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Abstract: Industry 4.0 includes digital process transformation, information technology (IT)
development, mobile devices, learning software, automation, and robotics, as well as intelligent
sensors to collect large datasets, store, analyze, and use them in business, including simulation, virtual
reality, and digital twins. The aim of the paper is to characterize the readiness of the enterprise to use
Industry 4.0. In the research, a questionnaire survey was carried out on a sample of 276 enterprises
mainly from the manufacturing industry. Using explorative factor analysis, the index of Industry
4.0 (VPi4) was designed to determine the level of Industry 4.0 implementation in the enterprises.
The results were further verified by a statistical analysis, using Mann–Whitney test and correlation
coefficients. The results indicate that the VPi4 index was consistent in terms of distribution when
comparing the results on the verification sample. Its results correlate with the subjective perception
of the enterprises, and different levels of the index reflect the difference in technological intensity
of the industry. The VPi4 index enables the enterprises to determine their own level of current
state of readiness for Industry 4.0, to better prioritize business development. The proposed solution
categorizes Industry 4.0 components into a useful theoretical framework. Further research offers the
possibility of applying the index in other sectors, its relation to the size of enterprises, and updating
with respect to new trends in information technology.
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1. Introduction

Industry 4.0 is a platform combining a variety of advanced modern technologies to meet today’s
challenges. Industry 4.0 elements are increasingly emerging as one of the main strategic management
goals in recent years. The use of new technologies raises the need for long-term and strategic
investments, intended to increase the competitiveness of the enterprises in the future. Most of the
enterprises are already implementing smart technologies and smart processes. Some of the enterprises
indicate their experience with such technologies practically. They use the new technologies at least
partially. It means that they successfully completed the implementation, and they are now looking
for the added value that these technologies offer. However, their use is still partial, used to deal with
certain issues and probably without the overall interdependence of all the systems.

Finally, outside this area, there is a small group of innovators, looking for new developments and
looking for ways to integrate them into their well-functioning organizations. They have in common
mastering the basic and higher levels of Industry 4.0 brought by the Fourth Industrial Revolution, now
preparing for further global changes brought about by advances in artificial intelligence, digitalization,
computer science, robotics, complexity, and network theory. They include the enterprises that are at
the heart of these changes, drawing their energy and position from these processes.
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The current challenges of Industry 4.0 force managers to discuss whether they are prepared for
such changes. They often wonder what the situation is in their own organizations and then which
technology they should invest into in the near future.

Lower absorption capacity of the enterprises is related to the issue of resource constraints. Right
now, the managements of a number of enterprises consider the future strategy and the steps to be
taken to be competitive in the future. For this reason, this paper discusses how to assess and analyze
the current state of business in the context of Industry 4.0. Based on the research, the authors suggest a
methodology, with an index for easy evaluation of the preparedness of the enterprise for the future.

The structure of this paper is organized as follows: Section 2 defines the theory as used in the paper;
Section 3 describes the methodology and methods used; Section 4 summarizes the most important
results, including the evaluation of the hypotheses; Section 5 discusses the results with other authors;
finally, Section 6 summarizes the most important conclusions of the research.

2. Theoretical Background

The cornerstone of Industry 4.0 is based on machines, equipment, logistics, and humans who
are connected to each other to exchange data, process data, and make decisions, appropriately
coordinating the ever-present machines [1]. Industry 4.0 is characterized primarily by digitization,
robotics, and artificial intelligence. Kelkar [2] emphasized that 79% of the manufacturing enterprises
(any size) perceive Industry 4.0 as very important for their development (research was conducted
in 227 enterprises). Similarly, in Computer Science Corp (2015), 63% of United States (US)
manufacturing companies (900 in the sample) identified Industry 4.0 as necessary for their further
development. Consistent with these findings, there is a study of 235 German enterprises carried out by
PricewaterhouseCoopers [3], reporting that the enterprises plan to increase digitization between 24%
and 86% in the next five years. Dörfler [4], who stated that 94% of companies perceive digitization
as important for their development, reported the highest percentage. This research was carried out
regardless of the size and area of business using a sample of 1849 German enterprises [5].

The subsequent sub-sections describe theoretic background of the main technologies and processes
which are necessary to create future intelligent factories and enterprises based on the conception of
Industry 4.0.

2.1. Use of Sensors

Sensors are sources of information for the control system (computer, brain) and technical devices,
which measure certain physical and technical quantities and convert them into a signal that is remotely
transmitted and further processed. These are various global positioning system (GPS) sensors, cameras,
and microphones, forming the digital nervous system. These devices acquire information on position,
distance, motion, speed, displacement, temperature, drought, humidity, sound, vibration, gases,
chemicals, flow, strength, load, pressure, level, electricity, acceleration, tilt, light, etc. The use of
sensors in smart factories has many facets, as discussed by many authors [6–8]. To make full use
of the sensors, the availability of efficient and affordable sensor networks (such as radio frequency
identification, RFID) is a prerequisite [9]. Based on this, intelligent objects and devices are created,
enabling real-time communication between computers, work resources, and application systems.
Together, this technological development provides the basis for the introduction of new production
processes and business models in smart factories [10]. As they are able to retrieve and process data,
they can check certain tasks and communicate with people through an interface [6]. The importance
of sensors for Industry 4.0 is also illustrated by the fact that, as mentioned by Reference [7], by 2020,
nearly 20.8 billion devices will be connected and RFID will be fully utilized. Such a shift will have
an impact on most industrial sectors and, in particular, manufacturing industries. RFID technology
is used to identify various objects in warehouses, production halls, logistics companies, distribution
centers, retail outlets, and disposal/recycling stages [11]. Analysis of monitored activities will be used
for fault detection and predictive maintenance [12]. Based on the information gathered and also using
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machine-to-machine (M2M) communication, the resources will be remotely controlled to improve
industrial processes [13].

2.2. Data Collection and Analysis

The process of data collection process includes retrieving, searching, selecting, and generating. As
more and more business activities are digitized, new data sources arise, and the equipment to process
these data becomes increasingly cheaper; we are entering a new era [14]. The volume of stored data is
growing four times faster than the world economy, and computing power is increasing nine times
faster. Interestingly, in 2000, only one-quarter of the world’s information volume was stored in digital
form; today, the figure is close to 95% [15]. The creation of large volumes of data is supported by
digitization, aiming to convert all possible information and media—text, sounds, photos, videos, and
instrument and sensor data—to the natural language of computers. Big data is a versatile term for any
collection of datasets that are very large and complex. Big data are quantified in petabytes (1015), as
it is not possible to receive, store, secure, process, and visualize them with common hardware and
software in a reasonable time [15].

Big data are defined as a cultural, technological, and scientific phenomenon that rests on
interplay [16] of technology and analysis. Laney [17,18] defined big data through three characteristics:
volume, variety, and velocity. The Gartner company introduced the term big data. Gantz and
Reinsel [19] complemented the big data characteristics with a fourth Vs value. Reference [20] classified
big data through a data life cycle that includes data, process, and management activities. Ge, Bangui,
and Buhn [21] classified big data in eight areas: healthcare, automation, transport, energy, smart cities,
agriculture, industry, and military.

Data analysis can be expressed through different terms such as data mining, clustering,
classification, analytics, aggregation, annotation, combining, extraction, evaluation, and filtering.
Data analysis is performed either directly through a variety of cloud computing services (PaaS —
platform as a Service; SaaS — Software as a Service), or in a conventional way on the user’s end
computers [19]. The main advantage of cloud services is effective integration with other applications,
scalability, performance, multitasking, and configurability [22]. According to Tsai et al. [23], data
analysis methods have the following limitations for big data usage: centrality and unscalability,
dynamics (inability to analyze data on the fly), and data structure format (data inconsistency).

2.3. Information Technology (IT) Infrastructure and Mobile Terminals

In particular, Industry 4.0 includes a radical shift in how IT infrastructure works, defined as the
overall transformation of the manufacturing industry through the introduction of digitization and
the internet.

These transformations mean a revolutionary improvement in the design and manufacturing
processes, operations, and services of manufacturing products and systems. Tjahjono [24] defines
Industry 4.0 requirements for IT infrastructure in terms of device automation, auto-driving, increased
need for reality, an extremely large number of monitored and managed devices, and process automation.

The enterprises using the Internet of things (IoT) cannot rely solely on wireless networks such as
WiFi, ZigBee, and low-power wide-area network (LPWAN) for their future critical related systems [25].
They demand more and more functionality now unavailable according to Rao and Prasad [26],
particularly including very low latency, very high reliability, and very high bandwidth and bit rate.

Many of the current network technologies (2G, 3G, 4G — 2nd, 3rd, 4th Generation of mobile
telecommunications technology, NFC — Near Field Communication, ANT — Adaptive Network
Topology, Bluetooth, GSM — Global System for Mobile communication, WMAX — Woldwide
Interoperability for Microwave Access, etc.) are not really good for the future. Future flexibility
is offered by the 5G (5th generation of mobile telecommunications technology) standardization as
recommended by Sriganesh [26] for infrastructure. Future infrastructure will lead to vertical and
horizontal network connectivity and the use of the industrial internet concept. For example, General
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Electric’s practice Leber [27] described it as connecting industrial sensors and drives to local processing
and the internet. Furthermore, links with other important industrial networks can independently
create value. The main difference between consumer/social internet and industrial internet lies in the
value created. For consumer/social websites, most of the value is created from ads [28].

2.4. Cloud Storage

Data storage includes recording, transportation, replication, compression, cleaning, indexing,
stream processing, integration, and transformation of data. Given the increase in data volume (big data),
the main question is how to store all data and where. Data warehouses and centers are the most often
used. A data warehouse (DW) is an integrated collection of subject-oriented decision support data [29].
Data warehousing (DW) is a specific type of information system and should enable the acquisition
of business data, its transformation into appropriate strategic business information, and subsequent
storage of data in a format that facilitates business analysis [30]. The cloud is currently the hardware
and software solution of the data center providing the services [31]. The cloud is a parallel and
distributed computing system consisting of a collection of interconnected and virtualized computers
that are dynamically delivered and presented as one or more unified computing resources based on
service level agreements negotiated between a service provider and a customer [32]. Such resources
are dynamically transformed to adapt to variable load, enabling the optimal use of resources [33].
Clouds are hardware services offering computing, networking, and storage capacity [34]. Mostly,
clouds are operated on a cloud deployment models basis [35]: public cloud, private cloud, hybrid
cloud, and community cloud [36–38]. The cloud inherently includes the concept of cloud computing,
based on the provision of services or programs stored on servers and the internet. Cloud computing
distinguishes three types of distribution models [22]: IaaS (infrastructure as a service), PaaS (platform
as a service), and SaaS (software as a service). For the purposes of data storage, there are IaaS services,
i.e., the use of virtualization, providing only infrastructure and hardware. Block chain technology [39]
is emerging significantly in the architecture of the internet and is pushing out the standard model
of client–server architectures. The point is that individual transactions between different entities are
transparent to everyone, but no one other than the two entities that took the action can influence and
change this record. Block chains remove the third-party distribution of information flow [40]. Block
chain is basically a data structure that is used to create a digital transaction ledger that is not stored by
a single provider but is shared across a distributed network of computers. Block chain is, therefore, a
special type of distributed decentralized database in which records are stored.

2.5. Information Systems and Learning Software

The implementation of Industry 4.0 uses the concept of an automation pyramid in connection
with information technology. The pyramid is closely related to the vertical integration of information
systems in an enterprise. Typical solutions and technologies in this vertical integration include data
acquisition sensors: programmable logic controllers (PLC) that control production processes and take
control levels, supervisory control and data acquisition (SCADA), which allows managing different
levels of support processes and supervision, manufacturing execution systems (MES) controlling
production processes, and intelligent enterprise resource planning (ERP) management for the enterprise
level, the highest level in this hierarchical image [41–43]. ERP supports enterprise-wide planning such
as business planning, supply chain management, sales and distribution, accounting, human resources
management, and the like. These are usually commercially available solutions.

German SAP SE (Systems, Aplications & Product in Data Processing Service) is currently the
leading SAP solution. In traditional ERP tools, the decision-making process is centralized at the highest
level; most available ERP solutions do not support rapid adaptation in production planning due to
unplanned events. MES supports reporting, scheduling, dispatching, product tracking, maintenance,
performance analysis, workforce tracking, resource allocation, and more [44]. Most systems work with
their own way of storing data and, often, with their own data format. The use of a production system
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(MES) as a central database is a solution to such an issue [45]. In the future, a decentralized IT solution
in smart factories might be used. In order to give the employees the right data in time, a support
system is needed [46]. As Haddara [47] noted, it is the right time to check the readiness of ERP systems
to meet the demands of the factories of the future. SAP developed its predictive maintenance module,
based on firm integration of robots, machines (to be maintained), and ERP. Predictive maintenance is
based both on the integration of data from ERP data sensors and the predictive algorithms.

Learning software includes pattern and machine learning (ML), which embodies some of the
aspects of the human mind that allow us to deal with an extremely complex solution to the problem
with the speed overcoming even the fastest computers [48]. Wen et al. [49] reported the most commonly
used techniques: case-based reasoning (CBR) [50], artificial neural networks (ANN) decision trees
(DT) [51], Bayesian networks (BN) [52], support vector regression (SVR) [53], genetic algorithms
(GA) [54], genetic programming (GP) [55,56], association rules (AR) [57], rule induction (RI) [58], and
fuzzy algorithms [59].

2.6. Robots

Production process automation began in the 1960s with the introduction of industrial robots into
the automotive manufacturing process. The automation of production systems by the introduction
of industrial robots is an ongoing process and is now in line with the evolution of information
technology [7]. Industrial robots, ranked in Industry 4.0, are divided into the following two types [60]:

• The machines that help and facilitate the handling of physical objects by reducing human effort
without deducting sensitivity and accuracy;

• The machines that learn from their errors and are, therefore, able to gradually function better and
manage their own development.

The area of collaborative robots was extensively explored, but it is necessary to define precisely
what type of robot can be specified as cooperative. Even with many products available [61] and after the
completion of many research projects [62], the definition of a collaborative robot remains unclear. Based
on SICK AG (sensor intelligence), there are three types of human–robot interaction [63]: coexistence,
cooperation, and collaboration. Robots play an important role in the modern manufacturing industry.
Since 2004, the number of multipurpose industrial robots developed by enterprises in the 4.0 sector
in Europe almost doubled [15]. The number of installed industrial robots is calculated per 10,000
employees in the manufacturing industry. The highest robot densities in 2017 according to the
International Federation of Robotics [62] were found in the Republic of Korea (710), Singapore (658),
and Germany (322). The world average was 85 robots per 10,000 employees; however, during the
period 2013–2017, global sales of industrial robots increased by 114%. The use of robots is expanding
to include a variety of functions: production, logistics, office management (for document distribution),
maintenance, and repair of manufacturing defects [64]. An autonomous robot is a robotic device that
works independently (it is not controlled in real time by a human, but by a program). In the future,
they will be based on artificial intelligence and they will be capable of learning [65].

2.7. M2M Communication

Digital production includes a wide range of applied sciences. Studies in these fields attract a lot
of effort both in academia and in industry, especially in connection with machine connectivity and
communication (M2M), vitally important for machine collaboration and process optimization [66].
Computer-to-computer communication brings much greater efficiency and extraordinary security in
production units, from factory halls to agriculture. Literally, machine-to-machine is synonymous with
technology that communicates without human intervention. M2M communications change some
processes by giving more data to the enterprises, and they will require companies to train employees
for these purposes. In addition, the integration of M2M elements will require better integration
capabilities and the creation of reliable complex networks with a higher level of security [67]. Rao [26]
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and his team described a farm of “no farmers” where cows can be detected by the feeding machines
through sensors and M2M communication, and where the digital sensor capsules inside the cow send
reports that the cow is fertile. Worldwide, the automotive, energy, transportation, logistics, consumer
electronics, and ultimately retail industries are becoming the new view of new M2M applications [66].
M2M communication offers autonomous communication between intelligent encoders and drives
and delivers greater value in the transport sector [17]. M2M communication systems implement
automated data communication between machine-type communication (MTC) devices, creating a basic
communication infrastructure for IoT and 5G networks [68,69]. M2M communication will be provided
both between physical objects and between their cloud-based digital counterparts [70]. Depending
on the location of the distant objects relative to the network, cloud computer technology is referred
to [71]. In the future, cloud robotics will be used with real-time connectivity. A higher level of M2M
communication is related to the Internet of things (IoT), which is a designation for a much more
intelligent interconnection of various products, devices, etc. [72]. The key elements are miniature
sensors, representing an almost ubiquitous image recognition technology capable of recognizing
people, buildings, and other objects [73].

2.8. Sharing and Using Data with Suppliers and Customers

Enterprises face a precarious environment and strive to achieve greater cooperation in the supply
chain to leverage the resources and knowledge of their suppliers and customers [74]. In such a chain,
this cooperation takes place through electronic data interchange (EDI) [53]. Using and evaluating
multidimensional process knowledge is considered an effective strategy to improve the competitiveness
of the enterprises [75]. Sharing forecasting information helps supply chain parties better match demand
and supply [76]. The information is used to update variations in seasonal product demand [77].
Information needs to be shared to achieve an efficient supply chain [78]. Optimum supply chain
performance requires manufacturers to truly inform other partners of their original forecast [79]. By
Croson and Donohue [80], it is useful for the enterprises to share sales data (POS — Point of Sale
materials), especially to reduce the bullwhip effect. Christopher, in connection with data sharing and
supplier and customer integration, discussed “demand chain management”, linking supply chain
management with marketing, bringing agile and lean properties to chains [81]. Demand chain is
defined by (1) managing integration between demand and supply processes, (2) managing the structure
between integrated processes and customer segments, and (3) managing the working relationship
between the marketing and supply chain [82]. In addition, the enterprises are able to share product
life-cycle information and focus on product design [83]. In practice, it is the co-design, visualization
and production analysis, and joint research and design [84]. This creates a variety of systems for
exchanging and sharing product information between users and platforms [85,86].

2.9. Use of Virtual Reality, Simulation, and Digital Twins

Simulation is defined as an imitation of a real thing, a state, or a process. Generally, it implies
displaying or modeling some key features and behavior of some physical or abstract systems
for testing, optimization, and education. Product and process simulations are used extensively
in production, especially processes of visualization, representation, simulation, modeling, and
interpretation. Enriching digital simulations with sensor data brings reality closer and improves the
accuracy of simulation results [87]. Virtual reality (VR) is broadly defined as a computer-generated
three-dimensional (3D) world [88], and an environment that simulates complex situations and contexts
in real life and allows people to immerse, navigate, and communicate [89]. A key feature of virtual reality
is real-time interactivity. VR systems generally track the movement of hand-held objects and the user’s
head and limbs, and the received data are used to determine the user’s view, navigation, interaction
with objects, and possible movement of the virtual body, known as an “avatar” [90]. Virtual reality
by Steuer [91] is technological hardware that includes a computer, an imaging helmet, headphones,
and motion-sensory gloves. The main areas of VR application include healthcare [92]. The concept of
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augmented reality must be distinguished from the concept of virtual reality. Augmented reality (AR)
is a special application providing its users with a direct or indirect view of the real world, whose parts
are complemented, expanded, and enriched with additional digital visual elements [93,94]. Examples
include end-to-end applications, viewing glasses, and projection of information in a car directly onto
the windshield. The use of simulation to control and optimize products and manufacturing systems in
real time is a concept known as the digital twin [95], which is considered as another step in modeling,
simulation, and optimization of technologies [96]. Digital twins are defined as a digital replication of
both living and inanimate entities that enable seamless data transfer between the physical and virtual
worlds [97]. Digital twins are a mirror image of a real-time physical process [98]. The concept of using
“twins” comes from the Apollo NASA (National Aeronautics and Space Administration) program;
later, it was used also in aviation, such as the “Iron Bird” [96]. Digital twin devices offer a platform for
the development, testing, improvement, and upscale of the manufacturing environment [99]. Digital
twin technology is considered a key technology for the realization of cyber physical systems [100]. The
application of simulation techniques brings digital twins to life and makes them experimentable; the
digital twins become known as experimentable digital twins (EDTs). Initially, these EDTs communicate
with each other purely in the virtual world. In this way, complete digital representations of the
respective real assets and their behavior are created. Real-estate EDT networking leads to hybrid
application scenarios in which EDT is used in combination with real hardware, delivering complex
control algorithms, innovative user interfaces, and smart models for smart systems [101].

3. Materials and Methods

The main aim of the paper was to analyze the readiness of enterprises to implement Industry 4.0
in the period 2018–2019. The first partial aim of the paper was to compile an index of evaluation of the
level of Industry 4.0 in enterprises based on the results of a survey. The second partial aim was the
statistical verification of the consistency of the index with further results from the questionnaire survey.

The preparation of the research sample firstly included the identification of the number of
enterprises used for the questionnaire survey. Based on CSU (Czech Statistical Office) data, it was
found that, in the Czech Republic, there were 175,894 enterprises in the manufacturing industry in
2017, of which 7.1% were small, medium, and large enterprises, i.e., a total of 12,470 subjects [102].
Approximately 2500 enterprises were approached to ensure that a 95% confidence level condition
was met at a 5% margin of error and at a discarded 15% return on the questionnaires. The data were
collected on the basis of interviews with business managers, firstly addressed electronically. Of the
total number of respondents, 314 enterprises agreed to cooperate and participate in a questionnaire
survey with a return rate of 12.5%. The authors of the paper and university students were present at the
meetings with the enterprises and in the process of completing the questionnaires. The establishment
of the research was approached in two stages (two research waves): first in February–March 2018 and
then in January–May 2019.

As part of Industry 4.0 research, the research sample consisted of 276 enterprises reporting their
data (38 out of 314 questionnaires were excluded based on these criteria: at least 10 employees, one
year on the market, and completeness of survey). The amount of obtained data was further specified
in terms of business characteristics, i.e., size and technology demands (Table 1). The first wave of the
research was used to create the Industry 4.0 index (VPi4), whereas the second wave of the research was
used to check and compare the results achieved. Characteristics of the research samples according to
the research waves were as follows:

• First wave of research (year 2018)—164 enterprises (60% of data sample);
• Second wave of research (year 2019)—112 enterprises (40% of data sample).



Appl. Sci. 2019, 9, 5405 8 of 25

Table 1. Research sample characteristics.

Group Category of Group 1st Wave 2nd Wave

Size
Small enterprise (10–49 employees) 39.0% 36.6%

Medium enterprise (50–249 employees) 28.7% 30.4%
Large enterprise (over 250 employees) 32.3% 33.0%

Technological intensity

High-tech and medium high-tech intensity (HTI) 51.2% 58.0%
Of which high-tech sector (HTS) 7.9% 8.9%

and medium high-tech sector (MHTS) 43.3% 49.1%

Low-tech and medium low-tech intensity (LTI) 48.8% 42.0%
Of which low-tech sector (LTS) 12.2% 27.7%

and medium low-tech sector (MLTS) 36.6% 14.3%

Table 1 describes the research sample in terms of the size of the enterprises and their
technological intensity.

Classification of the enterprises by size was based on the number of employees of the enterprise,
as defined by the methodology of the European Commission [103]. Table 1 shows that, in the first
wave sample, there were 39.0% small enterprises, 28.7% medium-sized enterprises, and 32.3% large
enterprises as the most common. The composition of enterprises in the second wave of research was
very similar.

Table 1 shows the distribution of enterprises in terms of their technological intensity, with the
enterprises with higher technological intensity (HTI) and the enterprises with lower technological
intensity (LTI) according to the methodology of the Czech Statistical Office [102]. In the Czech
Republic and in our research in both waves, the groups were comparable. The only difference was the
representation of the enterprises from the low-tech sector (LTS) and medium low-tech sector (MLTS) in
the area with lower technological intensity in the first and second waves of research.

• HTI: Engineering and electro-technical production (CZ-NACE groups 24–30), chemical, paper,
and non-metallic production (CZ-NACE groups 17–23).

• LTI: Production of products for domestic use (CZ-NACE Groups 13–16, 31–32), food production
industry (CZ-NACE Groups 10–12).

The questionnaire focused on main groups of Industry 4.0 characteristics (observed phenomena). The
items of the questionnaire were defined with the support of 34 managers and their expert evaluation
within the framework of the qualitative research. The main part of the questionnaire consisted of 17
variables characterizing different technologies of Industry 4.0 used by the enterprises (data collection,
cloud storage, data analysis, people capability, IT infrastructure, information systems, M2M, robots,
mobile terminals, using sensors, learning software, sharing data, virtual reality, additive manufacturing,
i.e., 3D print, nanotechnology, drones, and autonomous vehicles). The areas are described in detail in
Section 2. In addition, four identification characteristics were measured for the enterprises, i.e., size
according to the number of employees, field of activity, technological intensity, and type of owner.
The questionnaire also included questions about whether the enterprises had a formulated strategy,
whether they planned on investing in technology, and a subjective assessment of the level of Industry
4.0 in their organization.

3.1. Exploratory Factor Analysis

The factor analysis was chosen to classify the most important variables affecting the level of
enterprise readiness for Industry 4.0 into groups. The central aim of factor analysis is the orderly
simplification [104] of several interrelated measures using mathematical procedures. The goal of
the analysis is to reduce the number of variables through fewer common factors and to reveal the
structure of relationships between the variables. Factor analysis in the broad sense comprises both a
number of statistical models and a number of simplifying procedures for the approximate description
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of data [105]. The basis of factor analysis is the assumption that the observed covariance (relationships,
i.e., correlations) between the variables is the result of the action of common factors and not the
interrelationship between the variables. Gorsuch [106] pointed out that the aim of factor analysis is to
summarize the interrelationships among the variables in a concise but accurate manner as an aid in
conceptualization. Each factor represents an area of generalization that is qualitatively distinct from
that represented by any other factor. A measure of the degree of generalizability found between each
variable and each factor is calculated and referred to as a factor loading.

We used exploratory factor analysis (EFA) to explore the main dimensions and generate a new index
of Industry 4.0. The scales of the items used in factor analysis were assessed on a scale of 1–4, using the
same range as Veza [107] in the survey, to evaluate the Industry 4.0 maturity level of Croatian enterprises.
This scale achieved better pilot research results than 1–5 used by Frank [108] or Schumacher [109] to
determine the implementation of different technologies in manufacturing companies.

The factor analysis helped in particular to determine the internal structure of covariance of
variable indexes and to differentiate different groups of the factors. The suitability of data structure for
factor analysis was analyzed by Bartlett’s test of sphericity [110] and the Kaiser–Meyer–Olkin (KMO)
test [111]. Bartlett’s test checked that the observed correlation matrix diverged significantly from the
identity matrix at α = 0.05 with a p-value of 3.021 × 10−15 (χ2 = 96.243, degrees of freedom (df) = 12).
Subsequently, the Kaiser–Meyer–Olkin sample adequacy ratio was calculated, and the value was
0.8495. Such a value was deemed high (higher than 0.7), making factor analysis very appropriate [112].
Tabachnick and Fidell [113] recommended inspecting the correlation matrix for correlation coefficients
over 0.30. Many correlation coefficients do not meet this requirement, but almost all of these coefficients
were statistically significant at the level α = 0.05.

3.2. Statistical Analysis

The results of the research were further processed using statistical analysis. The aim of this
analysis was to compare the results with the Industry 4.0 VPi4 index.

Firstly, the VPi4 index distribution within the first wave of the research was compared with the
index results in the second wave of the research. Due to the abnormality of the data, it was necessary
to use the non-parametric Mann–Whitney–Wilcox test for the independent samples. In this case,
we expected the samples to be similar. Working hypotheses, which formed the subject matter of
verification at the 5% level of significance, were as follows:

• H10: The VPi4 indexes based on data from the first research wave and the second research wave
are identical populations.

• H1A: The VPi4 indexes based on data from the first research wave and the second research wave
are different populations.

Furthermore, the dependence between the subjective perception of Industry 4.0 level and the
VPi4 index was tested using Person and Spearman correlation coefficients. The index was expected to
correlate to a certain extent with the subjective perception of the situation in the enterprise. Working
hypotheses, which formed the subject matter of verification at the 5% level of significance, were
as follows:

• H20: There is no dependency between the perception of Industry 4.0 in enterprises and the
VPi4 index.

• H2A: There is a dependency between the perception of Industry 4.0 in enterprises and the
VPi4 index.

Furthermore, the hypotheses about the impact of technological intensity of the industry on
the level of Industry 4.0 in the enterprises (expressed through the VPi4 index) were tested. The
Mann–Whitney test was used for this purpose. It was assumed that the index would reach higher
values in the enterprises with higher technological demands. For this purpose, the analysis was carried
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out separately for high-tech and low-tech enterprises, and the results were then compared. Working
hypotheses, which formed the subject matter of verification at the 5% level of significance, were as
follows:

• H30: There is no difference between the level of Industry 4.0 (VPi4) in high-tech and medium
high-tech enterprises (HTI) and in low-tech and medium low-tech enterprises (LTI).

• H3A: There is a difference between the level of Industry 4.0 (VPi4) in high-tech and medium
high-tech enterprises (HTI) and in low-tech and medium low-tech enterprises (LTI).

Statistical evaluation of tests was performed using Statistica 12 and R software.

4. Results

The results are divided into three sub-sections: factor analysis, index of Industry 4.0, and
verification and evaluation of Industry 4.0 index.

4.1. Results of Factor Analysis

Factor analysis was based on the variables the enterprises were asked about in relation to their
implementation of Industry 4.0. Several variants of factor analysis were performed with various
parameters with different items of the questionnaire.

Firstly, all 17 monitored items from the questionnaire were included in the exploratory factor
analysis. The results of the principal component analysis method showed that four factors explained
a total of 51% variance. However, the fourth factor contained only two items, of which drones
had a negative factor loading of f4 = −0.45 and autonomous vehicles reported a factor loading of
f4 = +0.78. Further rotation and testing did not improve the situation, and these items were, therefore,
excluded from the analysis. The highest factor loadings for additive manufacturing f2 = +0.37 and
nanotechnology f2 = +0.32 were very low (<0.4). Items which have a load less than 0.4 on any factor
should be removed and the analysis should be re-run [114]. This means that these items did not saturate
the factors sufficiently. In addition, they were not used to a great extent in the enterprises surveyed
(usage of these variables in our results: nanotechnology 4.0%, drones 0.7%, additive manufacturing
only 9.1%, and autonomous vehicles 2.9%). These items were, therefore, also eliminated from the
factor analysis.

Finally, 13 variables were selected for the final design. As mentioned in the methodology, the
suitability of the factor analysis was verified using the KMO index and the Bartlett test.

4.1.1. Factors Extraction

Factor extraction was performed using the principal component analysis method. This method is
based on a large number of variables to find a smaller set of new variables (Table 2 with less redundancy
to provide the best possible data representation [115]. The three factors found accounted for a total of
52.8% variance. The first factor explained 34.6% variance. The Eigen value of the second factor was
1.2, and the variance explained by this factor was 9.3%. The third factor then explained 8.9% of the
variance (see Table 2). The remaining factors were always less than 5% of the total variance and their
Eigen values were less than one. Based on the Kaiser–Guttman criterion, it was, therefore, appropriate
to interpret only the first three factors, as they explained more variance than the original variables.

Table 2. Factor extraction using principal component analysis.

Value Eigen Value % Total Variance Cumulative %

1 4.4920 34.5540 34.5540
2 1.2067 9.2826 43.8365
3 1.1689 8.9911 52.8277
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4.1.2. Factor Loadings and Rotation

In factor extraction, factor loads were calculated for each item, representing the correlations
between the factors and the variables. They could be used to interpret the factors. Thus, by processing
the data, three rather consistent factors were extracted (without rotation). Since initial factor extraction
usually does not provide interpretable results, it was done using the Varimax method. The primary
factor load aggregate variables are marked in bold in Table 3. The values in Table 3 represent the factor
loads of the rotating factors. The sign of factor load expresses the opposite relation to the given factor.
In addition to the Varimax method, other methods were used, but it was shown that these results are
best interpretable.

Table 3. Factor loadings. Primary factor load aggregate variables are marked in bold.
IT—information technology; MES—manufacturing execution system; ERP—enterprise resource
planning; M2M—machine-to-machine communication; 3D—three-dimensional.

Variable Factor 1 Factor 2 Factor 3

We collect data 0.8212 0.2961 0.0451
Data storage in the cloud 0.6260 0.0023 0.3342

We analyze the data 0.8603 0.1839 0.0997
We have the right people 0.6094 −0.0134 0.1901

IT infrastructure 0.4481 0.5251 −0.0306
Information systems MES, ERP 0.1367 0.7577 −0.1363

Linked data (M2M) 0.3207 0.5750 0.1562
The use of robots 0.1658 0.5449 0.4303

Mobile terminal equipment 0.1383 0.5448 0.4186
Using sensors 0.3203 0.5844 0.3058

Using learning software 0.1950 0.3306 0.4448
Sharing data with suppliers 0.2245 −0.0315 0.6696

Use of virtual reality 0.0643 0.0797 0.6842

Autonomous vehicles Eliminated
Additive manufacturing (3D printing) Eliminated

Nanotechnology Eliminated
Drones Eliminated

Variance explained 2.7416 2.3541 1.7719
Total 0.2109 0.1811 0.1363

In terms of interpretation and for model purposes, the factors were identified as levels 1–3 of
Industry 4.0 in the enterprises. It is clear from Table 3 that level 1 was primarily saturated with the
human capital variable, collecting data, storing data in the cloud, and analyzing data. These variables
have in common that they focus on working with data and the availability of human capital, i.e., the
need to operate equipment and technology. Level 2, on the other hand, included all the variables
related to the core infrastructure of industry 4.0. This means IT infrastructure, the presence of MES
and ERP information systems, M2M-based data interconnection, the use of robots and their arms in
production, mobile devices, and sensors. Level 3 included a higher level of Industry 4.0 that can be
expressed through the use of learning software, data sharing with suppliers, and virtual reality. The
items autonomous vehicles, additive manufacturing, nanotechnology, and drones were eliminated in
the preliminary factor analysis (see Section 4.1) and not used for this run of factor analysis.

4.2. Index of Industry 4.0

The results of the factor analysis were further used to create an index for the implementation
level of Industry 4.0 (VPi4) in the enterprise. Based on these data, it was possible to divide 13 areas
into three levels of Industry 4.0 implementation into the enterprise, using factor analysis, where the
numbers after each area represent their factor load.
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The first level of introducing Industry 4.0 into an enterprise consists of the following areas:

• We have the right people (mechatronics, mounter, technologist)—0.61;
• We collect data—0.82;
• Data storage in the cloud—0.63;
• We analyze data—0.86.

The second level of introducing Industry 4.0 into an enterprise consists of the following areas:

• IT infrastructure (speed, stability)—0.53;
• MES, ERP—0.75;
• We use linked data (M2M)—0.58;
• Use of robots, robotic arms (in production and elsewhere)—0.54;
• Mobile terminals—0.54;
• Use of sensors—0.58.

The third level of introducing Industry 4.0 into an enterprise consists of the following areas:

• Use of learning software—0.44;
• Suppliers can use our data (response options, predictions)—0.67;
• Use of virtual reality (digital twins, simulation)—0.68.

Figure 1a below shows the data distribution in terms of VPi4 percentage; the intervals were
created automatically for legibility. The most frequent interval was 39%–52% with a frequency of
37 enterprises, followed by an interval of 26%–39% with a frequency of 36 enterprises. The least
represented interval was 78%–91%, where there were seven enterprises.

Figure 1. The enterprises by the index of Industry 4.0 (VPi4) percentage: (a) distribution of the
enterprises by intervals; (b) total distribution.

Figure 1b shows the 164 enterprises evaluated under the first wave of the research (x-axis) with
their percentage of Vpi4 (y-axis). As seen from the chart, most of the enterprises were between 29%
and 60%. Conversely, in the lower quartile, there were 29% of enterprises, while there were 60% of
enterprises in the upper quartile.

4.3. Verification and Evaluation of Industry 4.0 Index

The results of the second wave of the research and supplementary questions identifying the
subjective perception of the enterprises and the impact of the technological intensity of the industry
were also used to assess the results of the Vpi4 index.

On the basis of the results, a scorecard was designed, such that an enterprise is able to determine
the level of implementation of Industry 4.0 inside the enterprise based on the answers to the questions.
The enterprise finds out the overall score and the fulfilment of different levels of Industry 4.0. At the
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same time, it can also compare the result with other enterprises in the industry where a set of five icons
shows the position compared to other enterprises. Each icon shows a 20% sample distribution (see
Figure 2).

Figure 2. Vpi4 index.

4.3.1. Industry 4.0 Index Distribution

The data of the first and second wave of the research were used to evaluate the data distribution.
Figure 3 below shows the enterprises at levels 1–3, which are color-coded (each enterprise is shown
three times on the graph), with the y-axis showing the values of each level and the x-axis showing the
total Vpi4 as a percentage.

Figure 3. Evaluation of enterprises by VPi4: (a) distribution of the enterprises in the first wave of the
research; (b) distribution of enterprises in the second wave of the research.

Figure 3a shows how the levels overlap; however, most of the enterprises reached the higher level
1, while the second and third levels featured a score pf zero. The distribution of the enterprises in
the second wave of Figure 3b was similar. It is interesting to note, for example, that one enterprise
achieved a very high overall Vpi4 at 88%, while, at the same time, it had a level 1 score of 93%, level 2
score of 95%, and level 3 score of 67% (three dots to the right of the graph). In total, five companies in
the first wave achieved absolutely zero values in Vpi4.

Furthermore, the VPi4 index distribution was statistically compared, using the samples from the
first wave and the second wave of the research. For this reason, Mann–Whitney–Wilcox test statistics
were used to compare the samples. Table 4 shows that, at all levels of the VPi4 index except the third
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level, the results of the first and second wave research were identical. Differences were found only in
the third level with a p-value = 0.0267. However, the third level of the index is very specific, as higher
ranking at this level is often more difficult for enterprises to achieve after the first two levels are met.
The enterprises in the second wave achieved a higher level of the VPi4 index at level 3 than in the first
wave. The results also show that there was a difference in self-perception and self-assessment of the
use of Industry 4.0 for the enterprises in the first and second waves.

Table 4. Industry 4.0 index (VPi4) distribution, using Mann–Whitney–Wilcox test.

Variable Median w1 Median w2 W p-Value

VPi4% total 44.39 49.65 8230.0 0.1431
VPi4% level 1 55.33 57.72 8898.0 0.6611
VPi4% level 2 47.48 53.49 8134.0 0.1070
VPi4% level 3 27.30 33.19 7741.0 0.0267

Enterprise perception 2.00 3.00 6771.5 0.0001

The results of the comparison of the index results in the first and second waves of the research show
that hypothesis H10 cannot be rejected, as the results of both surveys showed the same distributions.

4.3.2. Relation of the Index to the Subjective Perception of the Level of Industry 4.0 by the Enterprises

The relation of the index to the subjective perception of the level of Industry 4.0 by the enterprises
was carried out in both waves of the research. The correlation between VPi4 index (%) and the scale on
which enterprises evaluated themselves in relation to Industry 4.0 from 1–5 was analyzed (1—we do
not have Industry 4.0; 5—we fully have Industry 4.0). Pearson and Spearman coefficients were used
for testing. Firstly, a coefficient of determination of R2 = 0.2784 was calculated; thus, the dependence
explained 28% of the variability of the number of points. On average, the enterprises rated themselves
2.1 with Industry 4.0, with an average rating of the recalculated VPi4 index being 45% more similar to
the score of 3. One-quarter of enterprises had a VPi4 value below 29%, with the upper quarter having
a value above 60%. In terms of their own perception, 50% of the enterprises ranged from 1–3 on a
five-point scale. As also reported by the minima and maxima, some of the enterprises did not achieve
any points in the VPi4 index. The maximum was 88% and 34 points in VPi4.

The normalization of the data of both variables was verified by the Shapiro–Wilk test, with the
p-value of VPi4% = 0.09 assuming the normality of the data, as also shown by the histogram. With the
perception of Industry 4.0 by the enterprises, the p-value test was close to zero; therefore, the normality
of the data was not assumed. The results of the correlation of both variables are shown in Table 5.
Here, on the basis of a p-value = 0.0000, the null hypothesis of independence was rejected in favor of
the alternative using the Pearson coefficient at the significance level of 5%. We proved the existence of
a linear dependence, which was also proven by the positive Pearson correlation coefficient (0.5277).
At the same time, in terms of Spearman correlation, where the p-value was very close to zero with
R = 0.5147, the null hypothesis was rejected in favor of H2A on the dependence of both variables.

Table 5. Relation to subjective perception of Industry 4.0, based on Pearson and Spearman coefficients.

Pearson Spearman

Research Variable Perception VPi4 p-Value Perception VPi4 p-Value

Wave 1
Perception 1.0000 0.5277

0.0000
1.0000 0.5147

0.0000Index VPi4 0.5277 1.0000 0.5147 1.0000

Wave 2
Perception 1.0000 0.4129

0.0001
1.0000 0.4054

0.0001Index VPi4 0.4129 1.0000 0.4054 1.0000
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Similarly, a second questionnaire survey was used for the second wave of the research (Table 5).
The coefficient of determination was lower than in the first wave of the research (R2 = 0.1705).
Dependence, therefore, explained only 17% of the variability. In the normality verification by the
Shapiro–Wilcox test, the values were low to zero in both cases. Therefore, the normality of data, for
the VPi4 index and the perception values of Industry 4.0 by the enterprises, was not considered. It
was, therefore, better to compare the dependence of the Spearman coefficient. Its value was 0.4054, i.e.,
compared to the results in the first wave, the level of dependence was lower. Its value was, however,
statistically significant.

Given the proven dependence in both surveys, it was possible to conclude the correct setting of
VPi4 by means of factor analysis and the suitability of the questions, as it largely corresponded to the
perception of the enterprises in terms of Industry 4.0.

4.3.3. Relation of the Index to Intensity of Technology and Index Weighting

The relation to the intensity of technology in the industry was tested in the first wave of the research
only (Table 6). The Mann–Whitney test determined the null hypothesis at the sample significance level
of α = 0.05, where X = high-technology sector difficulty and Y = low-technology sector difficulty. The
hypotheses were tested, providing H30 = x0.50 − y0.50 = 0 and H3A = x0.50 > y0.50, as viewed from
VPi4. As shown in the table below, the null hypothesis of both samples was rejected when the p-value
was close to zero, and a positive Z confirmed the alternative hypothesis, claiming that the higher-tech
enterprises have a higher level of Industry 4.0 (VPi4).

Table 6. Intensity of technology levels (HTI—high-tech intensity; LTI—low-tech intensity), based on
Mann–Whitney test.

Variable Sum of HTI Sum of LTI U Z p-Value

VPi4% total 7672.5 5857.5 2617.5 2.4410 0.0146
VPi4% level 1 7178.5 6351.5 3111.5 0.8159 0.4146
VPi4% level 1 7751.5 5778.5 2538.5 2.7009 0.0069
VPi4% level 2 7354.5 6175.5 2935.5 1.3949 0.1631

Enterprise perception 7295.5 6234.5 2994.5 1.2001 0.2298

Interestingly, it was not possible to reject this hypothesis for the perception of the enterprises
from the perspective of Industry 4.0, with a p-value of 0.2298; therefore, this hypothesis could not
be rejected, and we can further assume that the high- and low-tech enterprises saw themselves in a
similar way. The hypothesis testing also failed to reject the null H30 hypothesis at levels 1 and 3 of
Industry 4.0 implementation, as the p-values were greater than α. On the other hand, for the second
phase of Industry 4.0 implementation, it was possible to prove the differences between the two groups.
The enterprises with higher technological demands were often more successful.

The VPi4 index was adjusted for comparing enterprises with different intensities of technology.
The Mann–Whitney test was used to compare more independent samples where the p-value did not
indicate statistically significant sectoral differences from the entire sample (Table 7), except for LTS,
where a p-value (0.0184) indicated a difference at the 0.05 level of significance. For this reason, it was
necessary to adjust the index (index obtained by the median difference of 0.0899) for LTS companies, so
that their results could be compared with the values of other groups. This fact was logical in terms of the
lower use of technologies that were included in VPi4 for enterprises belonging to the low-technology
sector. After adjusting the index for LTS enterprises, the Mann–Whitney test was re-conducted, where
no significant difference between the whole sample and LTS was found (p-value = 0.0967).
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Table 7. Intensity of technology sectors, based on Mann–Whitney test. M—medium; HT—high-tech;
LT—low-tech; S—sector.

Variable U Z p-Value

HTS vs. data sample 819.5 −1.3833 0.1665
MHTS vs. data sample 5325.5 −1.0364 0.2999
MLTS vs. data sample 1370.0 −1.1984 0.2307
LTS vs. data sample 3907.0 2.3572 0.0184

5. Discussion

In relation to the impact of Industry 4.0, this paper proved that 62% of the enterprises feel
influenced by Industry 4.0. According to research (sample of 105 enterprises) of the Confederation of
Industry of the Czech Republic [116], 65.7% of companies started implementing Industry 4.0 because
it is important for their future. In comparison, the research of Sommer [5] reported that 82% of the
enterprises in Germany feel ready for digitalization (a sample of 247 enterprises), and there were 68% of
28 enterprises mentioned by Schulze [117], questioned whether they used technology associated with
Industry 4.0. Other influences include the degree of cooperation of SMEs (Small and Medium-sized
Enterprises) with universities and research centers mentioned by Sastoque et al. [118].

Firstly, we discuss the structure of the VPi4 index levels. The initial level of index includes the
basic requirements of Industry 4.0 such as well-qualified (the right) people [119], and processes of data
collecting [120], storage in the cloud [121], and analysis of data [122]. These processes and variables are
necessary for higher levels of Industry 4.0 and can be limits for the future development and introduction
of Industry 4.0 implementation. The second level of the index consists of necessary infrastructure
which is needed to operate with technologies. This level has more parts, such as using sensors for
collecting data [121], IT infrastructure including MES [123], ERP information systems [123], linked
data via M2M (or IoT), robots [44], and user-end technologies such as mobile terminals [121]. The
last level is more advanced in terms of using learning software [122], virtual reality, and simulations
including digital twins [97] or sharing data with other parties [124].

Furthermore, we discuss the findings and results of similar models of Industry 4.0. There is still no
consensus on which model or index is most relevant to determine the level of Industry 4.0 introduction
and implementation. Applications foreseen are not only in the high-technological industry but also in
other sectors and branches.

Stefan et al. [125] emphasized considering the same meaning of three dimensions—technology,
organization, and personnel—in assessing the level of Industry 4.0, as done by Block [126]. However,
these dimensions were classified in more detail into three additional levels, assigning them four to
seven characteristics. The characteristics, identical to those used in this paper, include data storage,
IT infrastructure, and data evaluation. On the other hand, they emphasized data security, process
methodology, and personnel development, in contrast to this paper. They set target value criteria for
all these characteristics. In the proposed model, they defined criteria, relations, and dependencies
between these dimensions to help the enterprises classify the current state of the implementation of
Industry 4.0 and identify opportunities for improvement.

Scremin [127] also divided the Industry 4.0 enterprises into three main dimensions—strategy,
readiness, and performance—identifying a number of additional areas (2–3) within each dimension,
which they then subdivided into more detailed factors that influence the dimensions. Identical
factors within VPi4 include IT infrastructure, data sharing, providing data to suppliers, data analysis,
and employees.

Ślusarczyk [124] used secondary data at the level of the United States of America (USA), Germany,
Japan, and Poland for his research and concluded that 80% of the enterprises perceive Industry 4.0 as
very significant. This can be seen as a similar value to that published in this paper, as, out of 1018, 62%
of SMEs responded in the same way. It is important to note that the research of Ślusarczyk [124] was
based on data from large enterprises in the US, Germany, Japan, and Poland, which are technologically



Appl. Sci. 2019, 9, 5405 17 of 25

highly developed countries featuring large enterprises. In this paper, the importance of Industry 4.0
was reported as also increased according to the size of the enterprise, as the medium-sized enterprises
reached 74%. It can, therefore, be assumed that large enterprises would reach 80%.

Shumacher, Erol and Sihn [109] conducted an assessment of the readiness to implement Industry
4.0, as well as the maturity of the enterprises in this respect. For this purpose, they created a model
evaluating the enterprise in nine dimensions (strategy, leadership, customers, product, processes,
culture, people, legislation, technology), and each of these dimensions was divided into other sub-parts,
which were evaluated on a five-point scale in their questionnaire (not implemented (1) to fully
implemented (5))—this scale also confirmed the accuracy of the four-degree scale in the research
(1—we do not use it, 2—being implemented, 3—we use it partially, 4—implemented). From the results
of the research, it is evident that the enterprises considered the dimension of the product and people as
the most important. The results of this work show that companies mostly deployed IT infrastructure.
They then assigned weights to these parts and made readiness calculations. They proposed this model
for the enterprises as a means of self-assessment. These authors designed their model very generally,
as some dimensions are very difficult to evaluate within subjective perception. For this reason, this
paper used a specifically focused indicator, which does not aim to evaluate all the factors, but only the
factors related to the technology possible to be evaluated by the enterprise itself.

Frank, Dalenogare, and Ayala [108] conducted a cross-sectional survey among 92 Brazilian
manufacturing enterprises, as they identified them as the most affected by Industry 4.0, similar to this
paper. They verified that the level of Industry 4.0 implementation depends on the size of the enterprise,
as in this work, where it was shown that large enterprises achieve significantly higher VPI4% and
Industry 4.0 affects SMEs. They also found enterprises with an advanced level of Industry 4.0 (also
divided into three levels). They identified automation, virtualization, and flexibility as the key criteria
and barriers to a high level of Industry 4.0.

Durana, Kral, Stehel, Lazaroiu, and Sroka [128], using factor analysis, described a model of quality
culture, the fulfilment of which helps the company in the implementation of Industry 4.0, as the
most important factor. They found consistency with the research results in terms of the collection of
information and emphasis on employees.

Human resources that were identified as the most significant limit in this paper could not be
identified in the research of Industry 4.0 technologies, such as implementation patterns in manufacturing
companies [108], because the authors did not include them in the questionnaire. They also asked
about the sensors, ERP and MES systems, virtual simulation, robot use, and M2M. The main factors
affecting the level of Industry 4.0 in the company were equally divided into three levels as in this
paper. Interestingly, their allocation of ERP, MES, and sensors to the first level differed from this
research. However, robots and M2M were also assigned by Frank [108] to the second level according
to cluster analysis.

Other models that summarized the levels of Industry 4.0 implementation in manufacturing
enterprises included a model [122] that set six levels of Industry 4.0 in an enterprise. However, these
levels were very difficult to measure as they were measured on the basis of general questions. The
enterprises that implemented Industry 4.0 throughout the value chain, innovating business processes,
reached the highest levels.

6. Conclusions

Industry 4.0 is currently identified as a major factor in the future competitiveness of enterprises.
However, the implementation of different technologies varies from one enterprise to another. Based on
the performed factor analysis, an Industry 4.0 index (VPi4) was created, which allows the enterprises
to determine their current level of Industry 4.0.

The proposed index was statistically verified by supplementary research in the second wave of
the research. The consistency of the index was confirmed by the fact that it was not possible to reject
the H1A hypothesis of different sample distributions.
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The correctness of the results (H2A) was also shown by the observed dependence between the
subjective perception of the enterprises and the results of the index.

Finally, the model was verified due to the intensity of technology in the industry. It was found
that companies with a higher intensity more often achieved a higher index level in terms of Industry
4.0 (H3A).

6.1. Managerial Implications

The VPi4 index and its methodology allow enterprises to easily identify their own level of
technology readiness within Industry 4.0. The index is a tool for managers to set strategic objectives
and formulate strategies in line with the challenges of the Fourth Industrial Revolution. It can also be a
criterion in deciding on investment plans in terms of selecting priorities for the further development
of an enterprise. The proposed solution allows better assessment of strategic initiatives in terms of
their future return. The managers can also help to decide which projects should be implemented in
order to ensure greater synergies. The index includes technologies that need to be implemented in the
enterprises, as well as the processes that need to be set up, changed, and reintroduced. In this sense,
it can also, in addition to project management, help with the management and identification of key
processes in the organization.

6.2. Theoretical Implications

Regarding the theory, this paper offers a new way of looking at Industry 4.0 in terms of key
processes and technologies. This approach aims to categorize Industry 4.0 components into a clear
framework. The proposed index brings a new three-level structure of the Industry 4.0 phenomenon.
The main theoretical contribution is, in particular, the determination of the content of the term and the
determination of the importance of different factors in the context of the readiness of companies to
implement Industry 4.0 concepts. The differences between more technologically and less technologically
demanding industries confirm the specifics of different fields in the use of new technologies. This
confirms the conclusions of many other researches and the fact that new technologies are largely
being introduced, especially in the field of mechanical engineering. The results also indicate that the
subjective perception of enterprises of their own level of Industry 4.0 corresponds more or less to
the actual situation. The problem, however, is probably the lack of visibility in terms of the current
challenges, priorities, and complexity of technology.

6.3. Limitations and Suggestions for Future Research

However, this paper has several limitations that must be considered. The VPi4 index does not
include some industry-specific applications of Industry 4.0 technologies, such as drone use, 3D printers,
nanotechnology, and autonomous vehicles, due to the lower incidence in the monitored businesses. In
the early stages of the index preparation and in the initial factor analysis, these factories were included;
however, due to the low factor load, they were subsequently removed from the index. All these
technologies fell in the highest (third) level of the index. In the future, the authors assume that, with
an increase in their use in enterprises, the index will be supplemented by these specific applications.
Alternatively, it was considered to create different variants of the index for different industries.

A certain limitation of the paper is related to the method of data collection. At data collection,
the expected return on questionnaires was 15% at a 5% margin of error and 95% confidence level.
However, the real rate of return was 12.5%. With a usable 276 questionnaires and 95% confidence level,
the margin of error was 5.86%. The error, therefore, slightly exceeded the planned level. Sample size
was not representative in the case of proportionality of the Czech Republic enterprise population. The
intention of the authors was that the research sample of the enterprises was composed evenly with
regard to the size of the enterprises and technological demands of the industry. Therefore, the VPi4
index is not primarily intended to only determine the level of Industry 4.0 in the Czech Republic.
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The main questionnaire survey limits are as follows: the limitations in terms of ignorance of
the material and terminology by the respondents [129], as well as the fact that the respondents only
reported their individual perspective on the situation [130], and that respondents tried portraying the
situation (business) in a better light [131]. For this reason, a personal meeting with the representatives
of the enterprises was used, who often liked to show off how Industry 4.0 works in the enterprise.
An important limit, as mentioned by Roberts and Giddens [129,132], is related to the accuracy of the
survey, as there was a small percentage of responses obtained; thus, the research results were often
based on only 10% of the original sample; this is a problem faced by every research. The questionnaire
also omitted the open questions noted by Saunders [133].

In terms of verification of the resulting VPi4 index, the authors plan to perform a confirmatory
factor analysis in combination with the structural model equation method to further refine the
adjustment of individual factors within the third wave of the research. It will also include the creation
of an Industry 4.0 implementation model. However, recent results from the second wave of the research
and comparison presented in the paper suggest that this is unlikely to be a significant intervention in
the configuration of the coefficients of different variables and index factors. The authors also plan to
analyze the relation of the index to the size of the enterprises.

Another disadvantage of the index could be the fact that the enterprises operating in the Czech
Republic only participated in the research in both waves. In the case of large enterprises, however,
most of these were foreign-owned enterprises, mostly from the European Union (EU), mostly from
Germany. In the third wave of the research, the authors are also planning to do research abroad and
include enterprises from developed countries such as Japan, the USA, etc.

Lastly, the proposed VPi4 index is only the first output of the Industry 4.0 project, which deals
with the issue more comprehensively. Future research will bring further results.
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