
applied  
sciences

Article

Gear Fault Diagnosis Based on Kurtosis Criterion
VMD and SOM Neural Network

Dongming Xiao 1,2, Jiakai Ding 1,2 , Xuejun Li 1,* and Liangpei Huang 2

1 School of Mechatronics Engineering, Foshan University, Foshan 528225, China;
dongming.xiao@outlook.com (D.X.); jiakai1996@outlook.com (J.D.)

2 Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of
Science and Technology, Xiangtan 411201, China; huanglp413@163.com

* Correspondence: hnkjdxlxj@163.com; Tel.: +86-135-0732-2252

Received: 2 November 2019; Accepted: 6 December 2019; Published: 11 December 2019
����������
�������

Abstract: A gear fault diagnosis method based on kurtosis criterion variational mode decomposition
(VMD) and self-organizing map (SOM) neural network is proposed. Firstly, the VMD algorithm is
used to decompose the gear vibration signal, and the instantaneous frequency mean is calculated as
the evaluation index, and the characteristic curve is drawn to screen out the most relevant intrinsic
mode functions (IMFs) of the original vibration signal. Then, the number of VMD decompositions
is determined, and the kurtosis value of IMFs are extracted to form the feature vectors. Then, the
kurtosis value feature vectors of IMFs are normalized to form the kurtosis value normalized vectors.
Finally, the normalized vectors of kurtosis value are input into SOM neural network to realize gear
fault diagnosis. When the number of training times of SOM neural network is 100, the gear fault
category is accurately classified by SOM neural network. The results show that when the training
times of SOM neural network is 100 times, the gear fault diagnosis method, based on the kurtosis
criterion VMD and SOM neural network is 100%, which indicates that the new method has a good
effect on gear fault diagnosis.

Keywords: variational mode decomposition; kurtosis value; SOM neural network; instantaneous
frequency mean; gear fault diagnosis

1. Introduction

The gearbox is an important part of the mechanical transmission. The failure of the gear in the
gearbox will lead to the damage of the system, which will be paralyzed in serious cases. Therefore,
gear fault monitoring and diagnosis is an important means to prevent system damage. In the operation
of the gearbox, the vibration signal generated by the gear failure is weak and difficult to monitor.
Therefore, it is especially important to monitor the vibration signal of gear faults.

Vibration signal monitoring is an important means of gear fault diagnosis [1]. In the past,
the sensor signal transmission in industrial monitoring was transmitted by wire, but with the rise
of the Internet of things (IoT), it has become an important technology in the monitoring system [2].
For offshore wind turbines, the gear is usually used for wind turbines, but due to the limitation of
its internal structure, there is not enough space for sensors to monitor signals for fault diagnosis,
so an inductive thermal imaging method is proposed to detect gear faults by Gao [3]. In the aspect
of gear fault monitoring based on data, a signal processing method is used to process gear fault
signal. Traditional signal processing methods have been widely applied to gear fault diagnosis, such
as time-frequency analysis [4], wavelet analysis [5,6], Hibert-Huang transform (HHT), empirical mode
decomposition (EMD) [7], and local mode decomposition (LMD) [8]. However, the wavelet transform
is based on the analysis of the specified wavelet base. Once the specified wavelet base is specified,
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the decomposed mode is fixed. It is better to use different wavelet bases for the analysis of different
signals to achieve the best processing effect. EMD and LMD are prone to endpoint effect and mode
mixing during the decomposition process. Therefore, Dragomiretskiy [9] proposed a variational
mode decomposition to solve the problems caused by EMD and LMD in the decomposition process.
Wang [10] used variational mode decomposition (VMD) to extract various fault features of the gearbox
under strong noise environment, and compared with the ensemble empirical mode decomposition
(EEMD) decomposition results, it shows that the algorithm can effectively improve the signal-to-noise
ratio of the signal. Li [11] proposed a fault diagnosis method based on VMD and generalized composite
multi-scale dynamic entropy (GCMSDE) to identify different health conditions of planetary gearboxes.
Feng [12] uses VMD to decompose the planetary gearbox vibration signal into several intrinsic mode
functions (IMFs), and performs Fourier transform on the amplitude envelope and instantaneous
frequency of the sensitive IMFs to obtain the amplitude and frequency demodulation spectrum. The
planetary gearbox faults have been detected based on demodulation and have been successfully
identified on all three gears (sun gear, planetary gear, and ring gear). Wang [13] used the improved
VMD algorithm to diagnose the gearbox and compared it with EEMD to verify the effectiveness of the
proposed method. Si [14] proposes an improved VMD linked wavelet denoising method, which can
suppress high frequency narrowband noise and normal noise in electromagnetic acoustic transducer
(EMAT) signal, and this method can retain defect information.

In recent years, researchers have studied a large number of fault classification algorithms. Among
them, the gear fault classification algorithms mainly include support vector machine (SVM) [15],
artificial neural network (ANN) [16], and deep learning [17]. Chen [18] proposed a gearbox fault
diagnosis model based on wavelet support vector machine. The results show that it has stronger
generalization ability and higher diagnostic accuracy than artificial neural network and support vector
machine with random extraction parameters. Bordoloi [19] used different optimization methods
to optimize SVM parameters and used continuous wavelet transform (CWT) and wavelet packet
transform (WPT) for feature extraction. The results showed that when time-domain signals were
used, their classification ability was lower than their prediction ability. Compared with SVM, neural
network has strong generalization ability, so it is widely used in fault diagnosis. Kohonen [20]
proposed a self-organizing map (SOM) neural network, which utilizes various features in the signal
and the characteristics of the internal representation of its spatial organization for self-organization
and self-learning, and then hierarchical clustering. A gear fault diagnosis method based on HHTand
SOM neural network is proposed by Cheng [21], which used EMD to decompose gear vibration signals
to obtain several IMFs, and selected the energy percentage of the first six IMFs as the input vector of
SOM neural network for fault identification. The analysis results show that this method can effectively
identify gear fault types. The SOM-radial basis function (RBF) neural network to detect and analyze
the fault of induction motor is used by Wu [22]. The results show that the method can not only detect
electrical and mechanical faults, but also estimate the degree of fault.

Based on the studies in the above literatures, due to the problems of mode mixing and endpoint
effect in EMD and LMD methods, VMD was adopted for signal decomposition in this paper.At the
same time, VMD is difficult to determine the penalty factor and the number of modal decomposition in
the decomposition process, so the instantaneous frequency mean change of each component of the fault
signal after VMD decomposition is put forward as an evaluation index, so as to determine the number
of modal decomposition in the VMD process. At the same time, in order to highlight the characteristics
of the signal, the kurtosis value is used as the characteristic parameter of the signal to extract, and a
gear fault diagnosis based on the kurtosis criterion VMD and SOM neural network is proposed.
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2. Experiment and the Procedure

2.1. Experimental System and Data Acquisition

In order to verify the effectiveness of the proposed kurtosis criterion VMD and SOM neural
network method in gear fault diagnosis, a spiral bevel gear test rig was established and tested. The
experimental system is shown in Figure 1. The test rig includes a three-phase asynchronous motor (7)
for driving, a speed reducer (5), and an electromagnetic speed control motor controller (8) for motor
speed regulation. The reducer (5) is connected to the output shaft by a coupling (3), and the speed
of the three-phase asynchronous motor (7) is controlled by a speed controller, which can operate the
reducer (5) to be tested at various speeds. The reducer (5) to be diagnosed is Shanghai Nini reducer, the
model is T6-3/1-LR (Shanghai Nini reducer Co., Ltd, Shanghai, China), which is driven by three-phase
asynchronous motor (7) through coupling (6). The rated power output of three-phase asynchronous
motor (7) (Shanghai Bengxin electric motor Co., Ltd, Shanghai, China) is 1.1kW. Among them, the
electromagnetic speed-regulating motor controller (8) (Shanghai Shanchuang instrument & meter
Co., Ltd, Shanghai, China) allows manual adjustment of load torque. The vibration signal of the
reducer (5) is collected by the acceleration sensor (4), which adopts 4514b-001 acceleration sensor (4)
produced by B&K company in Denmark. Among them, the acceleration sensor (4) output is sent to
laptop (1) through data acquisition analyzer (B&K, Type 3053-b120, B&K company, Denmark) (2).
The acceleration sensor (4) layout position is at the output shaft of gear reducer (5). The B&K data
acquisition analyzer (2) is used to collect the vibration signals of the gears when it is, so as to simulate
the deterioration process of gear fault. The failure parts of normal gear, gear with tooth wear, gear
with tooth crack, and gear with tooth break in the spiral bevel gear test rig is shown in Figure 2.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 25 

In order to verify the effectiveness of the proposed kurtosis criterion VMD and SOM neural 
network method in gear fault diagnosis, a spiral bevel gear test rig was established and tested. The 
experimental system is shown in Figure 1. The test rig includes a three-phase asynchronous motor 
(7) for driving, a speed reducer (5), and an electromagnetic speed control motor controller (8) for 
motor speed regulation. The reducer (5) is connected to the output shaft by a coupling (3), and the 
speed of the three-phase asynchronous motor (7) is controlled by a speed controller, which can 
operate the reducer (5) to be tested at various speeds. The reducer (5) to be diagnosed is Shanghai 
Nini reducer, the model is T6-3/1-LR (Shanghai Nini reducer Co., Ltd, Shanghai, China), which is 
driven by three-phase asynchronous motor (7) through coupling (6). The rated power output of 
three-phase asynchronous motor (7) (Shanghai Bengxin electric motor Co., Ltd, Shanghai, China) is 
1.1kW. Among them, the electromagnetic speed-regulating motor controller (8) (Shanghai 
Shanchuang instrument & meter Co., Ltd, Shanghai, China) allows manual adjustment of load 
torque. The vibration signal of the reducer (5) is collected by the acceleration sensor (4), which 
adopts 4514b-001 acceleration sensor (4) produced by B&K company in Denmark. Among them, the 
acceleration sensor (4) output is sent to laptop (1) through data acquisition analyzer (B&K, Type 
3053-b120, B&K company, Denmark)(2). The acceleration sensor (4) layout position is at the output 
shaft of gear reducer (5). The B&K data acquisition analyzer (2) is used to collect the vibration signals 
of the gears when it is, so as to simulate the deterioration process of gear fault. The failure parts of 
normal gear, gear with tooth wear, gear with tooth crack, and gear with tooth break in the spiral 
bevel gear test rig is shown in Figure 2. 

 

Figure 1. Experimental system: (1) laptop, (2) B&K data acquisition analyzer, (3) coupling, (4) 
acceleration sensor, (5) reducer, (6) coupling, (7) three-phase induction motor, and (8) 
electromagnetic speed control motor controller. 

Figure 1. Experimental system: (1) laptop, (2) B&K data acquisition analyzer, (3) coupling, (4) acceleration
sensor, (5) reducer, (6) coupling, (7) three-phase induction motor, and (8) electromagnetic speed control
motor controller.



Appl. Sci. 2019, 9, 5424 4 of 25

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 25 

 

Figure 2. (a) Normal gear, (b) gear with tooth wear, (c) gear with tooth crack, and (d) gear with tooth 
break. 

In this paper, normal gear, gear with tooth wear, gear with tooth crack, and gear with tooth 
break under four conditions were analyzed. Among them, the sampling frequency of gear vibration 
signal is 8192Hz, the acquisition duration of each signal is 0.25s, and a total of 16 segments of data 
are collected. 

2.2. Fault Diagnosis Process Based on Kurtosis Criterion VMD and SOM Neural Network 

Noise will inevitably be introduced in the process of gear vibration signal acquisition, which 
will cause adverse impact on fault diagnosis. Therefore, this paper proposes a method based on 
kurtosis criterion VMD and SOM neural network for gear fault diagnosis and identification. Fault 
diagnosis flow chart is shown in Figure 3: 

The specific steps are as follows: 
Step 1. According to a certain sampling frequency sf , vibration signals of gear under four 

working conditions of normal gear, gear with tooth wear, gear with tooth crack and gear with tooth 
break for N  times were collected, with a total of 4N  samples; 

Step 2. VMD decomposition was carried out for each vibration signal, and a total of k IMFs 
were decomposed; 

Step 3. Extract the kurtosis value of each IMFs to form the feature vectors; 
Step 4. Normalized feature vectors; 
Step 5. Input normalized vector to SOM neural network for fault diagnosis; 
Step 6. Output fault diagnosis results. 

Figure 2. (a) Normal gear, (b) gear with tooth wear, (c) gear with tooth crack, and (d) gear with
tooth break.

In this paper, normal gear, gear with tooth wear, gear with tooth crack, and gear with tooth break
under four conditions were analyzed. Among them, the sampling frequency of gear vibration signal is
8192Hz, the acquisition duration of each signal is 0.25s, and a total of 16 segments of data are collected.

2.2. Fault Diagnosis Process Based on Kurtosis Criterion VMD and SOM Neural Network

Noise will inevitably be introduced in the process of gear vibration signal acquisition, which will
cause adverse impact on fault diagnosis. Therefore, this paper proposes a method based on kurtosis
criterion VMD and SOM neural network for gear fault diagnosis and identification. Fault diagnosis
flow chart is shown in Figure 3:

The specific steps are as follows:
Step 1. According to a certain sampling frequency fs, vibration signals of gear under four working

conditions of normal gear, gear with tooth wear, gear with tooth crack and gear with tooth break for N
times were collected, with a total of 4N samples;

Step 2. VMD decomposition was carried out for each vibration signal, and a total of k IMFs
were decomposed;

Step 3. Extract the kurtosis value of each IMFs to form the feature vectors;
Step 4. Normalized feature vectors;
Step 5. Input normalized vector to SOM neural network for fault diagnosis;
Step 6. Output fault diagnosis results.
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3. Based on the Kurtosis Criterion VMD Gear Fault Feature Extraction Method

3.1. VMD Signal Decomposition

The VMD algorithm was proposed by Dragomiretskiy and Zosso in 2014. The VMD algorithm
decomposes the collected gear vibration signal x(t) by constructing a variational model, and adaptively
decomposes the gear vibration signal x(t) by searching for the constrained variational optimal solution.
The signal is adaptively decomposed into k IMFs xk(t) [23]:

Finally, the decomposed IMFs xk(t) are used to construct the squared L2 norm of the VMD
algorithm is expressed as:

min
{uk},{ωk}

∑k
∥∥∥∥∥∥∂t

[
(δ(t) + j

πt ) × xk(t)
]
e− jωkt

∥∥∥∥∥∥2

2


s.t.

∑
k=1

uk = x(t)
(1)

where: ∂t is the partial derivative of t, x(t) is the original signal, ωk is the bandwidth center frequency,
and δt is the pulse signal. In this paper, k = 4 is derived based on the magnitude of the instantaneous
frequency value.
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The time-domain and frequency-domain diagrams of vibration signals collected under four
working conditions of normal gear, gear with tooth wear, gear with tooth crack, and gear with tooth
break are shown in Figure 4.
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Figure 4. Time-domain and frequency-domain diagram of gear vibration signal: (a) Normal gear 
vibration signal, (b) gear with tooth wear vibration signal, (c) gear with tooth crack vibration signal, 
and (d) gear with tooth break vibration signal. 
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Figure 4. Time-domain and frequency-domain diagram of gear vibration signal: (a) Normal gear
vibration signal, (b) gear with tooth wear vibration signal, (c) gear with tooth crack vibration signal,
and (d) gear with tooth break vibration signal.

It can be seen from Figure 4 that the four types of gear failure signals are obtained after Fourier
transform, and the four types of signals have the same frequency band peaks in the frequency spectrum.
The noise contained in the signal and the acquisition time is also different. After performing the Fourier
transform, the characteristic frequency of the signal may be masked. Therefore, a fault diagnosis
algorithm is needed to intelligently diagnose gear faults.

In the VMD decomposition of the signal, the decomposition number k and the penalty factor
α are selected empirically. According to experience, the number of values of k is often decomposed
inaccurately, resulting in the value of k is often too large. After VMD decomposition, some intermittent
and useless frequency bands will appear. Therefore, the choice of k value is also very important in VMD
decomposition. In this paper, the instantaneous frequency mean is selected as the evaluation index,
and the change of instantaneous frequency mean when the number of decomposition is 1–9 is selected
as the basis for selecting the value of decomposition number k [24]. Figure 5 respectively shows the
instantaneous frequency mean size of the fault signal under the four working conditions of normal
gear, gear with tooth wear, gear with tooth crack, and gear with tooth break at the decomposition
number of 1–9:

According to the analysis of Figure 5, after the k value is 5, the high frequency component is
somewhat bent and intermittent. When the number of decomposition is greater than 4, some useless
components may be decomposed. So k = 4.
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The constrained variational problem in the formula is further solved, and the quadratic penalty
factor α and Lagrange multiplication operator λ(t) are introduced in consideration of the fact that the
constraint becomes non-constraint. The quadratic penalty factor α guarantees the signal reconstruction
accuracy in the noise environment, and the Lagrange multiplication operator λ(t) keeps the constraint
condition strict. The extended Lagrange is defined as Equation (2):
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L({xk}, {ωk}, {λ}) =

α
∑
k

∥∥∥∥∂t
[
(δ(t) + j

πt ) × xk(t)
]
e− jωkt

∥∥∥∥2

2
+

∥∥∥∥ f (t) −
∑
k

xk(t)
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2
+

〈
λ(t), f (t) −

∑
k

xk(t)
〉

(2)

To solve the optimal solution of Equation (5), the alternating direction multiplication operator
algorithm is used. The specific implementation steps of the algorithm are as follows:

Firstly, initialize the parameters, including:
{
x̂k

1
}
,
{
ω̂k

1
}
,
{
λ̂k

1
}
, mode function is 4, error ε, output

{xk}, {ωk},λ.
Step 1. Execution loop n = n + 1;
Step 2. Update {x̂k} for all ω ≥ 0;

x̂k
n+1(ω) =

f̂ (ω) −
∑
i,k

x̂i(ω) + λ̂i(ω)/2

1 + 2α(ω−ωk)
2 (3)

k ∈ [1, 4]
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Step 3. Update the modal center frequency {ω̂k};

ω̂k
n+1 =

∫
∞

0 ω
∣∣∣u(ω)∣∣∣2dω∫

∞

0

∣∣∣uk(ω)
∣∣∣2dω

, k ∈ [1, 4] (4)

Step 4. Update λ;
λ̂n+1(ω) = λ̂n(ω) + τ( f̂ (ω) −

∑
k

xk
n+1(ω)) (5)

Step 5. Repeat Steps 1–4 until the iteration stop condition is satisfied;∑
k

∥∥∥∥x̂k
n+1
− x̂k

n
∥∥∥∥2

2

/∥∥∥∥x̂k
n
∥∥∥∥2

2
< ε (6)

Step 6. At the end of iteration, four IMFs are obtained;
Where: f̂ (ω), x̂i(ω), λ̂(ω) represents the Fourier transform of f (ω), xi(ω),λ(ω), respectively, and

ε represents the discriminant accuracy.
After VMD decomposition of the signal, the penalty factor a was selected α is 2000 according to

experience, and the discriminant accuracy ε was. 10−7 After repeated experimental analysis, the k
value was 4. In this paper, VMD decomposition time-domain waveform and frequency spectrum of
vibration signals of normal gear, gear with tooth wear, gear with tooth crack, and gear with tooth break
under four working conditions is shown in Figure 6.
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Normal gear vibration signal, (b) gear with tooth wear vibration signal, (c) gear with tooth crack 
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Figure 6. Gear vibration signal VMD decomposition time-domain waveform and spectrum: (a) Normal
gear vibration signal, (b) gear with tooth wear vibration signal, (c) gear with tooth crack vibration
signal, and (d) gear with tooth break vibration signal.
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As can be seen from the above figure, the VMD concentrates the modal components near the
center of each frequency, effectively improving the modemixing, thus verifying the correctness of the
k selection.

After parameter optimization, the VMD algorithm is compared with EMD algorithm. In order to
verify the effectiveness of the proposed method, a simulation signal is constructed to decompose EMD
and VMD respectively, and the simulation signal [9] is as follows:

x1(t) = cos(2πω1t)

x2(t) =
cos(2πω2t)

4

x3(t) =
cos(2πω3t)

16
n(t) = Gaussian white noise

x(t) = x1(t) + x2(t) + x3(t) + n(t)

(7)

where, ω1,ω2,ω3 are the frequencies of each component signal, and their values are ω1 = 3, ω2 = 25,
ω3 = 289, t is time, x1(t), x2(t), x3(t) is fault signal, and n(t) is Gaussian white noise. Figure 7 is the
time-domain and frequency-domain diagram of the simulation signal x(t).
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The simulation signals are decomposed by EMD and VMD, respectively, and the parameters in
the VMD algorithm are determined by the parameters obtained after the above optimization. Where
k = 4 and α = 2000. The following Figures 8 and 9 respectively show the decomposition results of
EMD and VMD.
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Figure 9. VMD decomposes the simulation signal.

It can be seen from Figure 8 that the frequency of the main fault signal can be obtained after EMD
decomposition of the simulation signal. However, it can be seen from the frequency-domain diagram
of IMF4 that it has mode mixing with IMF3 and IMF2, indicating that the component signal with
characteristic frequency ω2 = 25 also exists in the component signals of IMF3 and IMF2. At the same
time, the endpoint effect occurred at the left endpoint of the time-domain diagram of IMF4 in the EMD
decomposition diagram, and its value was 0, which would have a bad effect on the Fourier transform
of the component signal.
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Then, the decomposition of gear fault signals collected by EMD under actual working conditions
was compared with the above VMD decomposition effect to obtain the advantages of VMD in the
decomposition process. Figures 10–13 show the decomposition of fault signals by EMD algorithm
under normal gear, gear with tooth wear, gear with tooth crack, and gear with tooth break conditions.
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It can be seen from the results of the above gear fault signal after EMD decomposition and from
the frequency-domain diagram of the IMFs that the phenomenon of mode mixing occurred in the
frequency-domain, and finally the false component was decomposed, whose frequency value was
almost close to 0, without any practical significance.From the results of VMD decomposition, it can be
seen that this method can effectively avoid the phenomenon of mode mixing and endpoint effect in the
EMD algorithm, and has certain help to improve the accuracy of gear fault diagnosis.

3.2. Feature extraction Based on Kurtosis Criterion VMD

Kurtosis is a dimensionless parameter, which reflects the numerical statistics of the random
variable distribution characteristics of the signal, and also represents the normalized fourth order
central moment of the signal. With the emergence and development of gear faults, the kurtosis of
vibration signals increases. The higher the kurtosis value of the vibration signal, the more serious the
gear fault and the easier of the gear faults information is to be extracted. Its mathematical formula is
shown in Equation (8):

K =
E(x− µ)4

σ4
(8)

where, µ and σ are the mean and standard deviation of the vibration signal, respectively.
Taking the instantaneous frequency mean as the VMD evaluation index, the number of VMD

decomposition was determined after K=4, and the original vibration signal is decomposed into four
components by VMD. Since the original vibration signal contains some characteristics of the original
information after VMD decomposition, this paper extracts the kurtosis value of each mode to form
feature vectors, and then normalizes the kurtosis value to form new feature vectors, which are input
into the SOM neural network for gear fault mode classification and identification.

The 16 groups of data collected under 4 states were decomposed into VMD, the 4 IMF components
decomposed by VMD were selected to extract kurtosis value, and then the feature vectors were formed.
K1 represents the kurtosis of IMF1, K2 represents the kurtosis of IMF2, K3 represents the kurtosis of
IMF3, and K4 represents the kurtosis of IMF4. The kurtosis value matrix of each component is shown
in Table 1. After the kurtosis value of each component is extracted, in order to eliminate the influence
of dimension, the kurtosis value matrix row vector normalization is adopted. The processing results
are shown in Table 2.

Table 1. Kurtosis values of each intrinsic mode functions (IMFs).

Gear Fault Type Sample Number K1 K2 K3 K4

Normal gear

1 5.8307 1.3609 3.4593 2.6815
2 5.8335 1.3690 3.4578 2.6883
3 5.8331 1.3675 3.4592 2.6875
4 5.8341 1.3603 3.4564 2.6883

Gear with tooth wear

1 6.7332 2.8831 4.9074 3.4868
2 6.7742 2.8387 4.9679 3.4013
3 6.7018 2.8033 4.9781 3.4829
4 6.7793 2.8965 4.9508 3.4726

Gear with tooth crack

1 4.2817 1.9227 3.8432 2.7852
2 4.2891 1.9228 3.8209 2.7972
3 4.2999 1.9215 3.8397 2.7717
4 4.2886 1.9225 3.8470 2.7886

Gear with tooth break

1 8.9575 7.7928 9.8567 4.6750
2 8.9281 7.7706 9.8311 4.6933
3 8.9978 7.7454 9.8819 4.6157
4 8.9271 7.7580 9.8879 4.6864
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Table 2. The kurtosis values of theIMFs are normalized.

Gear Fault Type Sample Number K1 K2 K3 K4

Normal gear

1 0.4373 0.1021 0.2595 0.2011
2 0.4370 0.1026 0.2590 0.2014
3 0.4370 0.1025 0.2592 0.2014
4 0.4374 0.1020 0.2591 0.2015

Gear with tooth wear

5 0.3738 0.1601 0.2725 0.1936
6 0.3767 0.1579 0.2763 0.1891
7 0.3730 0.1560 0.2771 0.1939
8 0.3746 0.1600 0.2735 0.1919

Gear with tooth crack

9 0.3337 0.1498 0.2995 0.2170
10 0.3343 0.1499 0.2978 0.2180
11 0.3351 0.1497 0.2992 0.2160
12 0.3338 0.1496 0.2995 0.2171

Gear with tooth break

13 0.2863 0.2491 0.3151 0.1494
14 0.2859 0.2489 0.3149 0.1503
15 0.2880 0.2479 0.3163 0.1477
16 0.2856 0.2482 0.3163 0.1499

4. SOM Neural Network Fault Diagnosis Model

4.1. SOM Neural Network Structure

The SOM neural network is used for regional division of data and regional classification of input
variables, so as to study the distribution characteristics and topological relations of input variables.
The principle is as follows: SOM neural network is an unsupervised clustering algorithm. Any data
input to the SOM neural network forms a one-dimensional or two-dimensional planar topological
structure array under its action, and then it is mapped into a one-dimensional or two-dimensional
discrete graph. Finally, the result is output at the competitive layer, and the characteristic structure
of the input mode remains unchanged. The input layer is used to receive the input mode and the
contention layer is used to display the output mode. The neurons in the competition layer and the
neurons in the input layer are fully connected, and the neurons in the competition layer are connected
to each other to complete the function of pattern clustering.

SOM neural network is an unsupervised learning network that maps similar sample points in
high-dimensional space to adjacent neurons in the network input layer. The nodes around the winning
node respond to each other due to mutual influence. Therefore, the weight vectors connected by the
winning node and all nodes in the winning field adjust to the input direction, gradually reducing the
distance between them. Then through self-organizing learning and repeated learning. The spatial
distribution density of the connection weights is consistent with the probability distribution of the
input mode, and finally the feature map is formed at the input layer. The structure diagram of the
SOM neural network is shown in Figure 14.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 25 

Table 2. The kurtosis values of theIMFs are normalized. 

Gear Fault Type Sample Number K1 K2 K3 K4 

Normal gear 

1 0.4373 0.1021 0.2595 0.2011 
2 0.4370 0.1026 0.2590 0.2014 
3 0.4370 0.1025 0.2592 0.2014 
4 0.4374 0.1020 0.2591 0.2015 

Gear with tooth wear 

5 0.3738 0.1601 0.2725 0.1936 
6 0.3767 0.1579 0.2763 0.1891 
7 0.3730 0.1560 0.2771 0.1939 
8 0.3746 0.1600 0.2735 0.1919 

Gear with tooth crack 

9 0.3337 0.1498 0.2995 0.2170 
10 0.3343 0.1499 0.2978 0.2180 
11 0.3351 0.1497 0.2992 0.2160 
12 0.3338 0.1496 0.2995 0.2171 

Gear with tooth break 

13 0.2863 0.2491 0.3151 0.1494 
14 0.2859 0.2489 0.3149 0.1503 
15 0.2880 0.2479 0.3163 0.1477 
16 0.2856 0.2482 0.3163 0.1499 

4. SOM Neural Network Fault Diagnosis Model 

4.1. SOM Neural Network Structure 

The SOM neural network is used for regional division of data and regional classification of 
input variables, so as to study the distribution characteristics and topological relations of input 
variables. The principle is as follows: SOM neural network is an unsupervised clustering algorithm. 
Any data input to the SOM neural network forms a one-dimensional or two-dimensional planar 
topological structure array under its action, and then it is mapped into a one-dimensional or 
two-dimensional discrete graph. Finally, the result is output at the competitive layer, and the 
characteristic structure of the input mode remains unchanged. The input layer is used to receive the 
input mode and the contention layer is used to display the output mode. The neurons in the 
competition layer and the neurons in the input layer are fully connected, and the neurons in the 
competition layer are connected to each other to complete the function of pattern clustering. 

SOM neural network is an unsupervised learning network that maps similar sample points in 
high-dimensional space to adjacent neurons in the network input layer. The nodes around the 
winning node respond to each other due to mutual influence. Therefore, the weight vectors 
connected by the winning node and all nodes in the winning field adjust to the input direction, 
gradually reducing the distance between them. Then through self-organizing learning and repeated 
learning. The spatial distribution density of the connection weights is consistent with the probability 
distribution of the input mode, and finally the feature map is formed at the input layer. The structure 
diagram of the SOM neural network is shown in Figure14. 

K1 K2 K3 K4

Input Layer

Competitive Layer
(Output Layer)

 
Figure 14. SOM neural network structure. Figure 14. SOM neural network structure.



Appl. Sci. 2019, 9, 5424 15 of 25

4.2. SOM Neural Network Algorithm

(1) Weight initialization
A random value within the interval of [0, 1] is given to the initial weight vector wi j(0).
(2) Sampling
Take a random sample from the input vector with a certain probability.
(3) Determining winning neurons
Within the set step size N of SOM neural network algorithm, the following criteria are used to

determine the winning neuron:
i(x) = argmax

i
yi(x) (9)

where: yi(x) is the steady state output of the neural network without feedback:

yi(x) =
n∑

j=1

wi jx j (10)

A topological field of winning neuron C is defined as Nc, then:{
yi = 1, i ∈ Nc

yi = 0, i < Nc

Otherwise:
wi j(n + 1) = wi j(n)

0 < α(n) < 1 is the learning factor, and step (2) is returned after weight training until Nc or α(n)
meets the requirements.

(4) Enter the next vector until all the samples are learned. Training samples were input into SOM
neural network for training, and a standard SOM neural network was obtained. Then, input the test
samples data into the SOM neural network. If the position of the output neuron in the output layer is
the same as that of a sample data, the sample to be tested is of the corresponding type.

5. Fault Diagnosis and Result Analysis of SOM Neural Network

The standard component kurtosis values are selected for training. The sample number 1 and
sample number 2 of the normal gear data set, the sample number 5 and the sample number 6 of the
gear with tooth wear data set, the sample number 9 and the sample number 10 of the gear with tooth
crack data set, and the sample number 13 and sample number 14 of the gear with tooth break data set
are selected to form a training sample matrix input into the SOM neural network for training. After the
training of SOM neural network, the remaining 8 sets of samples were input into the standard SOM
neural network for gear fault diagnosis as the unknown gear fault test sample matrix.

In this paper, 16× 4 arranged neurons are adopted, whose topological structure is hexagonal. The
structure of the composed SOM neural network is shown in Figure 15.
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The SOM neural network neighbor neuron connections as shown in Figure 16. There are 32 neurons
in total.Generally, the sequence number of neurons in the lower left corner of SOM neural network
topological structure graph is marked as 1, and the sequence number increases successively from left
to right and from bottom to top. The 32nd neuron is located in the upper right corner of Figure 16.
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Fault Diagnosis and Result Analysis

Eight sets of data were extracted from 16 sets of sample data, including one set for each gear states.
The remaining 8 sets of data were tested as test data sets. The kurtosis value normalization matrix was
input into SOM neural network for classification and identification, and the following results were the
training times of 100.

The kurtosis value normalization matrix in Table 2 is used as training data to train the SOM
neural network.As the number of training steps increases, theweight vector is constantly adjusted and
the magnitude of theweight vector is also changed.Where, the weight connection between the input
sample and the competition layer neuronsare shown in Figure 17, where the lightest color hexagon
weight value is the smallest, and the black hexagon weight value is usually 0.
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As shown in Figure 18, the hexagon represents a neuron on the competition layer, the node of the
neuron is represented by 32 equal-sized hexagons, and the short line between the hexagons represents
the interconnection between the neurons.The difference in color between the diamond blocks located
around the neurons indicates the difference in distance between the neurons. The SOM neural network
forms clusters based on the distance between the neurons, and there is no clear boundary between the
clustering results. From the color (light to dark) of the diamond block, the darker the color that the
block is, the farther the distance between the neurons.
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Classification 

results 
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Table 4 shows the classification results of the samples numbered 3, 4, 7, 8, 11, 12, 15, and 16, 
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Figure 19. SOM neural network classification results of gear fault when the number of training is 100.

According to the clustering results of SOM neural network, adjacent neurons can be regarded
as the same species, while neurons with more distant neighbors can be regarded as different species.
In Table 3, the numerical values of the classification results indicate the location number of SOM neural
network neurons, and the adjacent number indicates the adjacent neurons, which are regarded as the
same species. As shown in Figure 12, the four fault types of gear fault, normal gear, gear with tooth
wear, gear with tooth crack, and gear with tooth break are effectively distinguished. The accuracy of
gear fault of SOM neural network is 100% when the number of trainings is 100. Among them, Table 3
shows the classification results of the training samples numbered 1, 2, 5, 6, 9, 10, 13, and 14, which were
input into the SOM neural network as the training sample matrix and the training times were 100.

Table 3. Classification results for 100 training sessions.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
100

1 2 5 6 9 10 13 14

Classification
results 1 1 6 6 20 20 32 25

Table 4 shows the classification results of the samples numbered 3, 4, 7, 8, 11, 12, 15, and 16,
which were input into the SOM neural network as the test samples matrices after 100 times of training.
By comparing the classification results in Table 3, it can be seen that all test samples have been correctly
classified into the corresponding fault categories, and the fault diagnosis recognition rate is 100%.
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Table 4. The classification results of the test samples at 100 training times.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
100

3 4 7 8 11 12 15 16

Classification
results 1 1 6 6 20 20 32 25

Figures 17–19 show that when the training times are 100 times, 8 test samples of SOM neural
network fault diagnosis model classifier correspond with the training samples of standard SOM neural
network, and its fault diagnosis accuracy is up to 100%. It effectively proves the effectiveness of SOM
neural network in the classification and identification of gear fault diagnosis.

In order to obtain the identification effect advantage of the SOM neural network when the training
times are 100 times and the training times are 10, 50, 500, and 1000 times, the gear failure accuracy is
compared, respectively, in Figures 20–23.

Figure 20 shows the recognition result of the training number 10:
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As can be seen from the identification results in Figure 20, the four fault types of gear, normal
gear, gear with tooth wear, gear with tooth crack, and gear with tooth break were classified into three
fault states and onegear fault state was not identified. From the identification results in Tables 5 and 6,
it can be concluded that normal gear and gear with tooth wear are identified into the same category.
This is the classification result of SOM neural network with 10 times of training, and Table 5 is the
classification result of SOM neural network with 10 times of training as the training sample matrix
with sample numbers 1, 2, 5, 6, 9, 10, 13, and 14.

Table 5. Classification results for 10 training sessions.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
10

1 2 5 6 9 10 13 14

Classification
results 32 32 32 32 4 4 1 1

Table 6 shows the classification results of the sample numbered 3, 4, 7, 8, 11, 12, 15, and 16,
which were input into the SOM neural network as the test sample matrices after 10 training times.
By comparing the classification results in Table 5, it can be seen that the classification results of the test
samples from the fault training samples are not good, in which there is an identification error in the
fault state of gear with tooth wear and gear with tooth break respectively, resulting in a fault diagnosis
identification rate of 75%.
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Table 6. The classification results of the test samples at 10 training times.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
10

3 4 7 8 11 12 15 16

Classification
results 32 32 32 32 4 4 1 1

Figure 21 shows the recognition result of the training number 50:
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As can be seen from the identification results in Figure 21, the four fault types of gear, normal gear,
gear with tooth wear, gear with tooth crack, and gear with tooth break, were classified into three fault
states, and also onegear fault state was not identified. From the identification results in Tables 7 and 8,
it can be concluded that gear with tooth wear and gear with tooth crack are identified into the same
category. This is the classification result of SOM neural network with 50 times of training, and Table 7
is the classification result of SOM neural network with 50 times of training as the training sample
matrix with sample numbers 1, 2, 5, 6, 9, 10, 13, and 14.

Table 7. Classification results for 50 training sessions.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
50

1 2 5 6 9 10 13 14

Classification
results 17 17 13 13 12 12 32 32

Table 8 shows the classification results of the sample numbered 3, 4, 7, 8, 11, 12, 15, and 16,
which were input into the SOM neural network as the test sample matrices after 50 training times.
By comparing the classification results in Table 7, it can be seen that the classification results of the test
samples from the fault training samples are not good, in which there is an identification error in the
fault state of gear with tooth wear and gear with tooth break, respectively, resulting in a fault diagnosis
identification rate of 75%.

Table 8. The classification results of the test samples at 50 training times.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
50

3 4 7 8 11 12 15 16

Classification
results 17 17 13 13 12 12 32 32
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As can be seen from the identification results in Figure 22, the four fault types of gear, normal gear,
gear with tooth wear, gear with tooth crack, and gear with tooth break were classified into six fault
states and two unknown fault states emerged. This is the classification result of SOM neural network
with 500 times of training, and Table 9 is the classification result of SOM neural network with 500 times
of training as the training sample matrix with sample numbers 1, 2, 5, 6, 9, 10, 13, and 14.

Table 10 shows the classification results of the sample numbered 3, 4, 7, 8, 11, 12, 15, and 16,
which were input into the SOM neural network as the test sample matrices after 500 training times.
By comparing the classification results in Table 9, it can be seen that the classification results of the test
samples from the fault training samples are not good, in which there is an identification error in the
fault state of gear with tooth wear and gear with tooth break respectively, resulting in a fault diagnosis
identification rate of 75%.

Table 9. Classification results for 500 training sessions.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
500

1 2 5 6 9 10 13 14

Classification
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Table 10. The classification results of the test samples at 500 training times.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
500

3 4 7 8 11 12 15 16

Classification
results 9 1 11 27 4 5 32 24

Figure 23 shows the recognition result of the training number 1000:
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As shown in Figure 23, the four fault types of gear fault, normal gear, gear with tooth wear, gear
with tooth crack, and gear with tooth break were classified into eight fault states and four unknown
fault states emerged. When the number of training sessions of SOM neural network is 1000, Table 11
shows the classification results of the training samples numbered 1, 2, 5, 6, 9, 10, 13, and 14 as training
samples matrix input to SOM neural network when the number of training sessions is 1000.

Table 11. Classification results for 1000 training sessions.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
1000

1 2 5 6 9 10 13 14

Classification
results 1 17 28 11 14 5 32 16

Table 12 shows the classification results of samples numbered 3, 4, 7, 8, 11, 12, 15, and 16, which
were input into the SOM neural network as the test sample matrices after 1000 times of training.
By comparing the classification results in Table 11, it can be seen that the classification results of test
samples from fault training samples are not good, in which there is one identification error in the fault
state of gear with tooth crack and gear with tooth break respectively, and two identification errors in
the fault state of gear with tooth wear, resulting in a fault diagnosis identification rate of 50%.

Table 12. The classification results of the test samples at 1000 training times.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
1000

3 4 7 8 11 12 15 16

Classification
results 17 2 20 20 14 14 32 24

Figures 19–23 shows that when the training times are 100 times, 8 test samples of SOM neural
network fault diagnosis model classifier correspond with the training samples of standard SOM neural
network, and its fault diagnosis accuracy is up to 100%. It effectively proves the effectiveness of SOM
neural network in the classification and identification of gear fault diagnosis. However, when the
training times were 10 times and 50 times, the 8 test samples of SOM neural network model classifier
showed onegear fault state was not identified. And when the training times were 500 times and
1000 times, the 8 test samples of SOM neural network model classifier showed unrecognized types.
This is not an identification error, which means that as the number of training sessions increases it is
the same for each sample, but it is not divided into categories, and there is an unrecognizable type.
At this time, if you increase the number of training, there is no practical significance.

From the comparison of the accuracy of gear fault recognition of the SOM neural network in
different training times in Table 13, it can be obtained that the gear fault recognition accuracy of the
SOM neural network is the highest when the training times are 100 times. So the training times of the
SOM neural network are 100times.

Table 13. The accuracy of SOM neural network for gear fault identification under different training times.

Training Steps Fault Diagnosis Identification Rate

10 75%
50 75%

100 100%
500 75%

1000 50%
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From the above results, it can be concluded that the effect of SOM neural network is the best when
the training times are 100times. The EMD algorithm mentioned in the article will have adverse effects
such as mode mixing in the gear fault signal decomposition. Here, the EMD algorithm is combined
with the SOM neural network to identify the gear fault states, and then compared with the VMD
algorithm and the SOM neural network recognition results.

First, the gear fault signal was decomposed by EMD algorithm, then the kurtosis value was
extracted, and then it was normalized as the input vector of SOM neural network. According to the
above results, the gear fault identification rate of SOM neural network was the highest when the
training times were 100times.Therefore, the training times of SOM neural network are 100 times. The
following Figure 24 shows the recognition diagram of gear fault signal by EMD algorithm is combined
with the SOM neural network with 100 training times.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 25 

From the above results, it can be concluded that the effect of SOM neural network is the best 
when the training times are 100times. The EMD algorithm mentioned in the article will have 
adverse effects such as mode mixing in the gear fault signal decomposition. Here, the EMD 
algorithm is combined with the SOM neural network to identify the gear fault states, and then 
compared with the VMD algorithm and the SOM neural network recognition results. 

First, the gear fault signal was decomposed by EMD algorithm, then the kurtosis value was 
extracted, and then it was normalized as the input vector of SOM neural network. According to the 
above results, the gear fault identification rate of SOM neural network was the highest when the 
training times were 100times.Therefore, the training times of SOM neural network are 100times.The 
following Figure 24 shows the recognition diagram of gear fault signal by EMD algorithm is 
combined with the SOM neural network with 100 training times. 

 
Figure 24. SOM neural network classification results of gear fault when the number of training is 100 
by EMD. 

As shown in Figure 24, the four fault types of gear fault, normal gear, gear with tooth wear, gear 
with tooth crack, and gear with tooth break were classified into six fault states and two unknown 
fault states emerged. When the number of training sessions of SOM neural network is 100, Table 14 
shows the classification results of the training samples numbered 1, 2, 5, 6, 9, 10, 13, and 14 as 
training samples matrix input to SOM neural network when the number of training sessions is 100. 

Table 14. Classification results for 1000 training sessions by EMD. 

Gear Fault Type 
Training 

Steps 
Normal 

Gear 
Gear with Tooth 

Wear 
Gear with Tooth 

Crack 
Gear with Tooth 

Break 
Sample number 

100 
1 2 5 6 9 10 13 14 

Classification 
results 

32 7 25 28 8 16 4 1 

Table 15 shows the classification results of samples numbered 3, 4, 7, 8, 11, 12, 15, and 16, which 
were input into the SOM neural network as the test sample matrices after 100 times of training. By 
comparing the classification results in Table 14, it can be seen that the classification results of test 
samples from fault training samples are not good, in which there is one identification error in the 
fault state of gear with tooth crack and gear with tooth break respectively, and two identification 
errors in the fault state of gear with tooth wear, resulting in a fault diagnosis identification rate of 
50%. 

Table 15. The classification results of the test samples at 1000 training times by EMD. 

Gear Fault Type Training 
Steps 

Normal 
Gear 

Gear with Tooth 
Wear 

Gear with Tooth 
Crack 

Gear with Tooth 
Break 

Sample number 
100 

3 4 7 8 11 12 15 16 
Classification 

results 
7 22 26 27 8 32 6 7 

Figure 24. SOM neural network classification results of gear fault when the number of training is 100
by EMD.

As shown in Figure 24, the four fault types of gear fault, normal gear, gear with tooth wear, gear
with tooth crack, and gear with tooth break were classified into six fault states and two unknown fault
states emerged. When the number of training sessions of SOM neural network is 100, Table 14 shows
the classification results of the training samples numbered 1, 2, 5, 6, 9, 10, 13, and 14 as training samples
matrix input to SOM neural network when the number of training sessions is 100.

Table 14. Classification results for 1000 training sessions by EMD.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
100

1 2 5 6 9 10 13 14

Classification
results 32 7 25 28 8 16 4 1

Table 15 shows the classification results of samples numbered 3, 4, 7, 8, 11, 12, 15, and 16, which
were input into the SOM neural network as the test sample matrices after 100 times of training.
By comparing the classification results in Table 14, it can be seen that the classification results of test
samples from fault training samples are not good, in which there is one identification error in the fault
state of gear with tooth crack and gear with tooth break respectively, and two identification errors in
the fault state of gear with tooth wear, resulting in a fault diagnosis identification rate of 50%.

As can be seen from the comparison results in Tables 14 and 15, the EMD algorithm will not only
generate mode mixing in the process of gear signal decomposition, but also reduce the accuracy of
gear fault identification.
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Table 15. The classification results of the test samples at 1000 training times by EMD.

Gear Fault Type Training
Steps Normal Gear Gear with

Tooth Wear
Gear with

Tooth Crack
Gear with

Tooth Break

Sample number
100

3 4 7 8 11 12 15 16

Classification
results 7 22 26 27 8 32 6 7

According to the comparison results of Tables 3 and 4 with Tables 14 and 15, the advantages of
VMD algorithm over EMD algorithm can be obtained, and the optimal training times of SOM can also
be obtained. However, there are many classification algorithms. So how do we evaluate the advantages
of SOM neural network over other classification algorithms? Here, the SVM algorithm is used for gear
fault classification instead of SOM neural network, and the calculation results are shown in Table 16.

Table 16. The accuracy of gear fault diagnosis by different decomposition algorithms and classification
algorithms.

Decomposition Algorithm Classification Algorithm Fault Diagnosis Identification Rate

VMD SOM 100%
VMD SVM 25%
EMD SOM 75%
EMD SVM 14.29%

According to the comparison of fault diagnosis accuracy in Table 16, compared with the EMD
algorithm, the VMD algorithm can avoid mode mixing and other shortcomings in the EMD algorithm
in terms of decomposition effect. In terms of the accuracy of gear fault diagnosis, the VMD algorithm
has a higher accuracy than the EMD algorithm. As for the classification algorithm recognition rate of
the SOM neural network, the overall fault diagnosis accuracy of the SOM neural network is much
higher than that of the SVM algorithm whether it is matched with the EMD algorithm or the VMD
algorithm.Therefore, the algorithm of VMD combined with SOM neural network has better advantages
and better application prospects in gear fault diagnosis.

6. Conclusions

In this paper, a gear fault diagnosis method based on kurtosis criterion VMD and SOM neural
network is proposed, and the following conclusions are obtained:

(1) The VMD is selected to decompose the gear acceleration signal, which can effectively improve
the mode mixing phenomenon of EMD, LMD, and other decomposition methods. Then, the kurtosis
normalized value of components is selected as the feature vectors, which can not only retain the
effective fault information in the signal, but also effectively eliminate noise interference.

(2) The instantaneous frequency mean is selected as the basis of VMD decomposition number,
which can effectively select the decomposition number in the VMD process. Through the above process,
more representative components can be selected after VMD decomposition.

(3) The SOM neural network has the ability of dimensionality reduction of multidimensional
spatial data, which can be trained with fewer samples to obtain the spatial topological relationship of
classified data and obtain higher accuracy. At the same time, SOM neural network can also conduct
fewer training steps and obtain higher accuracy.
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