
applied  
sciences

Article

An Analytical Framework for the Investigation of
Tropical Cyclone Wind Characteristics over Different
Measurement Conditions

Lixiao Li 1,2 , Yizhuo Zhou 1, Haifeng Wang 3, Haijun Zhou 1,2, Xuhui He 4 and Teng Wu 3,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;

lilixiao@szu.edu.cn (L.L.); 1810332047@email.szu.edu.cn (Y.Z.); haijun@szu.edu.cn (H.Z.)
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University,

Shenzhen 518060, China
3 Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of

New York, Buffalo, NY 14203, USA; hwang48@buffalo.edu
4 School of Civil Engineering, Central South University, Changsha 410083, China; xuhuihe@csu.edu.cn
* Correspondence: tengwu@buffalo.edu

Received: 1 November 2019; Accepted: 6 December 2019; Published: 9 December 2019
����������
�������

Abstract: Wind characteristics (e.g., mean wind speed, gust factor, turbulence intensity and integral
scale, etc.) are quite scattered in different measurement conditions, especially during typhoon and/or
hurricane processes, which results in the structural engineer ambiguously determining the wind
parameters in wind-resistant design of buildings and structures in cyclone-prone regions. In tropical
cyclones (including typhoons and hurricanes), the inconsistent wind characteristics may be in part
ascribed to the complex flow structure with the coexistence of both mechanical and convective
turbulence in the boundary layer of tropical cyclones. Another significant contribution to the
scattered wind characteristics is due to various measurement conditions (e.g., terrain exposure and
height) and data processing schemes (e.g., averaging time). The removal of the inconsistency in the
field-measurement system may offer a more rational comparison of measured wind data from various
observation platforms, and hence facilitates a better identification scheme of the wind characteristics
to guide the urban planning design and wind-resistant design of buildings and structures. In this
study, an analytical framework was firstly proposed to eliminate the potential observation-related
effects in wind characteristics and then the wind characteristics of seven field measured tropical
cyclones (four typhoons and three hurricanes) were comparatively investigated. Specifically, field
measurements of wind characteristics were converted to a standard reference station with a roughness
length of 0.03 m, observation duration of 10 min for mean wind and averaging time of 3 s for gusty
wind at a 10 m height. The differences of the measured wind characteristics between the typhoons and
hurricanes were highlighted. The standardized turbulent wind characteristics under the analytical
framework for typhoons and hurricanes were compared with the corresponding recommendations in
standard of American Society of Civil Engineers (ASCE 7-10) and Architectural Institute of Japan
Recommendations for Loads on Buildings (AIJ-RLB-2004).

Keywords: wind characteristics; boundary layer; typhoon; hurricane; field measurement

1. Introduction

Wind characteristics (e.g., mean wind speed, gust factor, turbulence intensity and integral
scale, etc.) are the critical factors for wind-resistant design of the wind-sensitive infrastructures and
urban planning. Resisting wind effects and reducing wind-induced damage in tropical cyclones
is the challenge for the wind sensitive buildings and structures in cyclone-prone regions, as these
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regions are normally in the economically developed areas with crowded populations and large-scale
landmark buildings and structures. Therefore, a rational analytical framework for investigating wind
characteristics in tropical cyclones is essential to understand the nature of winds, calibrate codes of
practice for wind-resistant design of the large-scale structures and enhance wind tunnel simulations
and numerical modeling [1]. Oncoming winds of buildings and bridges are usually simplified as the
steady flow part featured by mean wind speed and corresponding vertical profile, and the fluctuating
flow part characterized by turbulence intensity, integral scale, gust factor, peak factor, probability
distribution, and power spectrum.

Tropical cyclones are characterized by the asymmetric helical flow structure and complex
turbulence driven mechanism (both convective and mechanical turbulence). The spatial distribution
of the flow structure also varies significantly in the footprint of tropical cyclones. Due to the limited
measurements in the lower boundary layer of tropical cyclones, a basic premise of the existing codes
and standards is that the turbulent wind characteristics in tropical cyclones are similar to those
observed in the boundary layer winds of extratropical storms. However, it is well known that the
downward transport of convective cells generated at higher levels together with the boundary layer
rolls could modulate the wind structure and turbulence in the lower tropical cyclone boundary
layer. These thermodynamics-related activities may lead to the turbulent wind characteristics of the
hurricanes/typhoons different from those of the extratropical winds [2–4].

A direct and reliable approach to examine the turbulent wind characteristics is based on the
field observations in the paths of landfalling tropical cyclones. Thus, a number of field measurement
programs were initiated in the tropical cyclone-prone regions to monitor the hurricane/typhoon
winds [5–14]. The field-measured wind characteristics from different observation stations for various
tropical cyclones are quite scattered and hard-to-reach unified conclusions to guide the wind-resistance
design of buildings and structures in the cyclone-prone regions. The inconsistent wind characteristics
of tropical cyclones may be attributed in part to the complexity of turbulence driven mechanisms, e.g.,
shear (namely roll and streak structures near the surface), convection, rotation, blocking and sheltering
effects at the boundary layer, and also the interactive motions of multi-scale eddies in the flow fields of
tropical cyclones [15,16]. On the other hand, the underlying surface and the employed schemes to obtain
the turbulence parameters may also significantly influence on the variability of wind characteristics.
Since the tracks of tropical cyclones are random, most of the field observations were conducted by
installing anemometers and accelerometers on structures or observation towers, which were built in
the regions frequently attacked by tropical cyclones. The measured turbulent wind characteristics from
these observation stations are quite different from one another because of the underlying surrounding
terrain conditions and the lack of well-established guidelines for an appropriate documentation of the
near surface wind filed in tropical cyclones. In the China wind codes, wind characteristics are specified
over standard terrain with roughness length of 0.03 m, averaging time of 10 min for mean wind and
duration time of 3 s for gusty wind at 10 m height. Accordingly, it is essential to convert the turbulence
characteristics obtained from various stations to the standard terrain and investigate the wind nature
in a unified analytical framework. The “standardized” wind characteristics due to their universality
could be useful in instructing the structural design in cyclone-prone regions.

This study first presented an analytical framework in which the mean wind speed, turbulence
intensity, integral scale, gust factor, and peak factor measured at various terrains, heights and averaging
times were properly standardized. Then, the typhoon and hurricane wind data analyzed here were
briefly described. Finally, field-observed turbulent wind characteristics of four typhoons and three
hurricanes were converted to the standard condition and comparatively investigated. The standardized
results were also compared with the corresponding recommendations in ASCE7-10 [17] and
AIJ-RLB-2004 [18]. The difference of the wind characteristics in hurricanes and typhoons were
also highlighted.
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2. Analytical Framework

In this section, an analytical framework will be proposed in which the turbulent characteristics
measured in various terrain conditions, heights and averaging times could be converted to a standard
station. The standardization of the wind characteristics is based on the assumption of the equilibrium
boundary-layer theory [19]. The atmosphere stratification in the boundary layer of tropical cyclones
is assumed to be neutrally stable, which implies that the turbulent structure within this region is
driven mainly by the local surface roughness effects [20]. In the non-equilibrium boundary-layer, this
analytical framework may need further investigations subjecting to specific terrain conditions.

2.1. Mean Wind Speed

To analyze the wind characteristics, an essential step is to convert the wind speeds measured
at different station conditions (i.e., various exposures, heights, and averaging times) to the standard
condition. The standardization of the mean wind speed in this study follows the three steps: (1)
determine the exposure type of the observation station; (2) calculate the gradient wind speeds over the
observation exposure; and (3) calculate the mean wind speed at the reference height (10 m high) over
standard exposure (open flat terrain) by assuming the gradient wind speeds are equal at the gradient
height over different exposures.

2.1.1. Logarithmic Law Wind Profile

Normally, the observations by Global Position System (GPS) dropsonde and Doppler radar show
that the variation of mean wind speed with height follows the logarithmic law in the lower part of
tropical cyclone boundary layer [21–25]. Thus, the logarithmic law can be used to describe lower
boundary layer and the outer-vortex regions of a tropical cyclone:

Us(zs) =
u∗s
k

ln
(

zs

z0s

)
, (1)

where Us(zs) represents the mean wind speed at height zs over the standard exposure. Specifically, the
standard exposure in this study corresponds to the roughness length z0s = 0.03 m, the reference height
is 10 m, and the time scale for the average value is 10 min. u∗s denotes the friction velocity over the
standard exposure, and k ≈ 0.40 is the von Kármán constant.

According to Equation (1), the key procedure to standardize the mean wind speed is to determine
the relationship of the friction velocities in various terrains. As all anemometers used in this study are
set between 10–60 m height, it is reasonable to assume that the friction velocity in the lower tropical
cyclone boundary layer is a height-independent constant [25–27]. Based on the assumption of local
equilibrium conditions, the transition model in Engineering Sciences Data Unit (ESDU) [28], which has
been applied to convert the 3 s peak speed over open-terrain and the 1-min mean wind speed above
open water in hurricane by Simiu et al. [29], is employed:

u∗s
u∗m

=
ln

(
105

z0s

)
ln

(
105

z0m

) , (2)

where u∗m is the friction velocity over the field measured exposure with roughness length of z0m.
Then the relation of mean wind speeds with different terrains can be accordingly expressed as:

Us(zs)

Um(zm)
=

ln
(

105

z0s

)
ln

(
105

z0m

) ln
(

zs
z0s

)
ln

(
zm
z0m

) , (3)

where Um(zm) is the mean wind speed measured at experiment station with height zm and roughness
z0m. In this model, the gradient balance assumption, which has been demonstrated to be valid at a
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sufficiently high altitude [30], is adopted. The super-gradient flows were observed in the boundary
layer of some tropical cyclones, however, it is not systematic in tropical cyclones, especially in overland
conditions [31,32]. The case of super-gradient flows in tropical cyclones will discussed in next section.

The relation among mean wind speeds of various averaging times can be expressed as [33]:

Uτ(z) = U3600(z)

1 + β0.5c(τ)

2.5 ln
(

z
z0

) , (4)

where τ denotes the averaging time; Uτ(z) and U3600(z) are respectively τ-s mean and 1-h mean wind
speeds; β represents the ratio of the fluctuating wind speed variance to the square of friction velocity;
c(τ) is an averaging time-related parameter that determined by statistical characteristics of wind
speed measurements.

2.1.2. Super-Gradient Wind Profile

The field measurements show the existence of super-gradient wind over ocean surface and the
sea land transition regions in tropical cyclones, and the variation of mean wind with height following
a logarithmic-quadratic profile [34]. Based on the field measurements in hurricanes over land and
ocean surface, Snaiki and Wu [35] proposed a semi-empirical model to depict the mean wind profile.
As the empirical model is convenient and accurate, it is adopted here to convert the mean wind speed
in landfalling typhoons. The power law-based wind profile is used as follows:

Us(zs) = U10s

[( zs

10

)αs
+ η1 sin

( zs

δs

)
exp

(
−

zs

δs

)]
, (5)

where Us(zs) and U10s are the mean wind speed at height zs and 10 m over the standard exposure; αs is
the power law exponent over the standard exposure; δs is the height of the wind maximum over the
standard exposure; η1s is derived to be:

η1s =

(
δs
10

)αs
αse

sin 1− cos 1
,

Analogously, the field measured mean wind over the experiment exposure is:

Um(zm) = U10m

[(zm

10

)αm
+ η1m sin

( zm

δm

)
exp

(
−

zm

δm

)]
, (6)

where Um(zm) and U10m are the mean wind speed at height zm and 10 m over the measured exposure;
αm is the power law exponent over the measured exposure; δm is the height of the wind maximum
over the measured exposure; η1s is:

η1m =

(
δm
10

)αm
αme

sin 1− cos 1
,

By adopting the assumption that the wind speeds at the wind maximum height ( δs and δm) are
equal, the following expression can be deduced:

Us(z)
Um(z)

=

(
δm
10

)αm[(
zs
10

)αs
+ η1s sin

(
zs
δs

)
exp

(
−

zs
δs

)]
(
δs
10

)αs[( zm
10

)αm
+ η1m sin

(
zm
δm

)
exp

(
−

zm
δm

)] , (7)

Equation (7) could be used to convert the field wind speeds to the standard exposures in the
tropical cyclones with super-gradient flow. Actually when the wind speed measured in the lower
regions following the logarithmic law, the Equation (7) will merge into the logarithmic law or power law.
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2.2. Turbulence Intensity

It is conventional to treat the turbulence ratio (the ratio of the standard deviation of longitudinal
wind velocity component σu to the friction velocity u∗) as terrain-independent in the equilibrium
boundary layer [36,37]. On the other hand, Harris and Deaves [38] proposed an empirical model to
consider the variation of turbulence ratio with height as:

σu

u∗
= 2.63η

[
0.538 + 0.090 ln

(
z
z0

)]η16

, (8)

where η = 1− z/h; h = u∗/(6 f ); f = 1.458× 10−4 sinφ is the Coriolis parameter; and φ denotes the
latitude of the observation site. Due to the fact that the derivation of Equation (8) was partly based on
non-equilibrium-condition data, the estimation of maximum turbulence ratio, [σu/u∗]max obtained from
Equation (8) is dependent on the terrain roughness length, which is in contradiction to the equilibrium
assumption. To correct this issue, the empirical variation of σu/u∗ with respect to terrain roughness is
introduced in ESDU [39] to obtain approximately a constant [σu/u∗]max for various terrain roughness
lengths: [

σu

u∗

]
(z0) = 1 + 0.156 ln

(
u∗
f z0

)
, (9)

Since the field measurements give [σu/u∗]max = 2.85 for the terrain with a roughness length of 0.03
m, Equation (8) can be corrected by factoring 2.85/

{
1 + 0.156 ln[u∗/( f z0)]

}
, resulting in an improved

model to calculate turbulence ratio as in ESDU [39]:

σu

u∗
=

7.496η
[
0.538 + 0.090 ln

(
z
z0

)]η16

1 + 0.156 ln
(

u∗
f z0

) . (10)

As expected, Equation (9) gives a maximum turbulence ratio [σu/u∗]max of approximately 2.85
for various roughness lengths. However, field measurements show that turbulence ratios in tropical
cyclones are usually greater than the values in extratropical storms [12,24,40], making the selection of
[σu/u∗]max = 2.85 inapplicable to tropical cyclones. On the other hand, a height-independent relation
between turbulence ratio σu/u∗ and underlying surface roughness length z0 was proposed by Li et
al. [13] based on the analysis of field measurements in typhoons. In this study, this height-independent
relation proposed by Li et al. [13] is adopted as:[

σu

u∗

]
max

= 2.72− 0.25 log z0. (11)

As a result, the turbulence ratio in tropical cyclone will be corrected by multiplying Equation (8)
by the following factor:

2.72− 0.25 log z0

1 + 0.156 ln[u∗/( f z0)]
. (12)

Then the turbulence ratio could be expressed as:

σu

u∗
=

2.63η
[
0.538 + 0.009 ln

(
z
z0

)]η16

[2.72− 0.25 log(z0)]

1 + 0.156 ln
(

u∗
f z0

) . (13)

For a standard terrain condition (z = 10 m; z0 = 0.03 m; assuming u∗ = 1 m/s and φ = 25◦),
the turbulence ratios estimated by Equations (9) and (11) are 2.55 and 2.78, respectively. In this
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study, Equation (13) is utilized to convert the measured turbulence ratio to the standard condition.
Accordingly, the longitudinal turbulence intensity in a standard exposure can be calculated as:

[Iu]s =
2.63ηs

[
0.538 + 0.090 ln

(
z
z0

)]ηs
16

[2.72− 0.25 ln(z0s)][u∗]s[
1 + 0.156 ln

(
u∗
f z0

)]
[U]s

. (14)

2.3. Integral Scale

The approach of integrating correlation function by invoking Taylor’s hypothesis is frequently
used to estimate the integral scale as it has a clear physical meaning [24,33]:

Lx
u =

U
σ2

u

∫ Ruu=0.05σu

0
Ruu(τ)dτ, (15)

where Ruu is the autocorrelation function of the longitudinal fluctuating component.
The integration of autocorrelation function, however, usually overestimates the value of integral

scale and will result in a deviation of inertial sub-range in the estimated von Kármán-type spectrum [41]
compared to that in the field-measured spectra. To improve the accuracy, Harris and Deaves [38]
suggested the following model to estimate the longitudinal integral scale:

Lx
u =

A
3
2
(
σu
u∗

)3
z

2.5Kz
3
2
(
1− z

h

)2(
1 + 5.75 z

h

) , (16)

where z is the height from the ground.

A = 0.115
(
1 + 0.315η6

) 2
3 (17)

and

Kz = 0.19− (0.19−K0) exp
[
−B

( z
h

)N
]

(18)

in which
K0 =

0.39
Ro0.11

, (19)

B = 24Ro
0.155, (20)

N = 1.24Ro
0.008, (21)

Ro =
u∗
f z0

. (22)

The longitudinal integral scale over standard exposure [Lx
u]s can be estimated according to Equation

(16) by introducing the corresponding values of [u∗]s and [z0]s.

2.4. Peak Factor

Peak factor gu is defined as the ratio of maximum wind speed fluctuation in a duration τ to the
standard deviation of the fluctuating wind speed within an observation period of T:

gu(τ, T) =
max[u(τ, T)]
σu(τ, T)

σu(τ, T)
σu

. (23)
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For a stationary stochastic process following Gaussian distribution, the peak factor with τ→ 0
and T ≥ 3600 s could be calculated as [42]:

gu(τ, T) =
√

2 ln[υ(τ, T)T] +
0.5772√

2 ln[υ(τ, T)T]
, (24)

where υ(τ, T) is the zero up-crossing rate. It can be calculated by [42,43]:

υ2(τ, T) =

∫
∞

0 n2Su(n)χ2(n, τ, T)dn∫
∞

0 Su(n)χ2(n, τ, T)dn
, (25)

in which Su(n) represents the wind velocity spectrum; n denotes the frequency in Hertz, and χ2(n, τ, T)
is a filter function used to consider the influence of sampling frequency, averaging time and response
characteristics of the anemometer. In this study, the von Kármán-type spectrum is employed as:

nSu(n)
σ2

u
=

4
(

nLx
u

U

)
[
1 + 70.8

(
nLx

u
U

)2
] 5

6

, (26)

The filter function is chosen as following for sonic anemometers [44]:

χ2(n, τ, T) =
[

sin(πnτ)
πnτ

]2

−

[
sin(πnT)
πnT

]2

, (27)

For propeller anemometers, the following filter function, which takes the mechanical features of
propeller anemometers into consideration, is adopted [43]:

χ2(n, τ, T) =


[

sin(πnτ)
πnτ

]2

−

[
sin(πnT)
πnT

]2
 1

1 +
(

2πnλ
U

)2 , (28)

where λ is the distance constant of the propeller anemometer.
Equation (24) is valid for calculating the average of instantaneous peak factor ( τ→ 0) from a

long enough wind speed record (e.g., T ≥ 1 h). With a finite averaging time, τ, and a finite observation
period, T, the estimation of standard deviation in Equation (26) could be biased since the measured
spectrum is truncated in both high-frequency and low-frequency regions, and might eventually lead
to an inaccurate estimation of the peak factor. In the case that these conditions are not satisfied, the
following relation is necessary to be introduced to consider the effects of the variance reduction due to
the truncation of the velocity spectrum:

σu(τ, T)
σu

=

∫
∞

0 Su(n)χ2(n, τ, T)dn∫
∞

0 Su(n)dn
, (29)

The 3-s peak factor, [gu]s, in time scale [T]s = 600 s in the standard terrain can be estimated by
introducing Us and Lx

us, which were respectively calculated through Equations (3) or (7) and (16).

2.5. Gust Factor

Gust factor, Gu(τ, T), herein is defined as the ratio of gust speed with gust duration τ to the mean
wind speed U(T) with an observation period of T:

Gu(τ, T) = 1 +
max[u(τ, T)]
σu(τ, T)

σu(τ, T)
σu(∆t, T)

σu(∆t, T)
U(T)

, (30)
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where ∆t is the sampling interval.
Substituting the peak factor and turbulence intensity into the corresponding terms of Equation

(30), the gust factor can be re-expressed as:

Gu(τ, T) = 1 + gu(τ, T)Iu
σu(τ, T)
σu(∆t, T)

, (31)

where σu(τ, T)/σu(∆t, T) can be calculated by:

σu(τ, T)
σu(∆t, T)

=

∫
∞

0 Su(n)χ2(n, τ, T)dn∫
∞

0 Su(n)χ2(n, ∆t, T)dn
, (32)

As a result, the gust factor in the standard exposure, [Gu(τ, T)]s, can be estimated by:

[Gu(τ, T)]s = 1 + [gu(τ, T)]s[Iu]s

[
σu(τ, T)
σu(∆t, T)

]
s
, (33)

3. Data Sources

3.1. Tropical Cyclones and Instruments

In this study, the data of four typhoons (0601 typhoon Chanchu, 0606 typhoon Prapiroon,
0812 typhoon Nuri, and 0814 typhoon Hagupit) and three hurricanes (0504 hurricane Katrina, 0510
hurricane Rita, and 0512 hurricane Wilma) were comparatively analyzed. The detailed descriptions
of the observation site exposures and the observation tower configurations for the four typhoons
and three hurricanes were presented in Li et al. [16] and Masters et al. [12], respectively. The GPS
coordinates of the observation stations were listed in Table 1. As the latitudes of all observation stations
are around 25◦, the latitude of the standard condition is set to be 25◦ for the convenient of calculation.

Table 1. The GPS coordinates of observation towers. Reproduced with permission from [16],
Elsevier, 2019.

Tropical Cyclones Tower Latitude Longitude

Chanchu
RBT 22.7337◦ 115.5734◦

OT 23.5510◦ 117.0020◦

Prapiroon BT 21.4519◦ 111.3149◦

Nuri
MFB 22.1810◦ 113.5630◦

DIT 22.1413◦ 113.7096◦

Hagupit ZT 21.4509◦ 111.3745◦

ST 21.2538◦ 110.6541◦

Katrina
T1 29.8253◦ −90.0319◦

T2 29.4441◦ −90.2628◦

T3 30.4720◦ −88.5308◦

Rita
T0 29.9512◦ −94.0220◦

T3 29.9548◦ −93.9542◦

T5 30.0797◦ −93.7841◦

Wilma

T0 25.9008◦ −81.3114◦

T1 26.1458◦ −80.5067◦

T2 25.8681◦ −80.8997◦

T3 25.7516◦ −80.3780◦

It is noted that the distance constant λ of the propeller anemometer is an important factor to
calculate the peak factor and gust factor as this type of anemometer mechanically filters the amplitudes
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of gusts with wavelengths less than 2πλ due to the mechanical limitations [10]. In this study, the
propeller anemometers of models R.M. Young 05103L and R.M. Young 27106R were respectively used
to measure typhoons and hurricanes. The specifications of these two propeller anemometers are listed
in Table 2. Based on the parameters in Table 2, the data measured by propeller anemometers were
corrected according to Equation (24). In addition to propeller anemometers, the sonic anemometers
were also utilized in the field measurement of typhoons. Specifically, two 3-D ultrasonic anemometers
(WindMaster™ Pro., Gill Instruments Ltd., Lymington, UK) were installed on tower RBT and one 3-D
ultrasonic anemometer (HD2003, Delta Ohm Srl, Selvazzano Dentro, Italy) were setup on tower OT
for the measurements of Typhoon Chanchu; one HD2003 anemometer were installed on tower BT to
acquire data from Typhoon Prapiroon, and towers DIT and ST were equipped with Gill WindMasterTM

Pro. anemometers. The specifications of the utilized sonic anemometers are also listed in Table 2.
For the data obtained from sonic anemometers, the filter function presented by Equation (23) were
used for the correction.

Table 2. Specifications of anemometers.

Anemometers Specifications

05103L

Wind speed
Range 0~100 m/s

Threshold Sensitivity 1 m/s
Distance constant 2.7 m for 63% recovery

Wind
direction

Ranges 0 ~ 360◦

Threshold Sensitivity 1.1 m/s at 10◦ displacement
Delay Distance 1.3 m for 50% recovery

Damped Natural Wavelength 7.4 m

27106R Wind speed

Range 0~25 m/s
Threshold Sensitivity 0.3 m/s

Distance constant 2.7 m for 63% recovery
Damped Natural Wavelength 7.4 m

WindMasterTM Pro
Wind speed Range 0~ 65 m/s

Resolution 0.01 m/s

Wind
direction

Ranges 0~359◦

Resolution 0.1◦

HD2003
Wind speed Range 0~60 m/s

Resolution 0.01 m/s

Wind
direction

Ranges 0~359◦

Resolution 0.1◦

3.2. Data Quality Control and Data Source

Tropical cyclones are characterized by strong winds accompanied by torrential rain, ocean waves,
and storm surge. The representative wind records are usually located in the eyewall regions of tropical
cyclones. In the field measurements of tropical cyclones, however, the anemometers in heavy rain
bands usually present some spikes and errors. Therefore, the data quality-control procedure is a
necessary step before the analysis of the wind characteristics. In this study, the data quality-control
schemes and the criteria for the selection of samples were referred to Li et al. [13]. Specifically, the
spikes and errors in the data were first identified and replaced by the five-point weighted averages.
Then, the reverse arrangement test [45] and run test [46] with a 95% significance level were employed to
test the stationarity of the recorded winds. The datasets that failed to pass both two types of stationary
tests were removed from the analysis. The stationarity test ensured that the analyzed data could satisfy
the local equilibrium boundary-layer assumption, where the friction velocity is independent of the
location in the along-wind direction and the Reynolds number [37].
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Table 3 briefly summarized the datasets utilized in this study, together with the observation
heights, types of the anemometers used, number of the runs in each group (sample size) and average
of the 10 min mean wind speeds. The detailed analysis of the turbulent wind characteristics of the
original datasets both in typhoons and hurricanes were presented in Li et al. [16].

Table 3. Datasets analyzed in this study. Reproduced with permission from [16], Elsevier, 2019.

Tropical
Cyclones Sites Height (m) Anemometer

Types
Number of

Runs

Average of the
10 min Mean Wind

Speed (m/s)

Chanchu
RBT

10
Sonic 26 19.19

Propeller 15 18.87
30 Sonic 37 21.96
60 Propeller 58 22.19

OT
5 Sonic 21 24.69

10 Sonic 45 24.28

Prapiroon BT 10
Sonic 18 20.13

Propeller 4 22.69

Nuri
MFB 30 Sonic 8 18.25

DIT
10 Sonic 83 24.26
60 Sonic 100 25.11

Hagupit

ZT 60 Sonic 38 28.53

ST
5

Sonic 18 20.34
Propeller 27 20.34

10
Sonic 61 21.30

Propeller 58 20.93

Katrina

T1
5 Propeller 16 21.98

10 Propeller 43 22.45

T2
5 Propeller 34 21.50

10 Propeller 40 24.42

T3
5 Propeller 5 23.02

10 Propeller 14 22.46

Rita

T0
5 Propeller 46 21.05

10 Propeller 60 22.17

T3 10 Propeller 15 18.85

T5
5 Propeller 19 18.86

10 Propeller 32 19.55

Wilma

T0
5 Propeller 13 21.08

10 Propeller 19 22.41

T1
5 Propeller 23 23.65

10 Propeller 37 26.17

T2
5 Propeller 16 21.34

10 Propeller 18 23.66

T3
5 Propeller 9 21.36

10 Propeller 14 22.63

4. Results and Discussions

The selected datasets from the four typhoons and the three hurricanes summarized in the preceding
section were investigated in the analytical framework presented in Section 2. Specifically, both the
datasets in typhoons and hurricanes were converted to the standard exposure with a roughness length
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of 0.03 m at 10 m height and an observation time scale of 10 min. The latitude of the standard terrain is
assumed to be 25◦.

4.1. Turbulence Intensity

The turbulence intensities were extracted based on the analytical framework and shown in Figures
1a and 2a respectively for investigated typhoons and hurricanes. The corresponding probability density
functions (PDFs) are shown in Figures 1b and 2b. For typhoons, the average value of longitudinal
turbulence intensities is 0.1952 and the standard deviation is 0.0032. For hurricanes, the average value
of longitudinal turbulence intensities is 0.1906 and the standard deviation is 0.0022. The longitudinal
turbulence intensity of these four typhoons presents slightly higher values in terms of both mean and
standard deviation compared to those three hurricanes. This observation can be further demonstrated
by comparing Figures 1b and 2b, where the probability distribution of the longitudinal turbulence
intensities in both typhoons and hurricanes follows the normal distribution quite well. One can easily
conclude that in these four typhoons the turbulence intensity has a larger value than that in those three
hurricanes under the same probability of exceedance.

In ASCE7-10, the longitudinal turbulence intensity is given by:

Iu = c
(10

z

) 1
6
, (34)

where c equals to 0.30, 0.20, and 0.15 for category B, C (corresponding to the standard terrain in this
study), and D exposures, respectively. In AIJ-RLB-2004 code, the longitudinal turbulence intensity
over flat terrain categories is given by:

Iu = 0.1
(

z
zG

)−α−0.05

, (35)

in which α and zG are parameters reflecting the category of exposures. In category II exposure, which is
the closest to the standard terrain in this study, α and zG are respectively 0.15 and 350. The longitudinal
turbulence intensities obtained from ASCE7-10 and AIJ-RLB-2004 are 0.2000 and 0.2036, respectively,
for the standard exposure. As depicted in Figures 1a and 2a, both ASCE7-10 and AIJ-RLB-2004 present
a slightly higher estimation of longitudinal turbulence intensity for hurricanes and typhoons. Generally,
the estimation of ASCE7-10 is relatively better compared to that of AIJ-RLB-2004.

Figure 1. Turbulence intensities and their probability density functions (PDF) for typhoons.
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Figure 2. Turbulence intensities and their PDF for hurricanes.

4.2. Integral Scale

The integral scales and the corresponding probability distributions obtained are presented in
Figures 3 and 4 for typhoons and hurricanes, respectively. The longitudinal integral scale in typhoons
has an average value of 146.4482 and a standard deviation of 9.2143. The length scales extracted
from hurricane measurements have a slightly higher average value of 157.5796 and a significantly
lower standard deviation of 3.8106 compared to those of typhoons. As shown in Figures 3a and 4a,
the range of integral scales extracted from typhoon measurements is significantly larger than that of
hurricanes, which can be better illustrated by the probability distributions of longitudinal integral scales
in typhoons and hurricanes. The probability distribution of typhoons follows the Weibull distribution
with scale parameter of 150.368 and shape parameter of 20.0454, while the probability distribution of
longitudinal integral scales for hurricanes follows the generalized extreme value distribution with
scale parameter of −0.3259, shape parameter of 3.8960 and location factor of 156.311. Compared with
Figure 4b, where the observed hurricane length scale shows a narrow distribution, the probability
distribution of the observed typhoon integral scale of Figure 3b has a significantly wider range. This
phenomenon may be in part attributed to the exposures of the observation station for the original
datasets. The observation station in those three hurricanes are located in homogeneous open flat terrain
as stated in Masters et al. [12]. However, in the observation of those four typhoons, the exposures
of the measured stations are a little bit inhomogeneous. Another influence could be ascribed to the
differences of turbulent structures of those typhoons and hurricanes. As noted in Li et al. [16], at the
same roughness regime, the field measured integral scales in these four typhoons were greater than
that in those three hurricanes. The different distributions of the observed hurricane and typhoon
length scales might indicate that energy-containing eddies in the observed typhoons have various
representative length-scales while those of the observed hurricanes are concentrated around the mean
value. The multiple-scale eddy interactions in typhoons and hurricanes need further investigations
before fully understanding the observed difference.

In ASCE7-10, the longitudinal integral scale is computed by:

Lx
u = l

( z
10

)ε
, (36)

where l and ε are respectively 152.4 m and 0.2 for category C exposure (standard exposure in this
study). In AIJ-RLB-2004 code, the turbulence integral scale is defined independently of the terrain
categories and is given by:

Lx
u =

 100
(

z
30

)0.5
30 m < z < zG

100 z ≤ 30 m
, (37)



Appl. Sci. 2019, 9, 5385 13 of 18

where zG equals to 350 m for category II exposure, corresponding to the standard exposure in this
study. Accordingly, the longitudinal integral scales obtained from ASCE7-10 and AIJ-RLB-2004 are
respectively, 152.4 m and 100 m, for the standard exposure. It is noted that ASCE7-10 presents a
reasonable estimation of the longitudinal integral scales for both typhoons and hurricanes. However,
AIJ-RLB-2004 underestimates the longitudinal integral scales for both typhoons and hurricanes,
suggesting that the usage of AIJ-RLB-2004 may lead to an inaccurate estimation of the power spectrum.

Figure 3. Longitudinal integral scales and their PDF for typhoons.

Figure 4. Longitudinal integral scales and their PDF for hurricanes.

4.3. Peak Factor

The peak factor is usually utilized for the estimation of gust factor, which plays an important
role in determining the wind load on structures [43]. The estimated peak factors of typhoons and
hurricanes are respectively presented in Figures 5 and 6, together with the corresponding probability
distributions. For typhoons, the average value of the peak factor is 2.5211 and the standard deviation
is 0.0198. The fitted PDF is shown in Figure 5b. For hurricanes, the average value of peak factor is
2.5123, slightly smaller than that of typhoons, and the standard deviation of peak factor is 0.0102,
significantly smaller than that of typhoons. The probability distribution of peak factors in hurricanes
follows t location-scale distribution with location parameter of 2.5174, scale parameter of 0.0022 and
shape parameter of 0.9845.

Neither the expression nor the value of peak factor is explicitly prescribed in ASCE7-10.
By matching the gust factor over open terrain ( Gu = 1.53) and the turbulence intensity Iu of



Appl. Sci. 2019, 9, 5385 14 of 18

0.2 in Equation (34), a peak factor of 2.65 could be obtained. It should be noted that this calculation is
based on an averaging time of 1 h. For a duration of tg , the gust wind speed can be expressed as:

Û
(
tg, T

)
= U(T) + gu

(
tg, T

)
σu. (38)

Suppose the turbulent wind fluctuations follow the Gaussian distribution, the peak factor will be
associated with the exceedance probability of the standard normal distribution. The probability of
exceedance of wind gust with a duration of tg within an observation period of T could be calculated
as [47,48]:

P
[
U > Û

(
tg, T

)]
=

tg

T
. (39)

Thus, the peak factor should satisfy:

gu
(
tg, T

)
= Φ−1

(
1−

tg

T

)
. (40)

With the gust duration of 3 s and the averaging time of 10 min, the peak factor is around 2.575,
which is slightly higher than the measured values in typhoons and hurricanes. AIJ-RLB-2004 carries
out a performance-based wind resistant design procedure. Accordingly, the peak factor is included
in the required performance of wind load level and the return period of wind speed. Hence, the
comparison of the measurement results with AIJ-RLB-2004 is not discussed here.

Figure 5. Peak factors and their PDF for typhoons.

Figure 6. Peak factors and their PDF for hurricanes.

4.4. Gust Factor

The gust factor in steady wind conditions depends on several wind characteristics, such as the
intensity and integral scale, hence, it is a basic representation of the dynamic properties of wind
loads [49]. Figure 7 depicts the gust factors and the corresponding probability distribution of typhoon
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winds obtained based on the unified analysis framework. For typhoons, the average value of gust
factors is 1.4919 and the standard deviation is 0.0069. The gust factors of hurricanes are presented in
Figure 8a, where the gust factors have a mean of 1.4787 and a standard deviation of 0.0071. The mean
of gust factors for typhoons are slightly higher than that for hurricanes, while the standard deviations
of gust factors for typhoons and hurricanes are almost identical with similar probability distribution
shapes. The probability distribution of gust factors for typhoons follows the extreme value distribution
with a location parameter of 1.4948 and a scale parameter of 0.0051, while the probability distribution
of gust factors for hurricanes follows the generalized extreme value distribution with shape parameter
of −0.5535, location parameter of 1.4771, and scale parameter of 0.0076.

In ASCE7-10, the calculation of gust factor is referenced to the gust factor curve proposed by
Durst [50]. The averaging time of the mean wind speed is 1 h in the Durst gust factor curve, while the
gust factor is calculated based on an averaging time of 10 min in this study. Therefore, the conversion
scheme for the gust factors with different averaging times presented in Vickery and Skerlj [20] was
utilized here. Gust factor with a duration of 3 s and an averaging time of 10 min can be expressed as:

Gu = 1 + (SU)[SD(600, 3)], (41)

where SU is the value of the standard normal deviation associated with the exceedance probability of
0.5% and equals to 2.575. The SD(600, 3) could be estimated by the following formula:

SD(600, 3) =
[
SD2(3600, 3) − SD2(3600, 600)

]1/2
, (42)

where SD(3600, 3) and SD(3600, 600) can be interpolated as indicated in Vickery and Skerlj [20] and
equal to 0.1617 and 0.0650, respectively. The gust factor with duration of 3 s and averaging time of
10 min based on Equations (37) and (38) is around 1.3814, which indicates that the gust factors for both
typhoons and hurricanes are greater than those for extratropical storms.

Figure 7. Gust factors for typhoons.

Figure 8. Gust factors for hurricanes.
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5. Concluding Remarks

An analytical framework was introduced in this study to standardize the turbulent wind
characteristics, namely turbulence intensity, integral scale, peak factor and gust factor for various
terrain conditions, heights, and averaging times in tropical cyclones. This analytical framework is
based on the equilibrium boundary-layer theory and the assumption that the lower tropical cyclone
boundary layer is neutrally stable. Field-measured data of the four typhoons and three hurricanes
were standardized to the reference exposure with roughness length of 0.03 m, height of 10 m, and
averaging time of 10 min, and then utilized for the extraction of wind characteristics under standard
exposure. The differences of obtained wind characteristics between typhoons and hurricanes were
highlighted, which may be attributed to the basins and latitudes of the genesis of hurricanes and
typhoons, the influence of local topography and sea-land transition zone and the differences in turbulent
flow structures of typhoons and hurricanes that need further investigations. More specifically, the
wind characteristics of these observed typhoons typically present larger values compared to those
of observed hurricanes, except for the turbulence integral scale. The turbulence integral lengths of
typhoons have a wider distribution compared with those of hurricanes. The obtained turbulent wind
characteristics based on the unified analysis framework were comparatively investigated together
with the recommendations in ASCE7-10 and AIJ-RLB-2004. The difference between the standardized
turbulent characteristics and the corresponding suggested values in the standards (ASCE7-10 and
AIJ-RLB-2004) indicates that the tropical cyclone-induced wind loads need be taken into consideration
in standards for tropical cyclone-prone regions. It is noted that the ASCE7-10 presents good estimations
of the longitudinal turbulence intensity and integral scale for both typhoons and hurricanes, while the
peak factor was slightly overestimated and the gust factor was underestimated. The AIJ-RLB-2004
makes a slightly higher estimation of the longitudinal turbulence intensity and a lower estimation of
the longitudinal integral scale for both typhoons and hurricanes. The potential reason may be ascribed
to the limitation of datasets which used to specify the wind characteristics, although it includes both
tropical and extratropical winds. As noted in the AIJ-RLB-2004, the integral scale was treated to be
terrain independent. However, the scales of wind eddies are strongly affected by the local roughness.
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