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Additional figures1

Below are all figures of diffusion coefficient temperature (D − T) dependences of the systems2

that were used to determine the melting point of the corresponding ionic liquids. Red, green, and3

dotted lines indicate respectively the fitted solid phase region, the fitted liquid phase region, and the4

experimental melting point.5
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Figure S1. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Acetate. The solid phase was packed at 1.0 kg/dm3 density with potential wells in CsCl
lattice with 3:3:2 vector ratio.
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Figure S2. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Acesulfamate. The solid phase was packed at 1.6 kg/dm3 density with potential wells in
NaCl lattice with 4:3:2 vector ratio.

−1
200

−1
250

−1
300

−1
350

−1
400

−1
450

−T−1/K−1

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ln
(D
/c

m
2
·s

–
1
)

R2
solid = 0.83

R2
liquid = 0.90

Figure S3. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Acetylsalicylate. The solid phase was packed at 1.2 kg/dm3 density with potential wells in
NaCl lattice with 3:3:2 vector ratio.
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Figure S4. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Benzoate. The solid phase was packed at 1.2 kg/dm3 density with potential wells in CsCl
lattice with 3:3:3 vector ratio.
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Figure S5. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Citrate. The solid phase was packed at 1.2 kg/dm3 density with potential wells in CsCl
lattice with 3:2:2 vector ratio.
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Figure S6. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Glutarate. The solid phase was packed at 1.4 kg/dm3 density with potential wells in NaCl
lattice with 3:3:3 vector ratio.
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Figure S7. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Ibuprofenate. The solid phase was packed at 1.2 kg/dm3 density with potential wells in
CsCl lattice with 4:3:2 vector ratio.
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Figure S8. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Isobutanoate. The solid phase was packed at 1.0 kg/dm3 density with potential wells in
CsCl lattice with 3:3:2 vector ratio.
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Figure S9. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Isovalerate. The solid phase was packed at 1.2 kg/dm3 density with potential wells in CsCl
lattice with 4:3:2 vector ratio.
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Figure S10. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Lactate. The solid phase was packed at 1.4 kg/dm3 density with potential wells in CsCl
lattice with 3:3:3 vector ratio. Dotted line in this case marks the experimental glass phase transition
temperature.
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Figure S11. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Malonate. The solid phase was packed at 1.4 kg/dm3 density with potential wells in NaCl
lattice with 4:3:2 vector ratio.
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Figure S12. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline 2-Methylbutanoate. The solid phase was packed at 1.2 kg/dm3 density with potential wells
in CsCl lattice with 3:2:2 vector ratio.
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Figure S13. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Saccharinate. The solid phase was packed at 1.6 kg/dm3 density with potential wells in
NaCl lattice with 3:2:2 vector ratio.



Version December 1, 2019 submitted to Appl. Sci. S8 of S9

−1
200

−1
250

−1
300

−1
350

−1
400

−1
450

−T−1/K−1

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ln
(D
/c

m
2
·s

–
1
)

exp. 323 K
R2

solid = 0.87

R2
liquid = 0.93

Figure S14. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline Salicylate. The solid phase was packed at 1.2 kg/dm3 density with potential wells in CsCl
lattice with 4:3:2 vector ratio.
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Figure S15. The diffusion coefficient (D) dependence on temperature (T) during annealing simulation
of Choline TFSI. The solid phase was packed at 1.6 kg/dm3 density with potential wells in CsCl lattice
with 4:3:2 vector ratio.

Extrapolated melting point prediction6

Melting point predictions obtained from simulations with different temperature rates were used7

to extrapolated towards temperature rate 0 K · ns−1. The extrapolated melting point prediction is,8

thus, the regression line intercept in Figure 5. The obtained results are in the table below. Only one9
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experimental value for each IL is chosen – the value used for root-mean-square-error calculation.10

Root-mean-square-error for regular predictions (10 K · ns−1) was 18–24K and root-mean-square-error11

for extrapolated predictions was 19–23K depending on the choice of experimental reference. With the12

exclusion of choline 2-methylbutanoate the error of extrapolated results is 12–18K compared to that of13

17–22K.14

Table S1. Experimental, predicted and extrapolated melting points (TM).

Cation: choline Experimental Predicted Extrapolated
Anion TM (K) TM (K) TM (K)

Acesulfamate 298 [1] 341 325
Acetate 353 [2], 324 [3], 345 [4], 354a 330 340
Benzoate 320 [3] 335 332
Citrate 345 [5], 376 [6], 378a 348 347
Glutarate 312 [7] 328 323
Ibuprofenate 342 [8] 330 340
Isobutanoate 308 [2], 341a 344 337
Isovalerate 334a 335 334
2-Methylbutanoate 363a 335 313
Saccharinate 342 [1] 347 346
Salicylate 323 [9] 343 339
TFSI 306 [10] 321 325
a – measured in this work
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