value,
so its stability and convergence are the best.
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As shown in Figure 15, when the number of iterations is the same, the constraint method proposed
in this paper has the best effect. Therefore, DPMCC is a more effective method for inversion calculation.
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5. Results

The refraction exploration data collected in this paper are from the highway tunnel exploration
project, which is located in Northeast China. The purpose of this project is to determine the weak
weathering interface at the entrance of the tunnel and reduce the potential risk of the exit as the entrance
of the tunnel. The geological composition of the area is as follows: the surface layer is quaternary
system, the lower part is bedrock, and the bedrock is not exposed in the area. The inclination of the
ground is about 15◦. Data acquisition was carried out using the seismic refraction method and an
S-Land seismograph produced in the United States. Field measurement was carried out by hammering
the source, which met the requirement of an interchange time difference less than 5 milliseconds. The
length of the measuring line was about 240 m, the sampling rate was 0.5 milliseconds, the sampling
time was 512 milliseconds, and the source spacing was 60 m with 5 sources; each source had 24 seismic
receivers, and the trace spacing was 10 m.

In the first step, we picked up the first arrival wave, as shown in Figure 16a. According to the
far-shot travel time data, the t0 difference method is used for preliminary interpretation, and the basic
formation interface results are obtained, as shown in Figure 16b. Then, the inverse distance gradient
weighted interpolation of the velocity interface between the layers is carried out, and the model of
Figure 16c is obtained. Finally, after the inversion calculation, the elevation data is introduced to get
the results, as shown in Figure 16d.
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The elevation line and geological interpretation map of the tunnel are shown in Figure 17. The green
line represents the upper and lower interfaces of the tunnel. According to the inversion results and
geological data, the velocity range of the first layer, which is quaternary sediment, is 400–600 m/s. The
low velocity layer is very obvious. Generally, the P-wave velocity of quaternary sediments is generally
between 200–800 m/s. The depth of quaternary sediments is about 20–25 m. The velocity interface of
the second layer, which is supposed to be strong weathered Granite, is about 1000–2500 m/s, and the
lowest layer, which is supposed to be weak weathered Granite, is greater than 3000 m/s. The change
rate of P-wave velocity of strong weathered granite is relatively large. The P-wave velocity of weak
weathered granite is relatively high. In conclusion, according to the inversion results, the stratigraphic
structure can be effectively divided.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 19 
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The entrance of the tunnel in 230 m in the horizontal direction. It can be seen from Figure 15 that
the top of the entrance is near the interface between the quaternary sediments and strong weathered
granite. Therefore, attention should be paid to the construction in those areas. The types of lithology
have guiding significance for tunnel excavation. According to the actual situation, it is a better choice
for tunnel excavation to avoid a low-speed zone of strong weathering and select a hard and complete
high-speed zone of rock. Thus, this method has guiding significance for tunnel engineering, can reduce
the blindness of construction, and has the potential to improve the safety and reliability of tunnel
engineering. The exploration of the seismic refraction method is limited by the site conditions, and the
geological situation of the whole tunnel can be understood through very little exploration work. This
method is fast and accurate, and is the first choice of shallow geological investigation work such as
highway route investigation and hidden danger detection.

6. Conclusions

Refraction travel time tomography is not affected by the characteristics of the source and receiver,
and its computational efficiency is much higher than the full waveform inversion method. Therefore,
refraction travel time tomography is widely used in practical production and application. In this paper,
the traditional travel time tomography method is optimized. First, we use MSFM instead of FMM
as a forward algorithm. In the process of inversion calculation, dynamic selection of regularization
factor and a constraint method based on a combination of the minimum perturbation constraints and
smoothest constraints for the t0 difference method are proposed. By testing the synthetic data model,
we proved the effectiveness and reliability of the improved travel time tomography method proposed
in this paper. Through these efforts, we have come to some conclusions.

The t0 difference method was selected for the model test. This method can accurately calculate the
depth of the layer interface and the average velocity of each layer. It can be used as a prior constraint
in the inversion process of refraction travel time tomography.
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The forward simulation shows that MSFM is superior to FMM in calculation accuracy, calculation
efficiency, and adaptability to complex models. In the inversion, when FMM is used as a forward
travel time calculation method, the reconstructed inversion results have more false anomalies, and
FMM’s convergence speed and error are not as good as those of MSFM. Therefore, MSFM should be
selected as the forward algorithm for refraction travel time tomography.

Because refraction travel time tomography is a mixed problem, regularization is needed to reduce
the multiplicity of inversion solutions and improve the stability of these solutions. After synthesizing
the advantages and disadvantages of several constraint methods, a composite constraint combines
the minimum disturbance constraint and the smoothest constraint is proposed. By comparing the
inversion results, it is found that the algorithm proposed in this paper has the least false anomalies
and the best inversion effect. In the selection of regularization factors, this paper proposes a dynamic
regularization factor method. In the iterative process, the large regularization factor is firstly used to
outline the large-scale shape of the model, and then the regularization factor is continuously reduced
to describe the disturbance of the small-scale slowness model.

Finally, the algorithm proposed in this paper was applied to the measured data. The refraction
exploration data collected in this paper were taken from the highway tunnel exploration project, which
is located in Northeast China. The depth of the bedrock can be inferred from the inversion results and
is of guiding significance in tunnel excavation. According to the actual situation, it is a better choice for
tunnel excavation to avoid highly weathered low-speed zones and instead select hard and complete
rock high-speed zones. This could reduce the blindness of the construction and improve the safety and
reliability of tunnel engineering. At the same time, we proved that the algorithm proposed in this
paper is very practical.
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The following abbreviations are used in this manuscript:

FMM Fast marching method
MSFM Multistencils Fast Marching Method
FSM Fast scan method
FDTT Frequency-dependent tomography
LSQRs Sparse Linear Equations and Least Square Problems
SMC Smallest Model Constraints
FC Flattest Constraints
SC Smoothest Constraints
DPMCC Dynamic Prior Model Composite Constraints
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