
applied
sciences

Article

Efficient Parallel Algorithms for 3D Laplacian
Smoothing on the GPU

Lei Xiao 1, Guoxiang Yang 1,*, Kunyang Zhao 2,3 and Gang Mei 1,*
1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;

xiaolei@cugb.edu.cn
2 Airport Engineering Civil Aviation R&D Base, China Airport Construction Group Co., Ltd., Beijing 100621,

China; zhaoky@cacc.com.cn
3 China Super-Creative Airport Technical Co., Ltd., Beijing 100621, China
* Correspondence: yanggx@cugb.edu.cn (G.Y.); gang.mei@cugb.edu.cn (G.M.); Tel.: +86-10-8232-2627 (G.Y.)

Received: 13 November 2019; Accepted: 6 December 2019; Published: 11 December 2019 ����������
�������

Abstract: In numerical modeling, mesh quality is one of the decisive factors that strongly affects the
accuracy of calculations and the convergence of iterations. To improve mesh quality, the Laplacian
mesh smoothing method, which repositions nodes to the barycenter of adjacent nodes without
changing the mesh topology, has been widely used. However, smoothing a large-scale three
dimensional mesh is quite computationally expensive, and few studies have focused on accelerating
the Laplacian mesh smoothing method by utilizing the graphics processing unit (GPU). This paper
presents a GPU-accelerated parallel algorithm for Laplacian smoothing in three dimensions by
considering the influence of different data layouts and iteration forms. To evaluate the efficiency
of the GPU implementation, the parallel solution is compared with the original serial solution.
Experimental results show that our parallel implementation is up to 46 times faster than the
serial version.

Keywords: computational mesh processing; 3D laplacian smoothing; parallel algorithm; graphics
processing unit

1. Introduction

Numerical simulation is the most popular method for studying engineering and physical problems,
and the finite element method (FEM) is the most widely developed and mature method. However,
the accuracy of FEM simulation results is dominated by the quality of the mesh. This is not only because
the mesh is the basis of discretization, but also because of the poor condition of stiffness matrices
caused by poor mesh. To obtain a high quality mesh, many mesh generation methods have been
proposed [1]. The original mesh generated by those improved methods then needs further optimization.
Mesh clean-up and mesh smoothing are the two major categories of optimization. The former improves
the mesh quality by changing the original topology [2,3], such as by encryption and reordering [4].
Mesh smoothing, which relocates vertices to improve the mesh quality, is a simpler method and retains
the mesh topology [5–7]. Laplacian smoothing is a commonly used mesh smoothing methods that
moves nodes in the mesh to the geometric center of the adjacent nodes [8]. Laplacian smoothing is
easy to implement and use because it does not require other complex operations. Various versions
of Laplacian smoothing have been developed to improve the performance of the original form of
Laplacian smoothing [9–11].

However, when dealing with complex meshes consisting of a large number of nodes and elements,
the computation is usually expensive due to the iteration process. To improve the efficiency of
smoothing, parallel computing is introduced as an effective strategy [12]. The parallel implementation

Appl. Sci. 2019, 9, 5437; doi:10.3390/app9245437 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0026-5423
http://dx.doi.org/10.3390/app9245437
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/24/5437?type=check_update&version=3

Appl. Sci. 2019, 9, 5437 2 of 14

of Laplacian smoothing has been developed with the computational power of modern multi-core
central processing unit (CPU) and GPU.

For example, Jiao et al. [13] developed a parallel mesh smoothing algorithm for curved surface
meshes that can retain the original features of the mesh. It was implemented on 128 processors
of distributed storage computers. Sastry and Shontz [14] proposed a new parallel method to
untangle log-barrier meshes and improve their quality with the help of an open message passing
interface (OpenMPI). The experimental results show that the execution time fluctuates within a
certain range when the size of the mesh is proportional to the number of processors executing the
algorithm. Cebrián et al. [15] proposed an efficient code modernization strategies to 3-D Stencil-based
applications while the use of aligned data layout and the dynamic parallel policy can significantly
improve the performance. Titarenko and Hildyard [16] presented a new approach for parallelisation
of a finite difference code on a single processor. The rearranging of data structure can be a useful
strategy in utilizing vectorisation. Sangeet Dahal and Timothy S. Newman [17] developed an efficient
smoothing method for 2D meshes on a GPU and the GPU algorithm has a speedup of 10 to 50 times.
Benitez [18] proposed a highly scalable algorithm for tetrahedral meshes derived from a sequential
mesh optimization method. Hernández et al. [19] analyze the programmability, performance and
energy using a 3-D Finite Difference implementation to evaluate the efficiency of different massively
parallel architectures. The benchmark tests results show the parallel implementation developed on
Maxwell GPU is the most power efficient accelerator which provides the direction of future study.
D’Amato and Venere [20] proposed a heterogeneous computing method to optimize the quality of
large-scale meshes. The algorithm first determines a possible moving position near the smooth node
and then determines the optimal position by evaluating the quality of the moving mesh. By distributing
the elements in multiple threads, it avoids the use of lock strategies and possible data access conflicts.

Most recently, Mei et al. [21] presented a more general paradigm for the two major iteration
forms of Laplacian smoothing. Two special compute unified device architecture (CUDA) kernels were
designed to solve the race condition in neighbor search and data dependence in smooth iteration.
Experimental results have indicated that Form A, which needs to swap intermediate nodal coordinates
is always slower than the form that does not swap data. Zhao et al. [22] further optimized the smart
Laplacian smoothing algorithm with the help of CUDA dynamic parallelism. This nested CUDA code
can greatly simplify the comparison of mesh quality so that the iteration process can be optimized.
However, because a parent core needs to call two subcores, the performance of parallel computing is
not fully utilized, which results in this version being slightly faster than the original GPU version.

It is remarkable that most of the above studies focused on two dimensional cases. However, it is
obvious that mesh composed of tetrahedrons or hexahedrons is more suitable for various kinds of
numerical simulations. Therefore, a parallel solution for Laplacian smoothing in three dimensional
applications is necessary.

This paper presents an efficient three dimensional Laplacian smoothing based on GPU acceleration.
With the help of parallel sort and unique, we search and store the first-order neighbors in the subarea
to avoid conflicts. The effects of different data structures are also considered, including the array of
non-aligned structures, array of aligned structures, and structure of arrays. In addition, new iteration
kernels have been designed, which make full use of the power of the GPU and thus significantly
reduce the number of iterations.

The rest of paper is organized as follows. Some basic concepts and principles of Laplacian
smoothing and data layout is given in Section 2. The next Section 3 presents some key issue and
implementation details of 3D parallel Laplacian Smoothing. Sections 4 and 5 mainly elaborate on the
results of several groups of experimental tests and the discussion of GPU acceleration performance of
each part. Finally, in Section 6 we present our conclusions.

Appl. Sci. 2019, 9, 5437 3 of 14

2. Background

2.1. Laplacian Mesh Smoothing

Mesh smoothing is one of the most important methods for improving the quality of a mesh
by adjusting the location of nodes in the mesh while keeping the topology of the mesh unchanged.
Laplacian smoothing is one of the most basic and common method. The core idea of Laplacian
smoothing is to reposition each node to the centroid of its first-order neighboring nodes; see Figure 1.
On the basis of Laplacian smoothing, many improved versions such as Taubin [11], weighted Laplacian
smoothing [9,23], smart Laplacian smoothing [10,24] and HCLaplacian [25], have been developed.

Original

Position

Center of

Neighbors

Figure 1. A simple illustration of the Laplacian smoothing.

2.2. Iteration Forms

Two forms of Laplacian smoothing are proposed to select the coordinates of the neighboring
nodes during the smoothing process. Form A selects the old coordinates calculated in the previous
pass while Form B uses the new coordinates that have been calculated in the current iteration; see the
following formulations.

Form A:

xq+1
i =

1
N

N

∑
j=1

xq
j , (1)

where N is the number of neighbors of node i, and xq+1
i is the new coordinate after smoothing in next

pass (q + 1).
Form B:

xq+1
i =

1
N

 Nq

∑
j=1

xq
j +

Nq+1

∑
k=1

xq+1
k

 ,

0 ≤ Nq ≤ N

0 ≤ Nq+1 ≤ N
Nq + Nq+1 = N

, (2)

where N is the number of neighbors of node i, and xq+1
i is the new position of node i in the next pass

(q + 1). Nq and Nq+1 are the numbers of neighbors derived from passes q and (q + 1), respectively.
Form A is clearly a special case of the Form B where Nq+1 = 0.

2.3. Data Layouts in Memory

Data structures are usually divided into two types, whether in CUDA or any similar architecture,
array of structures (AoS) and structure of arrays (SoA) forms [26]. The choice of AoS or SoA for
optimal performance usually depends on access patterns. Usually, the use of non-aligned AoS data
structures leads to coalescing issues while SoA structures will certainly be aligned. In general, it is

Appl. Sci. 2019, 9, 5437 4 of 14

more convenient to use the structure-of-arrays in CUDA and single instruction multiple data (SIMD)
programs. However, we will compare the performance of these forms in the following applications;
see Figure 2.

Figure 2. Different data layouts. (a) Array of structures without coalescing; (b) Array of structures
using alignment specifiers; (c) Structure of arrays.

3. GPU-Accelerated Parallel Algorithm for 3D Laplacian Smoothing

3.1. Procedure of the Algorithm

As mentioned above, we divide the Laplacian smooth workflow into three subprocedures.
The first step is to find the first-order domain of each node so that their geometric center can be
determined. The shape and volume of mesh models are major features that should be preserved.
As a result, the boundary points will be constrained, and only the interior points will be smoothed,
which is the work of the second subprocess. Finally, the iteration process calculates the position of the
smoothing node until convergence. The overall workflow is illustrated in Figure 3.

Input MeshInput

Optimized MeshOutput

Processing

Convergence?

(For All Threads In Blocks)No

Yes

Finding Neighbors
Determining

Boundary Nodes

Iteration

TopologyParallel SortParallel Sort Parallel Unique

Figure 3. The whole working process of 3D Laplacian smoothing.

3.2. Details and Key Issues of the Parallel Algorithm

3.2.1. Finding Neighbors

Since the new positions of smooth nodes depend on the coordinates of their first-order neighbors,
they must be found first. Generally, the first-order neighbors of a node are determined by the spatial
topological relationship of the mesh in which the node is located. For a tetrahedron, any node is the
neighbor of the other three nodes.

Appl. Sci. 2019, 9, 5437 5 of 14

A simple and clear method is to allocate an array to store the neighbors in the node structure,
and then search each tetrahedron in the mesh in turn [21]. However, since the number of neighbors
for each node is unknown, we can only allocate the memory of the neighbor array step by step in the
kernel function. This potentially creates data conflicts for the writing operations; it is likely that more
than one thread will write a neighbor of a node to the same element of the array at the same time
(i.e., the same memory address). In addition, due to the existence of variable-size arrays in such data
structures, sorting and other operations will fail in subsequent implementations.

A feasible method is to change the storage structure of neighbors [27]. We use edges as basic
units to store neighbor information. The process of finding the first-order neighbors for each node is
as follows.

First, all edge sets are copied in reverse order and sorted according to the IDs of node A and
then node B so that all the edges with the same node A are listed in succession. These edge sets
constitute the neighbors of a particular node. In this way, the index of each neighbor can be determined
by the head pointer or length of each segment. The head pointer can be obtained by performing a
unique operation. The length can be easily obtained by calculating the distance between each pointer.
The essential ideas are illustrated in Figure 4.

With the help of the CUDA thrust library [28], these unique operations can be easily parallelized;
then, the head positions of all segments can be obtained, and another parallel primitive is invoked to
calculate the lengths of all segments in parallel. Finally, a CUDA kernel is designed to write the header
pointers and the number of the neighbor into memory.

Figure 4. Simple illustration of finding neighbor. (a) Original edge data; (b) Keys represent edge sets
after sorted, value is an auxiliary array; (c) Array after unique. And keys represent nodes, value is the
pointer of neighbors for each node; (d) Keys represent edge sets after sorted, value is an auxiliary array;
(e) Array after reduce. Keys represent nodes, value is the number of neighbors for each node.

3.2.2. Determining Boundary Nodes

Constraint points are used to guarantee the overall topological characteristics of the mesh in the
smoothing process. In this implementation, we use boundary points as constraint points.

In a planar mesh, a point can be judged as a boundary point by checking its neighbors. Similarly,
the boundary points in three dimensional space can be judged by the relationships of the mesh
structure, except that the basic elements are faces rather than edges. The basic idea is that if a face is
used twice in the spatial mesh, it must be an internal surface and the point on it must be an internal
point, while boundary points are the points on surfaces that are used only once.

Appl. Sci. 2019, 9, 5437 6 of 14

The process of determining boundary nodes is as follows:

1. Loop over all elements and store node indices representing their four faces from small to large;
2. Sort the surface array so that any surface can be compared with its adjacent surface to determine

whether it has been used only once (i.e., boundary face);
3. Run a CUDA kernel to record points on the boundary surfaces and set them as constraints.

3.2.3. Iteration Procedure

Laplacian smoothing is an iterative procedure. Unlike the serial implementation of it, the parallel
version requires iterative computation of a series of nodes at the same time. It must be ensured that
the previous iteration is completed before the new iteration begins, and the smoothing process will
use the updated coordinates. Therefore, it is necessary to set a barrier at the end of each iteration.

In CUDA, this kind of data dependence within a single block can be easily solved by using the
barrier __syncthreads(). However, synchronization between all blocks is not designed in CUDA
because it consumes a lot of GPU operations and has low returns. A feasible solution is to allocate only
one block for iteration, so that each iteration is completed before the next step.

Clearly, using only one block effectively avoids data collision, but it does not exploit the GPU
efficiently. Note that in Laplacian smoothing, the current iteration pass always converges regardless
of whether the coordinates of points are updated, and the results remain unchanged. Therefore,
we adopted a new form using multiple blocks; see Figure 5.

In this case, different blocks iterate over the same part of the node together, even though the
coordinates of the nodes they use are not consistent. Blocks that launch earlier use old values,
while those that start later use updated values. The result is always computed towards the end of the
iteration. As the iteration proceeds, more and more blocks converge and exit the computation until the
last block completes the iteration.

0 1 2 3 4 5 6 7 8 9 10 11

Block 1 step 1

Block 2 step 1

Block 1 step 2

Block 2 step 2

Block 1 step 3

Block 2 step 3

Figure 5. The working form of the optimized kernel (numbers indicate the nodes waiting for smoothing.
It should be noted that the order of the blocks is uncertain. The labels of blocks in the figure are for the
convenience of illustration.)

4. Results

4.1. Experimental Environment and Testing Data

Five groups of three dimensional meshes are generated as experimental data, with a number
of points from 5k to 100k. First, a user-specified cube is determined, and the nodes are distributed
equidistantly on it; then, nodes are generated randomly in this spatial range; finally, Delaunay meshes
consisting of these discrete point sets are created using TetGen library [29]. In addition, we also test a
slope model with 77k nodes as a supplement.

These parallel solution tests are performed on a workstation computer. The specifications of the
workstation are listed in Table 1.

Appl. Sci. 2019, 9, 5437 7 of 14

Table 1. Specifications of the workstation employed for performing experimental tests.

Specifications Details

CPU Intel Xeon Gold 5118
CPU Frequency (GHz) 2.30
CPU RAM (GB) 128
CPU core 48
GPU NVIDIA Quadro P6000
GPU memory (GB) 24
CUDA cores 3840
OS Windows 10 Professional
Compiler VS2015 Community
CUDA version v9.0

4.2. The Running Time and Speedup of Form A in Standard Laplacian smoothing

Iteration Form A uses updated coordinates that have been calculated in current pass. As a result,
it must exchange data during the iterating process. Tables 2–4 show the results of implementing
Form A in different data layouts.

Table 2. Running time and speedup when using the non-aligned AoS data layout.

Size Elements
Running Times (ms) Speed Up

CPU Single
Block

Multiple
Blocks

Single
Block

Multiple
Blocks

5k 33k 200.6 175 94 1.15 2.13
10k 66k 677.1 569.6 228.6 1.19 2.96
50k 391k 5660.4 2159.8 446 2.62 12.69
77k 388k 8232.6 4824 678 1.71 12.14

100k 727k 22,365.4 5985 2441.4 3.74 9.16

Table 3. Running time and speedup when using the aligned AoS data layout.

Size Elements
Running Times (ms) Speed Up

CPU Single
Block

Multiple
Blocks

Single
Block

Multiple
Blocks

5k 33k 200.6 106.2 58.4 1.89 3.43
10k 66k 677.1 311.6 96.2 2.17 7.04
50k 391k 5660.4 1358.6 361.8 4.17 15.65
77k 388k 8232.6 3696 473 2.23 17.41

100k 727k 22,365.4 3723.2 1661.2 6.01 13.46

Table 4. Running time and speedup when using the SoA data layout.

Size Elements
Running Times (ms) Speed Up

CPU Single
Block

Multiple
Blocks

Single
Block

Multiple
Blocks

5k 33k 200.6 140.8 76 1.42 2.64
10k 66k 677.1 462.8 143.6 1.46 4.71
50k 391k 5660.4 1874.4 465 3.02 12.17
77k 388k 8232.6 4193.4 678.4 1.96 12.14

100k 727k 22,365.4 5231.8 899.4 4.27 24.87

Appl. Sci. 2019, 9, 5437 8 of 14

4.3. The Running Time and Speedup of Form B in Standard Laplacian Smoothing

Iteration Form B does not need to exchange data immediately. Tables 5–7 show the results of
implementing Form B in different data layouts.

Table 5. Running time and speedup when using the non-aligned AoS data layout.

Size Elements
Running Times (ms) Speed Up

CPU Single
Block

Multiple
Blocks

Single
Block

Multiple
Blocks

5k 33k 200.6 101.4 76 1.98 2.64
10k 66k 677.1 315.6 216.6 2.15 3.13
50k 391k 5660.4 1175.2 254.2 4.82 22.27
77k 388k 8232.6 2437.7 440.8 3.38 18.68

100k 727k 22,365.4 2905.2 783.4 7.70 28.55

Table 6. Running time and speedup when using the aligned AoS data layout.

Size Elements
Running Times (ms) Speed Up

CPU Single
Block

Multiple
Blocks

Single
Block

Multiple
Blocks

5k 33k 200.6 57 35.4 3.52 5.67
10k 66k 677.1 157.8 102.4 4.29 6.61
50k 391k 5660.4 674.33 172.6 8.39 32.79
77k 388k 8232.6 1496.6 235.8 5.50 34.91

100k 727k 22,365.4 1632.2 484.6 13.70 46.15

Table 7. Running time and speedup when using the SoA data layout.

Size Elements
Running Times (ms) Speed Up

CPU Single
Block

Multiple
Blocks

Single
Block

Multiple
Blocks

5k 33k 200.6 80.8 43.4 2.48 4.62
10k 66k 677.1 253 129.2 2.68 5.24
50k 391k 5660.4 1004.4 172.6 5.64 25.94
77k 388k 8232.6 2010.8 332.6 4.09 24.75

100k 727k 22,365.4 2506 523.8 8.92 42.70

5. Discussion

5.1. Evaluation of Our Algorithm

5.1.1. Performance of Parallel Method of Finding Neighbors

The method we use to find the first-order neighborhood is easy to implement. Unlike mesh coloring,
one of the most popular methods for dealing with race condition issues, it only needs a handful of
kernels to complete data transmission, while the other parts of the algorithm are implemented by
thrust library without much additional code.

As mentioned in Section 3.2.1, an auxiliary array of sequenced integers is allocated to determine
the head pointer of each neighbor’s segment. Then, a parallel scan is implemented with the help
of thrust::unique_by_keys(). After eliminating the edges of the same first node, the indices of
neighbors can be easily obtained. Similarly, an auxiliary array is created to quickly calculate the length
of each segment; then, the primitive thrust::reduction_by_keys() is used to collect all edges in the
same segment; finally, both the head pointer and the number of each node are obtained and stored in
the corresponding array.

Appl. Sci. 2019, 9, 5437 9 of 14

This significantly improves the efficiency of implementation; see Figure 6.

77

R
u

n
n

in
g

 T
im

e(
m

s)

Figure 6. The running time for finding neighbors in serial and parallel versions.

5.1.2. Impact of Data Layouts

Figure 7 shows the speedups for different data layouts. This indicates that non aligned AoS
is the slowest and SoA performs better while the aligned version of AoS is the best. This behavior
is mainly due to the coalesced memory accesses. Note that the alignment specifier __align__() in
CUDA works only when the structure size is less than 16 bytes since there are more than one global
memory access cannot be merged while beyond this upper limit. Aligned AoS may be the best data
layouts in this implementation, but it is usually easier to achieve rapid speedup using SoA.

77

Figure 7. Comparison of the speedups for different data layouts.

5.1.3. Different Iteration Forms

According to the results, Form B Laplacian smoothing is always faster than Form A which needs
to update node coordinates immediately in its iterations; see Figure 8.

Appl. Sci. 2019, 9, 5437 10 of 14

There are two possible reasons for this performance. First, Form A requires data exchange,
which means more memory for storing new coordinates and more frequent global memory access.
Global memory is the largest and most commonly used memory in the GPU, but it also has the highest
latency compared with other memory. Too much global memory access reduces throughput efficiency.
The other reason is that Form A updates the coordinates of smooth nodes immediately after each
iteration, which makes the calculation more accurate and reasonable in theory. However, it does not
significantly improve accuracy but leads to an increase in the number of iterations. Figure 9 shows the
number of convergences for both iteration forms; it can be seen that the larger the scale of the test data,
the greater the number of convergences of Form A compared with Form B. As a result, it is wise to use
Form B in practice.

77

Figure 8. Speedup of Form B over Form A in different data layouts.

77

Figure 9. Speedup of Form B over Form A in different data layouts.

Appl. Sci. 2019, 9, 5437 11 of 14

5.1.4. Analysis of the Improvement of Iterative Convergence Speed

The iteration procedure dominates most of the running time. Therefore, accelerating the speed of
iteration convergence is the core task to improve the efficiency of the algorithm. Data dependence is
the main problem that needs to be solved. Using thread synchronization is an effective solution to this
problem. However, because it is limited by the current GPU architecture, a block contains a maximum
of 1024 threads; that is to say, the old solution only allows 1024 threads to participate in the calculation
at the same time, which is less than the usual number of simultaneous calls by the GPU.

As mentioned in Section 3.2.3, a new kernel with multiple blocks is designed to compute the
smoothing process of the same set of nodes to make the iteration more efficient. Even though the data
used in the iteration may be duplicate, the interleaving operations make each thread converge faster
and precisely as well. First, the iteration times for multiple blocks are a great deal less than for a single
one; see Figure 10. Moreover, the final result is close to or even equal to the true value (i.e., the error is
less than 0.0001). In any case, as shown in Figure 11, this version runs 2∼6 times faster.

77

R
u
n
n
in

g
 T

im
e(

m
s)

Figure 10. Iteration times of single block and multiple blocks.

77

Figure 11. Speedup of multiple blocks over single block in different data layouts.

Appl. Sci. 2019, 9, 5437 12 of 14

5.2. Outlook

Laplacian smoothing is a simple and common mesh optimization method. Because of its simple
theory, it is easy to create inverted or even invalid elements when dealing with high concave areas.
However, it is this simplicity that makes its operation efficient and timesaving, making it still the
most popular method. Compared with other optimization algorithms, its speed advantage is quite
obvious. Additionally, other optimized versions of Laplacian smoothing do not significantly increase
running time while improving smoothness based on curvature or preventing the overall shrinkage of
the model. Therefore, these versions are also worth exploring in the future.

6. Conclusions

In this paper, we have presented an efficient parallel Laplacian smoothing algorithm in three
dimensions using GPU acceleration. Two different iteration methods and three data layouts are
employed to implement the parallel algorithm. We have also designed a parallel method to find
first-order neighbors while avoiding potential race condition problems. A novel iteration kernel is
implemented to optimize GPU utilization while solving the problem of data dependence. Five groups
of benchmark tests show that the speedup of GPU implementation reaches 46×. They also indicate
that the data structure SoA is nearly 1.5 times faster than non-aligned AoS while the aligned version
of AoS achieves the best efficiency. Iteration Form A requires more data exchange, which results
its spending more time on global memory access. In the long run, it is always slower than Form B.
Moreover, by using a special strategy, allocating multiple blocks does not cause data dependence
problems and makes it easy for the iterations to converge.

Author Contributions: Conceptualization, L.X., G.M., G.Y.; Methodology, L.X., G.Y., G.M., K.Z.; Writing-Original
Draft Preparation, L.X., G.M.; Writing-Review & Editing, L.X., G.Y., G.M., K.Z.

Funding: This research was jointly supported by the National Natural Science Foundation of China (Grant
No. 11602235), and the Fundamental Research Funds for China Central Universities (Grant Nos. 2652018091,
2652018107, and 2652018109).

Acknowledgments: The authors would like to thank the editor and the reviewers for their contributions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GPU Graphics Processing Unit
FEM Finite Element Method
CPU Central Processing Unit
OpenMPI Open Message Passing Interface
CUDA Compute Unified Device Architecture
SoA Structure-of-Arrays
AoS Array-of-Structures
SIMD Single Instruction Multiple Data

References

1. Owen, S. A Survey of Unstructured Mesh Generation Technology. In Proceedings of the 7th International
Meshing Roundtable, Dearborn, MI, USA, 26–28 October 2000; Volume 3.

2. Chen, J.; Jin, X.; Deng, Z. GPU-based polygonization and optimization for implicit surfaces. Vis. Comput.
2014, 31, 119–130. [CrossRef]

3. D’Amato, J.; Lotito, P. Mesh optimization with volume preservation using GPU. Lat. Am. Appl. Res. 2011,
41, 291–297.

4. Choi, J.; Kim, H.; Sastry, S.; Kim, J. A Deviation-Based Dynamic Vertex Reordering Technique for 2D Mesh
Quality Improvement. Symmetry 2019, 11, 895. [CrossRef]

http://dx.doi.org/10.1007/s00371-014-0924-7
http://dx.doi.org/10.3390/sym11070895

Appl. Sci. 2019, 9, 5437 13 of 14

5. Dassi, F.; Kamenski, L.; Farrell, P.; Si, H. Tetrahedral mesh improvement using moving mesh smoothing,
lazy searching flips, and RBF surface reconstruction. Comput. Aided Des. 2018, 103, 2–13. [CrossRef]

6. Aupy, G.; Park, J.; Raghavan, P. Locality-Aware Laplacian Mesh Smoothing. In Proceedings of the 2016
45th International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016;
pp. 588–597. [CrossRef]

7. Durand, R.; Pantoja Rosero, B.; Oliveira, V. A general mesh smoothing method for finite elements. Finite Elem.
Anal. Des. 2019, 158, 17–30. [CrossRef]

8. Herrmann, L. Laplacian-isoparametric grid generation scheme. ASCE J. Eng. Mech. Div. 1976, 102, 749–756.
9. Blacker, T.; Stephenson, M. Paving: A new approach to automated quadrilateral mesh generation. Int. J.

Numer. Methods Eng. 1991, 32, 811–847. [CrossRef]
10. Freitag, L. On Combining Laplacian And Optimization-Based Mesh Smoothing Techniques. Am. Soc. Mech.

Eng. Appl. Mech. Div. AMD 1999, 220, 37–43.
11. Taubin, G. A Signal Processing Approach to Fair Surface Design. In Proceedings of the SIGGRAPH ’95

Proceedings Computer Graphics, Los Angeles, CA, USA, 9–11 August 1995; Volume 29. [CrossRef]
12. Zegard, T.; Paulino, G. Toward GPU accelerated topology optimization on unstructured meshes.

Struct. Multidiscip. Optim. 2013, 48, 473–485. [CrossRef]
13. Jiao, X.; Alexander, P.J. Parallel Feature-Preserving Mesh Smoothing. In International Conference on

Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3483,
pp. 1180–1189.

14. Sastry, S.; Shontz, S. A parallel log-barrier method for mesh quality improvement and untangling.
Eng. Comput. 2014, 30, 503–515. [CrossRef]

15. Cebrian, J.; Cecilia, J.; Hernández Hernández, M.; Garcia, J. Code modernization strategies to 3-D
Stencil-based applications on Intel Xeon Phi: KNC and KNL. Comput. Math. Appl. 2017, 74, 2557–2571.
[CrossRef]

16. Titarenko, S.; Hildyard, M. Hybrid Multicore/vectorisation technique applied to the elastic wave equation
on a staggered grid. Comput. Phys. Commun. 2017, 216, 53–62. [CrossRef]

17. Dahal, S.; Newman, T. Efficient, GPU-based 2D mesh smoothing. In Proceedings of the IEEE
SOUTHEASTCON, Lexington, KY, USA, 13–16 March 2014. [CrossRef]

18. Benitez, D.; Rodríguez, E.; Escobar, J.; Montenegro, R. The Effect of Parallelization on a Tetrahedral Mesh
Optimization Method. In Proceedings of the International Conference on Parallel Processing and Applied
Mathematics, Warsaw, Poland, 8–11 September 2013; pp. 163–173. [CrossRef]

19. Hernández Hernández, M.; Imbernón, B.; Navarro, J.M.; Garcia, J.; Cebrian, J.; Cecilia, J. Evaluation of
the 3-D finite difference implementation of the acoustic diffusion equation model on massively parallel
architectures. Comput. Electr. Eng. 2015, 46, 190–201. [CrossRef]

20. D’Amato, J.; Vénere, M. A CPU–GPU framework for optimizing the quality of large meshes. J. Parallel
Distrib. Comput. 2013, 73, 1127–1134. [CrossRef]

21. Mei, G.; Tipper, J.; Xu, N. A Generic Paradigm for Accelerating Laplacian-Based Mesh Smoothing on the
GPU. Arab. J. Sci. Eng. 2014, 39, 7907–7921. [CrossRef]

22. Yang, K.; Mei, G.; Xu, N.; Zhang, J. On the Accelerating of Two-dimensional Smart Laplacian Smoothing on
the GPU. J. Inf. Comput. Sci. 2015, 12, 5133–5143.

23. Zhong, S.; Xie, Z.; Wang, W.; Liu, Z.; Liu, L. Mesh denoising via total variation and weighted Laplacian
regularizations: Mesh Denoising via Total Variation and Weighted Laplacian. Comput. Anim. Virtual Worlds
2018, 29, e1827. [CrossRef]

24. Wei, M.; Shen, W.; Qin, J.; Wu, J.; Wong, T.T.; Heng, P.A. Feature-preserving optimization for noisy mesh
using joint bilateral filter and constrained Laplacian smoothing. Opt. Lasers Eng. 2013, 51, 1223–1234.
[CrossRef]

25. Vollmer, J.; Mencl, R.; Müller, H. Improved Laplacian Smoothing of Noisy Surface Meshes.
Comput. Graph. Forum 1999, 18, 131–138. [CrossRef]

26. Strzodka, R. Abstraction for AoS and SoA layout in C++. GPU Compu. Gems Jade Ed. 2012, 429–441.
[CrossRef]

27. Mei, G.; Xu, N.; Tian, H.; Li, S. A Parallel Solution to Finding Nodal Neighbors in Generic Meshes. arXiv
2016, arXiv:1604.04689.

http://dx.doi.org/10.1016/j.cad.2017.11.010
http://dx.doi.org/10.1109/ICPP.2016.74
http://dx.doi.org/10.1016/j.finel.2019.01.010
http://dx.doi.org/10.1002/nme.1620320410
http://dx.doi.org/10.1145/218380.218473
http://dx.doi.org/10.1007/s00158-013-0920-y
http://dx.doi.org/10.1007/s00366-014-0362-1
http://dx.doi.org/10.1016/j.camwa.2017.07.032
http://dx.doi.org/10.1016/j.cpc.2017.02.022
http://dx.doi.org/10.1109/SECON.2014.6950720
http://dx.doi.org/10.1007/978-3-642-55195-6_15
http://dx.doi.org/10.1016/j.compeleceng.2015.07.001
http://dx.doi.org/10.1016/j.jpdc.2013.03.007
http://dx.doi.org/10.1007/s13369-014-1406-y
http://dx.doi.org/10.1002/cav.1827
http://dx.doi.org/10.1016/j.optlaseng.2013.04.018
http://dx.doi.org/10.1111/1467-8659.00334
http://dx.doi.org/10.1016/B978-0-12-385963-1.00031-9

Appl. Sci. 2019, 9, 5437 14 of 14

28. Bell, N.; Hoberock, J.; Rodrigues, C. THRUST: A productivity-oriented library for CUDA. GPU Compu. Gems
Jade Ed. 2017, 475–491. [CrossRef]

29. Si, H. TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator (Version
1.5—User’s Manual). 2013. Available online: https://www.semanticscholar.org/paper/TetGen%3A-A-
quality-tetrahedral-mesh-generator-and-a-Si/9cc4ac240a6cda8e29561738a101cbc4509c4c87 (accessed on
11 November 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/B978-0-12-811986-0.00033-9
https://www.semanticscholar.org/paper/TetGen%3A-A-quality-tetrahedral-mesh-generator-and-a-Si/9cc4ac240a6cda8e29561738a101cbc4509c4c87
https://www.semanticscholar.org/paper/TetGen%3A-A-quality-tetrahedral-mesh-generator-and-a-Si/9cc4ac240a6cda8e29561738a101cbc4509c4c87
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Laplacian Mesh Smoothing
	Iteration Forms
	Data Layouts in Memory

	GPU-Accelerated Parallel Algorithm for 3D Laplacian Smoothing
	Procedure of the Algorithm
	Details and Key Issues of the Parallel Algorithm
	Finding Neighbors
	Determining Boundary Nodes
	Iteration Procedure

	Results
	Experimental Environment and Testing Data
	The Running Time and Speedup of Form A in Standard Laplacian smoothing
	The Running Time and Speedup of Form B in Standard Laplacian Smoothing

	Discussion
	Evaluation of Our Algorithm
	Performance of Parallel Method of Finding Neighbors
	Impact of Data Layouts
	Different Iteration Forms
	Analysis of the Improvement of Iterative Convergence Speed

	Outlook

	Conclusions
	References

