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Abstract: In many site investigation phases of civil and mining engineering projects, the tensile
strength of the rocks is one of the most significant parameters that must be identified. This parameter
can be determined directly through laboratory tests. However, conducting such laboratory tests is
costly and time consuming. In this paper, a new artificial neural network (ANN)-based model is
developed to predict rock tensile strength, using the invasive weed optimization (IWO) technique.
Granite samples for the purpose of this research were selected from a tunnel located in Malaysia and
underwent appropriate laboratory tests (i.e., Schmidt hammer, point load, dry density, as well as the
Brazilian tensile strength (BTS) as system output). A simple regression analysis was carried out, and
the obtained results confirmed the need for developing a model with multiple inputs, rather than
one with only a single input, in order to predict BTS values. Aiming to highlight the capability of an
IWO-ANN model in estimating BTS, artificial bee colony (ABC)-ANN and imperialism competitive
algorithm (ICA)-ANN were also applied and developed. The parameters required for the ANN-based
models were obtained using different parametric studies. According to calculated performance
indices, a new hybrid IWO-ANN model can provide a higher accuracy level for the prediction of BTS
compared to the ABC-ANN and ICA-ANN models. The results showed that the IWO-ANN model is
a suitable alternative solution for a robust and reliable engineering design.

Keywords: invasive weed optimization; artificial neural network; hybrid model; Brazilian tensile
strength

1. Introduction

Rock tensile strength (TS) is extensively used as a significant parameter when designing a
geotechnical construction, such as a tunnel [1]. Therefore, literature is consisted of numerous methods
attempting to predict the TS value, either directly or indirectly. In the direct approach, the researchers
or practitioners have to either make use of the empirical equations already present in the relevant
literature, or gather rock specimens and then test them in laboratory [1–3]. It should be noted that it is
both time consuming and costly to prepare proper rock samples with the aim of performing TS tests in
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a laboratory [3]. On the other hand, in the indirect approach, the whole process can be made faster,
simpler, and less costly by predicting the TS value with the help of other, less demanding laboratory
experiments, e.g., the Schmidt hammer, P-wave velocity, density, and point load tests [1,4,5]. The list
can be further elaborated with the Brazilian tensile strength (BTS) method, which has been proposed
by the International Society for Rock Mechanics (ISRM) as an efficient method for determining TS [6].

Different researchers have suggested different empirical relations for the prediction of the TS value.
Using statistical analyses, such as regression analysis and coefficients of variation, Kahraman et al. [7]
attempted to determine the rock features with key impacts on the penetration rate of percussive drills.
The properties they marked out as significant were the point load strength, uniaxial compressive
strength (UCS), BTS, and Schmidt hammer rebound number. In addition, aiming to predict the TS
value, Mishra and Basu [8] made use of two empirical methods: the block punch test and point load
strength (Is50). Their findings indicated the superiority of the block punch index over Is50 regarding
the estimation of BTS. Sheorey [9] reconfirmed the widely accepted idea that there is a correlation
between BTS and UCS in rocks, and also indicated that the compressive strength of rock is roughly
10 times higher than the BTS level of the same rock. Nevertheless, rock has a site-specific behavior.
Kahraman et al. [2] was mainly focused on how UCS and BTS are related to each other in various types
of rock; the relative study resulted in finding a linear correlation between the two factors. Heidari
et al. [3] compared all point load testing methods proposed in the literature in terms of their use in
practical applications. They made use of the diametral, axial, and irregular methods for the purpose of
predicting Is50. A comparison was made on the obtained results, and a number of equations were
developed in a way to both practically and economically estimate the BTS value.

In addition, aiming to determine how directly TS and BTS are related to each other, Perras and
Diederichs [10] analyzed rocks’ TS. They also made a comprehensive review of the methods used
to measure direct TS, BTS, and alternative methods for the estimation of a rock’s TS. Their results
showed that laboratory tests cannot be easily applied for the accurate prediction of rock TS. Armaghani
et al. [11] carried out a number of laboratory tests on a total of 87 granite-type samples in order to
predict their BTS value. They only made use of simple and multiple regressions for this purpose due to
the high expense and time requirement of laboratory tests. Their findings showed a higher capability
of multiple regression models compared to simple regression ones in terms of the accuracy level in the
BTS prediction. The literature also contains great efforts for the development of intelligent systems
aiming to be applicable to approximating science and to provide a solution to problems that may arise
in engineering contexts [12–56].

Furthermore, a number of significant studies have been carried out with similar objectives with
the present paper. Both artificial neural networks (ANNs) and statistical methods were employed by
Singh et al. [4] in order to predict TS in schistose rocks. They confirmed the higher accuracy level
of ANNs compared to conventional methods regarding TS prediction. Likewise, ANNs are able to
generalize results, while the conventional methods fail to do this. Baykasoğlu et al. [1] investigated the
drawbacks of the artificial intelligent methods previously introduced in the literature, and for the first
time applied various sets of genetic programming to experimental data aiming to predict limestone
strength. In another project, a general prediction model was developed by Kumar et al. [57] in order to
predict the values of UCS and BTS formed by rotary drilling into sedimentary rock. For the purpose
of constructing and evaluating their proposed model, they utilized multiple regression analyses and
prediction performance indices, respectively. They concluded that the model could be effectively
applied to real-life situations. It is true that the ANN is a capable technique for solving/addressing
engineering problems/issues; however, they are also subject to certain limitations, including low
learning speed and an incapability to escape from local minima [58,59]. To remove these disadvantages,
ANN can be integrated with optimization algorithms, such as artificial bee colony (ABC), imperialist
competitive algorithm (ICA), invasive weed optimization (IWO), and particle swarm optimization
(PSO). In this manner, ANNs can perform in their prediction tasks with a higher efficiency through
the adjustment of their bias and weight. In recent years, such hybrid systems have been applied to
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a number of geotechnical problems (see [60–62]). Based on the above discussion, the present paper
attempts to accomplish the following objectives:

1. To create an appropriate database applicable for the prediction of TS.
2. To develop a number of novel equations by means of simple regression analysis.
3. To design three hybrid intelligent models: IWO-ANN, ABC-ANN, and ICA-ANN.
4. To propose a hybrid intelligent model of the highest accuracy in predicting rock TS.

2. Laboratory Experiments and Regression Analysis

For the purpose of the research presented herein, a total of 100 granite samples were gathered
from the Pahang Selangor Raw Water Tunnel (PSRWT) in Malaysia. Different rock index tests, i.e., the
Schmidt hammer test (Rn), the dry density (DD) test, the point load test (Is50), as well as BTS were
conducted in the laboratory, based on the ISRM standards [6]. In this research, a total of 80 datasets
were provided in order to perform modeling and required analyses. Figure 1 summarizes the input
and output datasets used. This figure also shows the relationship matrix between all data.
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Figure 1. General information related to data.

Simple regression models were utilized for the purpose of identifying the relationship between
the model inputs (Is50, DD, and Rn) and the system output (BTS). A variety of equations, including
power, linear, and exponential, were tested for the evaluation and selection of the most appropriate
type of equation for the prediction of TS. The equations were evaluated with taking into consideration
some prediction intervals (PIs) such as variance accounted for (VAF), root mean square error (RMSE),
and R2, which have been recommended by lots of researchers such as [24,59,61,63]. In addition, the
formulas in regard to such PIs were taken from Mohamad et al.’s [64] research. It is noted that the best
fit is the one with a VAF of 100%, RMSE of 0, and R2 of 1. The equations used for the prediction of
BTS, as well as their PIs, are listed in Figure 2. Selection of the equations was on the basis of their PIs
results in comparison with other types of equations. For example, as can easily be noticed, R2 was
calculated as 0.698, 0.674, and 0.676, for Rn, Is50, and DD, respectively. Figure 2 demonstrates the
graphs of the equations that were developed for the TS prediction. The obtained results were found
significant; however, aiming to achieve TS prediction results of a higher accuracy in real-life situations,
it is necessary to develop a number of new models. Accordingly, three intelligent models, i.e., ABC
integrated with ANN (ABC-ANN), IWO integrated with ANN (IWO-ANN), and ICA integrated
with ANN (ICA-ANN) are constructed for the purpose of predicting the BTS of the granite type
rock samples.
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3. Methodology

3.1. Imperialist Competitive Algorithm

Atashpaz-Gargari and Lucas [65] pioneered the imperialist competitive algorithm (ICA) as
an algorithm based on global search population and implemented to be effectively applicable for
optimization problems. ICA starts with randomly generating the initial population denoted by
countries. Thus, N number of countries (Ncountry) are produced. After that, the number of imperialists,
i.e., Nimp, needs to be chosen as a certain number of the countries with minimum costs. The other
countries (Ncol) in the system are employed as special functions amongst the other empires. Generally,
the greater the number of colonies, the more powerful imperialists one will have. ICA is mainly
consisted of three operators: assimilation, revolution, and competition [66–68]. A part of ICA is the
colonies attracted similarly by existing imperialists, which means that the existing imperialists control
the part of the initial colonies before any process. On the other hand, revolution makes big changes in
the system. Through the competition procedure, the imperialists strive to acquire as many colonies as
possible. Any empire that would be capable of achieving the predefined criteria is finally a winner.
Such a process is iterated until the end of the desired benchmark. In ICA, the decades’ number has a
process comparable to the number of particles in PSO and also that of generations in GA. To design
them, it will be helpful to evaluate the outcomes obtained from the root mean square (RMSE). For a
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detailed explanation regarding ICA, one may refer to several studies in the literature [60,65,69]. An ICA
structure is depicted in Figure 3.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 18 
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3.2. Artificial Bee Colony

ABC is an optimization algorithm inspired by the bees’ social life and developed by Karaboga [70].
Each bee in this algorithm signifies a simple component. In case they form a bee colony, they will show
a complex coherent behavior that will be capable of shaping an integrated system to discover and
exploit the nectars of flowers. Each of the colonies contains three groups of bees, each of which has a
certain task. The bees in the first group are scouts whose responsibility is to discover new sources of
food. The scouts search in a random way throughout the outlying environment, and when they find a
source, they will memorize the place. When each bee comes back to its hive, the bees existing within
the hive share their information in regard to discovered sources with each other doing a waggle dance.
Afterwards, several bees will be sent to exploit the sources. The bees within the second group are
employed bees. Their responsibility is the exploitation of the predetermined food sources. The bees in
the third group are onlooker bees. They stay in the hive waiting for the other bees; when information
is exchanged with the other bees by waggle dance, they will select a resource in accordance with the
fitness of the answer for exploitation.

ABC has the required capacity to solve numerous mathematical and engineering issues, e.g.,
optimizing the wells locations in oil basins [71], in cases where water is discharged from a dam [72],
classification of data into clusters [73], and scheduling of machines [74], accidental failure of a nuclear
power plant [75]. It can also be integrated with ANNs in order to predict the bottom pressure of wells
along the network [76]. In the context of geotechnical engineering field, this algorithm has been merely
applied to the prediction of the blast-induced back break [77]. Four steps are involved in ABC as
follows [62,78,79].

First step: Initially, 50% of the bees living in the hive are considered as employed bees and the
rest of them are non-employed ones. Just a bunch of the employed bees is assigned to each one of the
explored food sources. That is, the employed bees equal the quantity of food sources. As a result, one
employed bee is allocated to each of the available sources. In other words, inside the answer scope,
existing food sources form the initial solution. When the initial solutions are created, each solution’s
value needs to be computed considering the relationship of the problem.

Second step: For each solution, a new response can be formed using the following equation:

vi, j = xi. j + ϕi. j
(
xi. j − xk. j

)
i ∈ {1. 2.BN}

j ∈ {1. 2. . . .D}
k ∈ {1. 2.. . . .BN} & k , i

ϕ ∈ [−1.1]

(1)
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where

xi. j is the response i for the parameter j,
vi, j is parameter j in the new response,
i is the number of one to the number of solutions,
ϕ is a random number in the negative interval of 1-1,
k is a random number of one the answers or solusions,
BN is the number of initial solutions,
D is the number of optimization parameters.

When a new answer/response is formed, in case this answer’s value exceeds the former answer’s
value, it will be substituted; if not, the answer will be forgotten.

Third step: The probability of bees coming from each of the defined sites will be computed using
the equation below:

pi =
f iti∑SN

n=1 f itn
(2)

where f iti signifies the source of the fitness of source i and pi denotes the choice probability of source i
by the onlooker bees. With respect to each item’s fitness, some are assigned. All the bees in this step
might be dedicated to a certain food site based on the basis of the fitness value. When each source’s
value is computed by means of Equation (1), a fresh answer is created for the answers chosen. In case
the value of this answer exceeds that of the former one, the former answer will be replaced with the
new one; if not, it will be fined. The goal of the use of the fine is that a count is made for the number of
failures in order to enhance the response; if the answer is not enhanced as desired, it will be added
with one unit.

Step 4: In case the non-improvement answer counter reaches up to a predefined value (Cmax), the
answer should be substituted with a randomly selected answer. In addition, the criteria for termination
of the repetitions are also checked in this step, whether they have been met or not. If yes, the repetitions
end; if not, it goes back to the second step. For more detailed information about ABC and the way it
operates, one may refer to literature (e.g., [62,80]). A flowchart of ABC is depicted in Figure 4.
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3.3. Invasive Weed Optimization (IWO)

As a population-based optimization technique, the invasive weed optimization (IWO) is able
to satisfy the excellent performance of a mathematical equation in a way of both adaptation and
randomization of a weed colony. As a fact, the great growth of the weeds (as very strong herbs)
is considered as an important threat to plant products. Actually, their level of resistance against
environmental and climate changes is high. So, according to its features, a robust optimization algorithm
is achieved. In IWO, the weed community and their compatibility, resistance, and randomness try to
solve a problem.

In respect to the IWO background, IWO was developed based on an agriculture phenomenon
that is inspired by the invasive weed colonies. As explained before in the other way, weed (as a plant)
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is able to grow unintentionally. There are many benefits of weeds’ existence in urban spaces and
else. However, if the unintentional grow of this plant includes some damages for human activities
or the planet, it is considered as a “weed” [81]. Although IWO is a simple algorithm in terms of
structure, concept, and implementation, it is a powerful optimization technique to solve almost all
optimization problems. In order to have a better understanding about weeds and their habitat behavior,
the following steps are important to explain:

(1) In the first step with name of “population initialization”, a number of seeds are partially spread
in the search space.

(2) The second step or “reproduction” will start with the pouring of every plant into a flowering
plant; then, the system is able to generate seeds that are worth their proportion. Subsequently, the
number of plant seeds will linearly decrease from Smax to Smin using the following equation:

n(wi) =
Smax(max f it− f it(wi)) + Smin( f it(wi) −min f it)

max f it−min f it
. (3)

(3) The third stage is related to determinations of new positions of the seeds in the search space.
In this step, the child’s seeds will be located around their parents.

(4) Step number 4 (or competitive elimination stage) is related to creation of the best seeds
according to their merit. In fact, this will happen if the number of existing created seeds reach a certain
level (Pmax).

(5) In the final stage, if the conditions are not fulfilled, in order to finish the process, the steps
from the second stage will be repeated; otherwise, the execution of the algorithm ends. To have a
better understanding of IWO step implementation, Figure 5 shows a general diagram for an invasive
weed algorithm.
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3.4. Hybrid Algorithms

The literature contains numerous studies conducted to improve ANN using optimization
algorithms such as PSO, genetic algorithm (GA), ICA, and ABC (see [38,61–65]). The back-propagation
(BP) does not act strongly in exploring the accurate global minimum; as a result, the ANN model might
obtain unwanted results [82–88]. However, there is a higher probability for ANN to be trapped in local
minima. In order to solve ANN problems and get a higher level of performance prediction, the weights
and biases of ANNs should be optimized by implementing optimization algorithms such as ICA, ABC,
and IWO. In particular, the hybrid ICA-ANN, ABC-ANN, and IWO-ANN models do not get caught in
the local minima due to the robustness of the optimization algorithms. However, the power level of
each hybrid algorithm depends on the power level of its optimization techniques i.e., ICA, ABC, and
IWO. Therefore, the structure of optimization technique as well as their most effective parameters play
an important role on results of hybrid ANN-based models. As shown in Figure 6, the most effective
parameters on each optimization algorithm are presented. The present paper develops three hybrid
models for the purpose of predicting TS: IWO-ANN, ICA-ANN, and ABC-ANN. In these hybrid
models, IWO, ICA, and ABC are responsible for exploring global minimum; after that, ANN chooses it
in a way to obtain the best results. Actually, the basic optimization algorithms were used to form new
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combinations, and they were connected to ANN. Then, different parametric studies were conducted
to obtain the best combination for each hybrid model. It is important to mention that the source of
optimization codes was taken from their original studies. Figure 6 shows three stages of analysis to
predict the BTS of the rock samples. The first stage of the analysis is related to ANN structure selection.
In the second stage, the best structures of optimization algorithms should be selected based on the
most important mentioned parameters on them. Then, in the last stage, the hybrid ANN-based models
were evaluated using the most important performance indices.
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4. Model Development

Hybrid model processes are presented in this section. Three hybrid models that are based on
the combination of the base model (ANN) with the algorithms of IWO, ABC, and ICA are discussed.
To design the best model to predict the TS, each model is separately evaluated to identify the best
performance of each.

4.1. ICA-ANN

To achieve an ICA-ANN model of the highest quality, the ICA parameters need to be completely
investigated, but first, the architecture of ANN must be fully determined. The performance of the ANN
models depends strongly on the suggested architecture of the network [89–91]. Therefore, determination
of the optimal architecture is required to design an ANN model. The network architecture is defined as
the number of hidden layer(s) and the number of nodes in each hidden layer(s). According to various
researchers (e.g., [92–94]), one hidden layer can solve any complex function in a network. Hence,
in this study, one hidden layer was selected to construct the ANN models. In addition, determining the
neuron number(s) in the hidden layer is the most critical task in the ANN architecture, as mentioned
by Sonmez et al. [95]. It was performed through a trial and error procedure, which finally resulted
in the fact that an architecture of 3 × 5 × 1 (or a model with five hidden neurons) can offer optimum
results. Thus, the above architecture was considered for the best ANN model as well as for all hybrid
ANN-based models (as a confirmed initial ANN model) developed in this study. More information on
obtaining ANN structures can be found in previous articles [96–100].

As noted previously, the key parameters in ICA are Ndecade, Ncountry, and Nimp. To set the Nimp

value, lots of models were designed by means of different values of this parameter ranging from 15 to
40 with an incremental step of five. In these models, Ncountry was set to 200, and Ndecade was set to 150.
The results obtained from such a parametric research confirmed that when Nimp is set to 25, a higher
performance capacity can be achieved. On the other hand, for the purpose of choosing an optimal
value for Ndecade, as can be seen in Figure 7, different models were created with Ncountry values ranging
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between 50 and 400, with an incremental step of 50. The models’ performance was then tested based
on their RMSE. The RMSE results did not change any more after Ndecade = 550. Finally, with the two
parameters of Nimp = 25 and Ndecade = 550, different numbers of countries were taken into account,
and their ICA-ANN models were configured. Required evaluations were done on the models on the
basis of the performance indices (PIs), i.e., RMSE values and the coefficient of determination (R2) (see
Table 1). To select the hybrid models of the highest quality in this research, Zorlu et al.’s [101] ranking
method was adopted.
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Table 1. Investigating the effects of various Ncountry in predicting BTS.

Model
No.

Ncountry

Network Result Ranking Total
RankTR TS TR TS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
1 50 0.865 0.1019 0.877 0.1104 4 4 3 3 14
2 100 0.871 0.1012 0.882 0.1001 5 5 4 4 18
3 150 0.853 0.1136 0.863 0.1187 1 1 1 1 4
4 200 0.899 0.096 0.901 0.0978 8 8 7 7 30
5 250 0.857 0.1113 0.871 0.1119 2 2 2 2 8
6 300 0.861 0.1049 0.902 0.0971 3 3 8 8 24
7 350 0.874 0.1003 0.899 0.0983 6 6 6 6 24
8 400 0.898 0.0964 0.885 0.0997 7 7 5 5 24

TR: Training, TS: Testing.

This technique is fully explained by Zorlu et al. [101], based on which a rank value was allocated
to each PI in its group (training and testing). For instance, values of 0.865, 0.871, 0.853, 0.899, 0.857,
0.861, 0.874, and 0.894 were obtained for the R2 values of training datasets of models 1 to 8, respectively,
and values of 4, 5, 1, 8, 2, 3, 6, and 7 were set to their ranks, respectively. This process was also done
in the case of the RMSE results. Afterwards, a summation value of rating of the R2 train, RMSE
train, R2 test, and RMSE test was computed and allocated to each model, according to which model 4
(Ncountry = 200) with a total rank of 30 was found to be the best ICA-ANN model. An evaluation of the
best ICA-ANN results is presented in the next sections. All the models were configured by means of a
ratio of 80 to 20 for the training and testing datasets, respectively.

In this study, a certain color was dedicated to each row of the models. As the red color intensifies,
it achieves a higher score than the rest of the scores within that column; on the other hand, the less
intensified color shows that the parameter is lower than the other parameters in the column. For instance,
model number 5 of ICA-ANN reflexes a high intensified red in the R2 column of the training section.
Using such an approach, the best parameters were determined in each of the columns, and in the
last one, an item with a collectively higher quality (concerning the red color intensity) was chosen.
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In Table 1, this system is observable. This way, the novel method is employed for the purpose of
choosing the best models. To adopt this method in an effective way, we made use of coding in order
to determine the colors’ intensity. It is worth mentioning that the use of the ranking system leads
to the achievement of the same result. However, this innovative method of exploring the models of
highest quality among others can be recognized as a novel and smart solution to the selection and
categorization of models. Such a method of categorization is termed as a color intensity rating (CIR)
system. This system was also applied to the results obtained from the other hybrid models developed
in this paper. The application of this method can be found in some research [62,80].

4.2. ABC-ANN

To enhance the ANN performance, the ABC algorithm was also used. Generally, the BP algorithm
is employed by researchers aiming at training ANN. BP suffers from a number of deficiencies that
decreases the ANN performance quality. At the time the network is searching for the best system
weights, errors must be minimized. In this regard, ABC searches for appropriate weights and optimizes
them. An increase in the number of bees allows them to detect in a wider area. Such a process is
continued until the algorithm can obtain minimum error. Each time the selection is done, the values
remain constant, awaiting a better result to be achieved for the network weights. Under such conditions,
various models were formed, each of which iterated its operation for 600 rounds in order to obtain
results of higher reliability. Different bees can be observed in Figure 8.
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Figure 8. Hybrid models of artificial bee colony (ABC) with various bee sizes.

As can be seen in Figure 8, the number of bees ranged between 5 and 40 in order to examine
the effect of the number of bees. Better results are expected to be obtained with an increase in the
number of bees, although when the operation of the algorithm is iterated for 500 times, almost
all the answers coincide. It is because bees typically gather in spots wherein the best answer lays.
It makes this algorithm faster than the other ones, and the resultant answer is typically of a higher
performance quality.

Table 2 presents the values achieved from the ABC-ANN model in terms of the TS prediction
in BTS. Based on the rating method, model number 8, which consisted of 40 bees, was the best one
regarding the total R2 and RMSE scores. In case of the training and testing model number 8, the values
of R2 and RMSE were 0.908, 0.0951, 0.904, and 0.0952, respectively.
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Table 2. Investigating effects of various bees in predicting BTS.

Model
No.

Bees
No.

Network Result Ranking
Total
RankTR TS TR TS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
1 5 0.843 0.1295 0.854 0.1264 1 1 1 1 4
2 10 0.857 0.1122 0.867 0.1091 2 2 2 2 8
3 15 0.896 0.0987 0.899 0.0971 5 5 6 6 22
4 20 0.895 0.0986 0.879 0.0995 4 4 3 3 14
5 25 0.906 0.0959 0.902 0.0963 7 7 7 7 28
6 30 0.901 0.097 0.894 0.0978 6 6 5 5 22
7 35 0.875 0.1001 0.891 0.0988 3 3 4 4 14
8 40 0.908 0.0946 0.904 0.0955 8 8 8 8 32

TR: Training, TS: Testing.

4.3. IWO-ANN

In this section, the new IWO-ANN model is implemented. According to our literature review,
there is no research yet that has combined these two algorithms. However, the implementation steps
of this new model are similar to previous models. The IWO algorithm described above is known as
a new optimization algorithm that is used for optimization in various issues. Various parameters
are involved in this algorithm; some of its most important ones, include the number of iterations,
the initial population of seeds, and so on. Some of these parameters have less impact on the results
and can be obtained by trial and error methods. Therefore, these parameters are initially determined.
The minimum and maximum number of seeds (Smin and Smax) were investigated from zero to 30. In
this case, the Smin value is zero, and the best condition for the Smax is 20. The initial and final value of
standard deviation parameter actually helps to knock off the selection, using the variance reduction
exponent parameter. Values of 0.5, 0.001, and 4 were selected for these three parameters (the initial
and final value of standard deviation and the variance reduction exponent parameters), respectively.
Finally, the main parameters such as the number of iterations and the final number of plants were
determined according to Figure 9. To compare the number of iterations, similar to those presented in
the previous sections, 600 iterations were selected for all the models. As shown in Figure 9, the RMSE
of the models changes up to 300 iterations, and after that, they reach a constant level. For this reason,
300 iterations is the optimum value for designing next models. Finally, different models of plant seeds
were designed (5–40), the results of which are presented in Table 3. Using this table, the best model is
selected. As can be obtained, model number 7 provides the best conditions for TS prediction.
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Table 3. Investigating effects of various seeds in predicting BTS.

Model
No.

Seeds
No.

Network Result Ranking
Total
RankTR TS TR TS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
1 5 0.898 0.0964 0.889 0.0971 5 5 4 4 18
2 10 0.869 0.0998 0.881 0.0988 2 2 3 3 10
3 15 0.861 0.1018 0.877 0.1004 1 1 2 2 6
4 20 0.874 0.0987 0.869 0.1028 3 3 1 1 8
5 25 0.923 0.0918 0.909 0.0943 7 7 6 6 26
6 30 0.909 0.0935 0.922 0.0927 6 6 8 8 28
7 35 0.928 0.0911 0.917 0.0936 8 8 7 7 30
8 40 0.887 0.0979 0.894 0.0959 4 4 5 5 18

TR: Training, TS: Testing.

5. Results and Discussion

Findings of the simple regression analysis carried out in this study demonstrated that there is a
need for predictive models to make precise estimations regarding rock TS. To this end, the present
paper presents three hybrid models. In the proposed models, three neurons were utilized within the
input layer, i.e., Rn, DD, and Is50, while the BTS values were utilized in the output layer. Through
a trial-and-error method, it was found that when the number of neurons within the hidden layer
was set to five, the model performance was better than the other conditions. Aiming at choosing
the best hybrid IWO-ANN, ABC-ANN, and ICA-ANN models, we developed numerous models on
the basis of the results obtained from a number of parametric studies. At the final step, amongst the
three hybrid models, the best one was chosen on the basis of the models’ system error performance.
In addition, more evaluations were conducted on the chosen models through comparing between the
other PIs, i.e., R2 and VAF. Table 4 presents the PI values of all hybrid models. Furthermore, Table 4
show the difference between the values achieved from the measured and predicted TS values of the
rocks by means of IWO-ANN, ABC-ANN, and ICA-ANN, respectively. As can be concluded from
Table 4, the IWO-ANN outperformed the other optimum hybrid models in terms of all the PIs. That
is, IWO-ANN returned the most accurate values (i.e., the lowest RMSE with the maximum values
of VAF and R2) for the training and testing datasets. For instance, in regard to testing the datasets,
the IWO-ANN model with the RMSE of 0.0911, R2 of 0.917, and a VAF of 91.731 estimated the BTS
more accurately compared to ABC-ANN with the RMSE of 0.0955, R2 of 0.904, and a VAF of 90.419.
In addition, it presented a higher quality performance in comparison to ICA-ANN with an RMSE of
0.0978, R2 of 0.901, and VAF of 90.134. Therefore, although all of the above-mentioned models were
found to be capable of predicting the BTS value with an acceptable level of precision, the IWO-ANN
model performed the best. Obviously, the IWO-ANN model for the rock TS prediction can be taken
into account as an innovative predictive model in engineering fields of study. Finally, Figure 10 shows
the prediction results for the IWO-ANN model for all the samples. In this figure, given that all the
laboratory samples are in the new IWO-ANN system, a careful evaluation of the final accuracy is
obtained. A linear relationship between the actual (parameter x) and the predicted (parameter y) value
is also given. As expected, the chosen model presents as a new solution to the tensile strength of the
rock samples in future works according to defined conditions for system design.
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Table 4. Results of hybrid models. RMSE: root mean square error, VAF: variance accounted for.

Hybrid Model
R2 VAF RMSE

TR TS TR TS TR TS

IWO-ANN 0.928 0.917 92.872 91.731 0.0911 0.0936
ABC-ANN 0.908 0.904 90.816 90.419 0.0946 0.0955
ICA-ANN 0.899 0.901 89.889 90.134 0.0960 0.0978

TR: Training, TS: Testing.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 18 
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6. Conclusions

The level of tensile strength (TS) of rock in various tunnel and civil engineering projects is
considered as an important part in the design factor. However, performing actual tensile strength
tests in a lab is sometimes costly and always complex. Therefore, recently, various techniques have
been developed aiming to evaluate this parameter though other, more easily applicable, measurement
techniques. The present study developed three hybrid intelligent predictive models, i.e., IWO-ANN,
ICA-ANN, and ABC-ANN aiming at accurately predicting the tensile strength (TS) of the granitic
rock samples based on the values of the Schmidt hammer test (Rn), the dry density (DD) test, and the
point load test (Is50). First, a substantial relationship was explored between the inputs and output
using simple regression analysis. The R2 results of roughly 0.7 for simple regression analyses showed
the need for proposing models with multiple inputs, which resulted in creating the three models of
IWO-ANN, ABC-ANN, and ICA-ANN, among which the IWO-ANN was finally found to be more
successful in solving the problem at hand compared to the other two models. The results of the new
IWO-ANN models for the training and testing sections were R2 = 0.928 and 0.917, respectively, which
highlighted the high capabilities of this model for TS prediction. Hence, it can be used as a new
solution for training intelligent systems on various issues.
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