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Featured Application: The quality of methanol gasoline is important to internal combustion
engines. Infrared spectroscopy technology shows its feasibility to qualitatively and quantitatively
measure the quality of gasoline. Combined with the chemometrics, this technology can be used to
determinate the adulteration category or fineness, providing the qualified gasoline for the market.
Spectra analytical technology is a promising method in applying in the gasoline industry and
speeding up the industrial application.

Abstract: Methanol gasoline blends are a more economical, and environmentally friendly fuels than
gasoline alone, and are widely used in the transportation industry. The content of methanol in
methanol gasoline plays an important role in ensuring the quality of gasoline. In some solutions, due
to the shortage of energy and illegal profits, the problem of gasoline adulteration and its fineness, has
received more and more attention, which would seriously affect the operating condition and service
life of internal combustion engines. Therefore, it is very important to identify the correct level of
gasoline. However, the traditional detection method is complex and time-consuming. To this end,
the feasibility of using attenuated total reflectance Fourier transform infrared (ATR-FTIR) methods
coupled with chemometrics methods were investigated to quantitatively and qualitatively analyze
methanol gasoline. The qualitative analysis result of partial least squares discriminant analysis
(PLS-DA) obtained 100% and 98.66% accuracy in the calibration set and the prediction set, respectively.
As for quantitative analysis; two regression algorithms of partial least squares regression (PLSR)
and the least square support vector machine (LS-SVM), as well as two variables selection methods
of the successive projections algorithm (UVE) competitive adaptive reweighted sampling (CARS)
and uninformative variable elimination (UVE) were combined to establish the quantitative model.
By comparing the performance of the optimal models; the UVE-PLSR model performed best with a
residual predictive deviation (RPD) value of 6.420. The qualitative and quantitative analysis results
demonstrate the feasibility of using ATR-FTIR spectra to detect the methanol in methanol gasoline. It
is believed that the promising IR spectra will be widely used in gasoline energy quality control in
the further.

Keywords: methanol gasoline; infrared spectroscopy; partial least square discriminant analysis
(PLS-DA); multivariate regression; variable selection

1. Introduction

Gasoline is one of the most widely used light petroleum products and a complex hydrocarbon
mixture usually containing four to thirteen carbon atoms [1]. However, the rapid development of the
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transportation industry has led to a reduction in non-renewable oil resources and the increasingly serious
atmospheric pollution problem [2]. To address this issue, it is necessary to find an environmentally,
friendly, and economically viable alternative resource. Methanol gasoline as an excellent alternative
fuel for engines, which has advantages such as high octane number, and good resistance to violent
and clean burning [3]. Due to these excellent qualities and appropriate economic suitability, methanol
gasoline can play an important role in addressing the issue of energy shortage and environmental
pollution. Thus, it has been widely used in transportation, including motor vehicles and internal
combustion engines [4]. According to the reports of the relevant literature, the adding ratio of methanol
in methanol gasoline varies from 0%–80% [5] since methanol gasoline can be prepared by directly
mixing gasoline and methanol. In addition, this provides an opportunity for some unscrupulous
traders to sell high-methanol gasoline at a low methanol content of gasoline to earn illegal profits.
Therefore, it is necessary to develop an accurate and rapid method to qualitatively and quantitatively
analyze the methanol content in methanol gasoline.

There are numerous detection methods for determining methanol content in gasoline and the
commonly used is gas chromatography (GC) or gas chromatography-mass spectrometer (GC-MS) [6].
Although these detection methods have high sensitivity and accuracy, they are time-consuming and
complex, require toxic and hazardous reagents, and cannot meet the needs of online monitoring. The
development and application of infrared (IR) spectroscopy technology provides a novel opportunity
for rapid detection of methanol content in methanol gasoline [6]. As a rapid and non-destruction
detection technology, IR spectroscopy technology has been applied in various subject fields, such
as chemistry, agriculture, food quality and the environment. Moreover, there are several studies
using near infrared spectra to analyze gasoline products and obtain good qualitative and quantitative
detection results [6–9]. However, most of these studies use near infrared (NIR) spectroscopy to
perform classification research [10,11], and just a few works focus on the content of methanol in the
gasoline [12]. Thus, more explorations should be researched, and the feasibility of IR spectroscopy
should be attempted to qualitatively and quantitatively measure the methanol gasoline.

Due to IR spectroscopy having the special information of molecular profiles, attributes correspond
certain ones to functional groups of molecule. Thus, the feasibility of IR spectroscopy for rapidly
detecting methanol in methanol gasoline was investigated. In this study, firstly, the dataset was
explored using unsupervised principal component analysis (PCA), then qualitative and quantitative
supervised models, including partial least squares discriminant analysis (PLS-DA), partial least square
regression (PLSR) and least squared support vector machine (LS-SVM), were carried out to detect the
methanol percentage in methanol gasoline. Concerned with the problem of too many variables in the
stage of building the regression models, two classic variables selection algorithms (i.e., uninformative
variables elimination (UVE), and competitive adaptive reweighted sampling (CARS)) were also applied
to select the optimal variables. Finally, the performance of all regression models were systemically
compared to identify the best prediction model for methanol percentage in methanol gasoline.

To assess the feasibility of IR spectroscopy for detecting the methanol percentage in methanol
gasoline, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy coupled
with several multivariate calibration models, and variables selection methods for qualitative and
quantitative analyzing methanol were used to investigate. Based on above introduction and planning,
it can be seen that the main objective is to qualitatively and quantitatively detect methanol using the IR
spectra. To be specific, there are several sub-subjects: (1) collecting and analyzing the spectral data
of gasoline and methanol gasoline; (2) qualitatively classifying the gasoline and methanol gasoline;
(3) selecting the optimal variables for regression model; (4) establishing the quantitatively detection
model for methanol based on full variables and the optimal variables; (5) identifying the best detection
model by comparing all model’s performance.
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2. Materials and Methods

2.1. Sample Preparation

In this study, 95# Gasoline was chosen as the research object. Different brands of gasoline were
purchased from Wenzhou gasoline stations (Wenzhou City, Zhejiang Province, China). Analytical-grade
methanol reagent (Product No. M116122, purity > 99.9%) was purchased from Aladdin Reagent and
used without any further treatments. To obtain the methanol gasoline, 95# gasoline samples were
mixed with methanol according to a serial of volume ratios. A total of 16 gasoline samples varied six
kinds of brands were collected. Volume ratios of methanol to gasoline were matched with the range of
0% to 30%.

2.2. Collection of ATR-FTIR Spectra

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra was collected from
the range of 4000 cm−1 to 600 cm−1 with the resolution of 4 cm−1 using the VERTEX 70 spectrometer
(Bruker Optics Inc., Ettlingen, Germany), coupled with an attenuated total reflection (ATR) accessory
(Pike Technologies, Germany). Then, the spectral signals were digitalized with 2 cm−1 intervals in
the Fourier transform. The repeat scan number was set to 16 times, and the displayed curve was the
averaged spectrum, which was obtained using OMINIC software (Version 6.5, Bruker, Inc.). Notably,
each sample was updated through the cuvette (10 mm) and six times were measured repeatedly.
Therefore, a total of six spectra were collected for further modeling analysis.

2.3. Multivariate Data Analysis

2.3.1. Principal Component Analysis

Before establishing the multivariate calibration model, the data dimension reduction method, and
the principal component analysis (PCA), it was suggested to explore the dataset structure. The main
idea of PCA is that a set of variables that may be related to each other is transformed into a set of
linear uncorrelated variables called the principal component by way of orthogonal transformation.
This transforms high-dimensional data into low-dimensional data, which facilitates analysis and
visualization of data [13]. It has been widely used in environment [14,15] and food [16–18] analytical
fields, in terms of similarity clustering of samples, and the dimensional reduction of spectral data.

2.3.2. Classification for Adulteration Category

When the classification was considered, partial least squares discriminant analysis (PLS-DA) was
employed to create the classification model. Similar to partial least squares regression (PLSR), the
main principle of PLS-DA was also to extract several latent variables (LVs), which have the maximum
covariance with the dependent variables from original data. With the help of optimal LVs, the PLS-DA
classification model was established to predict the response of each sample. Finally, the category
identification of each sample was completed based on the threshold determined by Bayesian theory.
As a classic classification algorithm, much literature can be referred [19,20].

2.3.3. Regression for Adulteration Content

Two regression models, including partial least squares regression (PLSR) and least square support
vector machine (LS-SVM), were employed to establish the quantitative model and compare their
predictive capacity. PLSR, as a classic linear regression model, projects the independent variable
onto a set of orthogonal factors, which were called latent variables (LVs). Then, the quantitative
relationship between the dependent and the independent variables was created using the several
number of LVs [21,22].

On the contrary, the nonlinear regression model LS-SVM was also considered to establish a
comparison model. The principle of SVM is to map the original dataset from a low dimensional space
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into the high-dimensional space through non-linear functions and construct a hyperplane. So that the
linear indivisible problem between datasets in the conventional space is transformed into a constrained
quadratic programming problem, and the global optimal solution of the problem is obtained using
Lagrange multiplier methods. Notably, the non-linear radial basis function (RBF) kernel was used
most in this study [23].

2.3.4. Variables Selection for Significant Information

To simplify the calculation process and improve the performance of regression model, two
commonly used variable selection methods, including CARS [24] and UVE [25], were considered
to select a few optimal variables. The principle of CARS is based on the “survival of the fittest”
of Darwin’s theory of evolution. Each spectral point is regarded as individual and to remove the
weighting-less individuals. These spectral variables with small absolute coefficients in the PLSR model
were eliminated, and the remaining variables were used to construct a model with cross validation.
In each run, the root mean squared error of cross validation (RMSECV) of each model was recorded
to compare the performance. Furthermore, the model with the lowest RMSECV was chosen as the
optimal subset of spectral variables [26].

UVE is a classic variable selection method and which is developed based on PLSR method. In the
calculation process of UVE, an artificial random variable matrix was appended to the spectral matrix,
and their maximum stability value was calculated. Therefore, UVE can select these variables whose
stability values are larger than the stability threshold [27]. More detailed information about CARS and
UVE can be found in the previous literature [28].

2.3.5. Evaluation of the Model’s Performance

When finishing the multivariate calibration models, several evaluation indices were considered to
assess the performance of the calibration model. As for the regression model, the root mean square
error of calibration (RMSEC) and prediction (RMSEP), coefficients of determination of calibration (Rc2)
and prediction (Rp2), residual predictive deviation (RPD), and the absolute difference between RMSEC
and RMSEP (ABS) were considered to evaluate the performance of the regression model. Specifically,
an excellent regression model usually has the high value of Rc2, Rp2, RPD, and the smaller value of
RMSEC, RMSEP and ABS [29].

For the PLS-DA classification model, the accuracy was used to evaluate the performance of
PLS-DA classifier. Additionally, a sample distribution map will be used to more intuitively display
the results of the classification. Notably, all calculation in this study were performed in the MATLAB
2015b environment (The Math Works, Natick, USA).

3. Result and Discussion

3.1. Analysis of ATR-FTIR Spectral Feature of Gasoline

To clearly show the difference between gasoline and methanol gasoline, the average spectral
profile of gasoline and methanol gasoline was used to plot the spectra. Figure 1 presents the averages
spectral profile of gasoline and methanol gasoline in the range of 4000–600 cm−1. It can be found there
are three main absorption peaks in the range of 2800–3000 cm−1, 1600–1300 cm−1, and 900–600 cm−1.
The absorption peak of 2800–3000 cm−1 corresponds to the C-H stretching of alkenes and alkenes,
1600–1300 cm−1 corresponds to C–H stretching of aromatic ring and C-H bend of alkanes, and
900–600 cm−1 is from the C–H out of bend of alkenes and aromatic rings adulterated with these
noises possibly from instrument or impurities, respectively [9,30,31]. Obviously, the spectral range
of 900–600 cm−1 has a lower ratio of signals to noises (RSN), and this region would be discarded in
further analysis of spectral information. Other regions with conspicuous features will be explored.
Nevertheless, it was difficult to quantitatively and qualitatively analyze the methanol in methanol
gasoline only with eye-visible differences on the differences among 96 spectra. Therefore, it is essential
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to adopt the chemometric methods to further mine the information contained in the spectral data for
further analyzing the spectral data.
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3.3. Qualitative Analysis of Gasoline

Based on the analysis in Section 3.2, it is difficult to accurately distinguish the methanol and
methanol gasoline sample by unsupervised PCA. Thus, to qualitatively analyze these two class samples,
a supervised classification algorithm PLS-DA was performed to establish the classification model.
Prior to the establishment of PLS-DA, samples in each category were randomly divided into calibration
sets and prediction sets with the ratio of 2:1, respectively, and then merged. Consequently, there are 64
and 32 samples in calibration and prediction set. Then PLS-DA was created based on calibration set
and the remaining 32 samples were predicted using the established classification model. Notably, the
number of LVs for PLS-DA model was 8 by performing 10 fold cross-validation on the calibration set.

To more concisely present the calculated result, the plot between the sample and the calculated
response was plotted and thus the classification result was shown in Figure 3. Obviously, the PLS-DA
classifier performed well for calibration set that all samples were accurately classified. Therefore, the
accuracy for calibration set was 100%. When the classification result of prediction set was considered,
a sample T3 belonging to methanol gasoline class was misclassified as methanol sample but two
sample of methanol were all accurately classified. As for the reason, T3 is a methanol gasoline
sample with 2% methanol in gasoline, where may lead to the misclassification due to low methanol
content. Nevertheless, the classification accuracy of prediction was 96.88% (32/33) on the basis of the
classification result of prediction set. Given the above analysis comprehensively, it can be concluded
that supervised classification model of PLS-DA can accurately classify the methanol and the methanol
gasoline sample. 
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3.4. Quantitative Analysis of Methanol in Gasoline

To quantitatively analyze the methanol content in methanol gasoline, two regression methods
of PLSR and LS-SVM were applied to build the quantitatively analysis model. There are a total of
1762 variables in the ATR-FTIR spectral data. Firstly, PLSR and LS-SVM were established to predict
methanol content based on the full spectral variables. Furthermore, the calculated results are shown in
Table 1, and it can be seen that all the R2

p values were higher than 0.96 for PLSR or LS-SVM prediction
models, which means that it is feasible to quantitatively analyze the methanol content in methanol
gasoline using ATR-FTIR spectral data. In addition, it can be found that there is no significant difference
between PLSR and the LS-SVM model for methanol prediction when the performances of PLSR and
LS-SVM were compared. When the robustness of models was considered, it can be found that the
value of RMSEC is larger than that of RMSEP (1.658 > 0.405 and 1.661 > 0.395), which means that
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these two regression models of PLSR and LS-SVM have a slight overfitting. This may be caused by the
reasons of too many variables and an unbalanced distribution of samples in the calibration model [32].
In general, the regression model for predicting methanol content in methanol gasoline is acceptable
and accurate.

Table 1. Quantitative analysis results of methanol content in gasoline based on multivariate model.

Model Variable
Selection

Number of
Variables

LVs
Calibration Set Prediction Set

R2
c RMSEC R2

p RMSEP RPD ABS

PLSR / 1762 15 0.998 0.405 0.968 1.658 6.124 1.253
LS-SVM / 1762 / 0.998 0.395 0.968 1.661 5.886 1.266

PLSR CARS 48 11 0.97 0.426 0.969 1.597 6.563 1.171
LS-SVM CARS 48 / 0.998 0.404 0.968 1.636 6.373 1.232

PLSR UVE 479 10 0.994 0.699 0.972 1.545 6.420 0.847
LS-SVM UVE 479 / 0.998 0.395 0.964 1.742 5.555 1.347

Note: PLSR: partial least squared regression; LS-SVM: least square-support vector machine; CARS: competitive
adaptive reweighted sampling; UVE: uninformative variable elimination; LVs: latent variables; R2: determination
coefficient; RMSE: root mean squared errors; RPD: residual predictive deviation; ABS: the absolute difference
between RMSEC and RMSEP.

Although the prediction model achieved high accuracy, there are too many useless and
uninformative input variables that will result in the decline in model accuracy and robustness.
To eliminate these unrelated variables and improve the performance of the prediction model, two
variables selection method of CARS and UVE were conducted to identity the optimal variables [33].
Then the PLSR and LS-SVM regression models were developed and the corresponding calculated
results were presented in Table 1. It can be found that the number of variables was reduced to only
0.027% (48/1762) of the total variables for CARS. Based on these selected variables, the simpler PLSR
and LS-SVM models were built. As shown in Table 1, the prediction performance of CARS-PLSR and
CARS-LS-SVM model was improved slightly in comparison with PLSR and LS-SVM model based on
the full variables. When the UVE was considered, it can be found that UVE-PLSR and UVE-LS-SVM
have the R2

p value of 0.972 and 0.964, respectively. As shown in Figure 4, scatter plots of the actual
values versus the predicted values in prediction set are well distributed along the diagonal line by
UVE-PLS model, indicating a good performance of the predictive capability. Additionally, the stability
of the prediction model has become more stable after performing UVE, and the ABS value decreased
from 1.253 to 0.847. Therefore, UVE is a more suitable variable selection method than CARS in
improving the performance of predicting the methanol content in gasoline by ATR-FT-IR spectroscopy.
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3.5. Discussion

In this paper, the feasibility of using ATR-FTIR spectra combined with multivariate model for
predicting the methanol content in methanol gasoline was investigated. According to the assessment
criteria [34], a model with an RPD value in the range of 2.5~3, can obtain a good prediction result.
If the RPD value of a model is larger than three, it means the excellent prediction performance can
be achieved. Based on the above criteria and calculated result in Table 1, the full variables and UVE
regression model have the RPD value larger than three. Therefore, an excellent prediction result
for methanol content in methanol gasoline can be achieved using the full variables model and the
UVE regression model. Furthermore, it can also be concluded that it is feasible to qualitatively and
quantitatively analyze the methanol content in methanol gasoline.

To get the best regression model, two quantitatively multivariate models of PLSR and LS-SVM
and two classic variables selection methods were carried out and combined to establish the more
accurate prediction model. All results from the six prediction model were presented in Table 1, and
two conclusions can be drawn through comprehensive comparisons among these six models. The first
one is that the PLSR model has better prediction performance than the LS-SVM model. This conclusion
is consistent with the Lambert–Beer law that is the basis of quantitative analysis of an infrared spectra.
Therefore, the linear PLSR regression model is more suitable to quantitatively analyze the methanol
content in methanol gasoline. Additionally, it can be found that the UVE not only can greatly reduce
the variables number but also improve the accuracy and robustness. The other conclusion is that
the variable selection method is a preferential choice to simplify the calculation and improve the
performance of model. Generally speaking, UVE coupled with PLSR model is a better choice than
others to quantitatively analyze the methanol content.

Methanol gasoline is a more environmentally friendly and economical energy source than gasoline.
Qualitative and quantitative analysis plays an important in ensuring the quality of the methanol
gasoline. To this end, ATR-FTIR spectra and chemometrics were used to nondestructively determine
the methanol content. Furthermore, the corresponding excellent result shows that it is feasible to
quantitative analyze using ATR-FTIR technology. Compared with traditional methods, ATR-FTIR has
shown its speed, accuracy and online detectability. Although an excellent prediction result for the
detection of methanol content was obtained, there are many works needed to be done. In the future,
more samples and more types of gasoline need to be considered in calibration model. More powerful
chemometric methods and cheaper IR spectrometer need to be developed. Nevertheless, the result of
this study indicates that using IR spectra to qualitative and quantitative methanol gasoline is feasible,
which provides an alternative method to analyze and ensure the quality of gasoline for gas industry.

4. Conclusions

This study using ATR-FTIR technology investigated the feasibility to quantitatively and
qualitatively detect the methanol in methanol gasoline. The calculated result demonstrated the
accuracy and efficiency of IR spectra in quantitative and qualitative analysis of the methanol gasoline.
As for the qualitative analysis, PLS-DA reached 100% and 96.88% accuracy for calibration and
prediction set, respectively. When the quantitative analysis was considered, the PLSR and LS-SVM
model, combined with UVE and CARS variables selection methods, were applied to establish the
prediction model, and UVE-PLSR obtained the best prediction result with the RPD and ABS value of
6.420 and 0.847.

As a primary exploration using IR spectra to qualitatively and quantitatively the methanol in
gasoline, the computed results show that it is feasible to nondestructive and rapid detect the methanol
content. This research indicates that IR spectra is a promising analytical method in applying in the
gasoline industry and more effort should be made to speed up industrial application.
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4. Yilmaz, İ.; Taştan, M. Investigation of hydrogen addition to methanol-gasoline blends in an SI engine. IJHE
2018, 43, 20252–20261. [CrossRef]

5. Liu, F.; Hua, Y.; Wu, H.; Lee, C.-F.; Shi, Z. Experimental and kinetic studies of soot formation in
methanol-gasoline coflow diffusion flames. J. Energy Inst. 2017, 92, 38–50. [CrossRef]

6. Khanmohammadi, M.; Garmarudi, A.B.; de la Guardia, M. Characterization of petroleum-based products by
infrared spectroscopy and chemometrics. TrAC Trends Anal. Chem. 2012, 35, 135–149. [CrossRef]

7. Teixeira, L.S.; Oliveira, F.S.; dos Santos, H.C.; Cordeiro, P.W.; Almeida, S.Q. Multivariate calibration in Fourier
transform infrared spectrometry as a tool to detect adulterations in Brazilian gasoline. Fuel 2008, 87, 346–352.
[CrossRef]

8. Balabin, R.M.; Safieva, R.Z. Gasoline classification by source and type based on near infrared (NIR)
spectroscopy data. Fuel 2008, 87, 1096–1101. [CrossRef]

9. da Silva, M.P.F.; e Brito, L.R.; Honorato, F.A.; Paim, A.P.S.; Pasquini, C.; Pimentel, M.F. Classification of
gasoline as with or without dispersant and detergent additives using infrared spectroscopy and multivariate
classification. Fuel 2014, 116, 151–157. [CrossRef]

10. Mabood, F.; Gilani, S.A.; Albroumi, M.; Alameri, S.; Al Nabhani, M.M.; Jabeen, F.; Hussain, J.; Al-Harrasi, A.;
Boqué, R.; Farooq, S.; et al. Detection and estimation of Super premium 95 gasoline adulteration with
Premium 91 gasoline using new NIR spectroscopy combined with multivariate methods. Fuel 2017, 197,
388–396. [CrossRef]

11. Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Gasoline classification using near infrared (NIR) spectroscopy
data: Comparison of multivariate techniques. Anal. Chim. Acta 2010, 671, 27–35. [CrossRef]

12. Kardamakis, A.A.; Pasadakis, N. Autoregressive modeling of near-IR spectra and MLR to predict RON
values of gasolines. Fuel 2010, 89, 158–161. [CrossRef]

13. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52.
[CrossRef]

14. Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile profiles of emissions from different activities analyzed
using canister samplers, and gas chromatography-mass spectrometry, (gc/ms) analysis: A case study. Int. J.
Environ. Res. Public Health 2017, 142, 195. [CrossRef] [PubMed]

15. Orecchio, S.; Bianchini, F.; Bonsignore, R.; Blandino, P.; Barreca, S.; Amorello, D. Profiles and sources of pahs
in sediments from an open-pit mining area in the Peruvian andes. Polycycl. Aromat. Compd. 2016, 36, 429–451.
[CrossRef]

16. Amorello, D.; Orecchio, S.; Pace, A.; Barreca, S. Discrimination of almonds (prunus dulcis) geographical
origin by minerals and fatty acids profiling. Nat. Prod. Lett. 2016, 3018, 2107–2110. [CrossRef]

17. Chen, X.; Ding, H.; Yuan, L.M.; Cai, J.R.; Chen, X.; Lin, Y. New approach of simultaneous, multi-perspective
imaging for quantitative assessment of the compactness of grape bunches. Aust. J. Grape Wine Res. 2018, 244,
413–420. [CrossRef]

http://dx.doi.org/10.1016/j.fuel.2004.09.013
http://dx.doi.org/10.1016/j.ijpe.2015.09.030
http://dx.doi.org/10.1016/j.ijhydene.2018.07.088
http://dx.doi.org/10.1016/j.joei.2017.12.002
http://dx.doi.org/10.1016/j.trac.2011.12.006
http://dx.doi.org/10.1016/j.fuel.2007.05.016
http://dx.doi.org/10.1016/j.fuel.2007.07.018
http://dx.doi.org/10.1016/j.fuel.2013.07.110
http://dx.doi.org/10.1016/j.fuel.2017.02.041
http://dx.doi.org/10.1016/j.aca.2010.05.013
http://dx.doi.org/10.1016/j.fuel.2009.08.029
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.3390/ijerph14020195
http://www.ncbi.nlm.nih.gov/pubmed/28212294
http://dx.doi.org/10.1080/10406638.2015.1005242
http://dx.doi.org/10.1080/14786419.2015.1107559
http://dx.doi.org/10.1111/ajgw.12349


Appl. Sci. 2019, 9, 5336 10 of 10

18. Kutsanedzie, F.Y.H.; Chen, Q.S.; Hassan, M.M.; Yang, M.; Sun, H.; Rahman, M.H. Near infrared system
coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food
Chem. 2018, 240, 231–238. [CrossRef]

19. Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of
high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst
2018, 143, 3526–3539. [CrossRef]

20. Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods
2013, 5, 3790–3798. [CrossRef]

21. Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17.
[CrossRef]

22. Höskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. [CrossRef]
23. Huang, L.; Meng, L.; Zhu, N.; Wu, D. A primary study on forecasting the days before decay of peach fruit

using near-infrared spectroscopy and electronic nose techniques. Postharvest Biol. Technol. 2017, 133, 104–112.
[CrossRef]

24. Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling
method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [CrossRef]

25. Cai, W.; Li, Y.; Shao, X. A variable selection method based on uninformative variable elimination for
multivariate calibration of near-infrared spectra. Chemom. Intell. Lab. Syst. 2008, 90, 188–194. [CrossRef]

26. Ye, S.; Wang, D.; Min, S. Successive projections algorithm combined with uninformative variable elimination
for spectral variable selection. Chemom. Intell. Lab. Syst. 2008, 91, 194–199. [CrossRef]

27. Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in partial least
squares regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [CrossRef]

28. Zhu, N.; Nie, Y.; Wu, D.; He, Y.; Chen, K. Feasibility study on quantitative pixel-level visualization of
internal quality at different cross sections inside postharvest loquat fruit. Food Anal. Meth. 2017, 10, 287–297.
[CrossRef]

29. Huang, L.; Zhou, Y.; Meng, L.; Wu, D.; He, Y. Comparison of different CCD detectors and chemometrics
for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near
infrared hyperspectral imaging technique. Food Chem. 2017, 224, 1–10. [CrossRef]

30. Corsetti, S.; Zehentbauer, F.M.; McGloin, D.; Kiefer, J. Characterization of gasoline/ethanol blends by infrared
and excess infrared spectroscopy. Fuel 2015, 141, 136–142. [CrossRef]

31. Noor, P.; Khanmohammadi, M.; Roozbehani, B.; Yaripour, F.; Garmarudi, A.B. Determination of reaction
parameters in methanol to gasoline (MTG) process using infrared spectroscopy and chemometrics. J. Clean.
Prod. 2018, 196, 1273–1281. [CrossRef]

32. Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Model population analysis for variable selection. J. Chemom. 2010,
24, 418–423. [CrossRef]

33. Wu, D.; Shi, H.; He, Y.; Yu, X.; Bao, Y. Potential of hyperspectral imaging and multivariate analysis for rapid
and non-invasive detection of gelatin adulteration in prawn. J. Food Eng. 2013, 119, 680–686. [CrossRef]

34. Mouazen, A.M.; Al-Walaan, N. Glucose adulteration in Saudi honey with visible and near infrared
spectroscopy. Int. J. Food Prop. 2014, 17, 2263–2274. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.foodchem.2017.07.117
http://dx.doi.org/10.1039/C8AN00599K
http://dx.doi.org/10.1039/c3ay40582f
http://dx.doi.org/10.1016/0003-2670(86)80028-9
http://dx.doi.org/10.1002/cem.1180020306
http://dx.doi.org/10.1016/j.postharvbio.2017.07.014
http://dx.doi.org/10.1016/j.aca.2009.06.046
http://dx.doi.org/10.1016/j.chemolab.2007.10.001
http://dx.doi.org/10.1016/j.chemolab.2007.11.005
http://dx.doi.org/10.1016/j.chemolab.2012.07.010
http://dx.doi.org/10.1007/s12161-016-0581-8
http://dx.doi.org/10.1016/j.foodchem.2016.12.037
http://dx.doi.org/10.1016/j.fuel.2014.10.025
http://dx.doi.org/10.1016/j.jclepro.2018.05.288
http://dx.doi.org/10.1002/cem.1300
http://dx.doi.org/10.1016/j.jfoodeng.2013.06.039
http://dx.doi.org/10.1080/10942912.2013.791837
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Collection of ATR-FTIR Spectra 
	Multivariate Data Analysis 
	Principal Component Analysis 
	Classification for Adulteration Category 
	Regression for Adulteration Content 
	Variables Selection for Significant Information 
	Evaluation of the Model’s Performance 


	Result and Discussion 
	Analysis of ATR-FTIR Spectral Feature of Gasoline 
	Exploratory Analysis 
	Qualitative Analysis of Gasoline 
	Quantitative Analysis of Methanol in Gasoline 
	Discussion 

	Conclusions 
	References

