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Abstract: The compression behavior of steel-fiber reinforced concrete (SFRC) has been addressed
exhaustively in recent decades thereby highlighting a variety of differences with regard to the effect
that the addition of fiber has on it. In this paper, a detailed study of the subject is developed for
which a database has been created, which includes 197 tests performed on cylindrical concrete
specimens with dimensions of 150× 300 mm2 (diameter× height). By means of the response surface
methodology, we disclose the relationship that exists between the geometric parameters of the fiber
(length, diameter, and aspect ratio), their amount (fraction in volume), and some matrix parameters
(compression resistance and maximum size of coarse aggregate) with the different compression
responses of the SFRC, which are strength, elastic modulus, critical deformation under maximum
load, and the volumetric deformation work in the pre- and post-peak branch. Linear polynomial
models are chosen to adjust each response with the defined factors, and said variables are studied in a
dimensional and non-dimensional format. From the results obtained, it is verified how the inclusion
of steel-fibers produces notable improvements in ductility and the energy absorption capacity of the
concrete when significantly increasing the works of volumetric deformation in the pre- and post-peak
branch with respect to the matrix without fibers. In addition, a new model is analyzed, which
describes the stress–strain curve of the compression behavior of the SFRC based on the increase of
ductility and energy absorption. This model is characterized by a softening branch subsequent to the
peak load determined by means of the residual compressive strength, a parameter that corresponds
to the value of the compressive stress associated with a strain equal to three times that of the peak of
the curve, which is significantly dependent on the aspect ratio and fiber content.

Keywords: steel-fiber reinforced concrete (SFRC); compressive ductility; response surface
methodology (RSM); compression behavior model of the SFRC; residual compressive strength

1. Introduction

The compression behavior of steel-fiber reinforced concrete (SFRC) has been widely addressed
over the last four decades, as reflected in the extensive existing bibliography, which includes both
experimental research, as well as analytical and numerical research. There is a variety of opinions
with respect to the influence that the addition of steel-fiber has on such behavior, fundamentally in
regards to resistance and stiffness. There is consensus on the increase of ductility and toughness that
the material experiences.

As concerns the compressive strength, fc f , we find works that indicate that the inclusion
of steel-fibers in concrete involves from negligible [1,2] or marginal [3,4] increases to significant
increases [5–8], although it is certain that the majority of authors contend that an improvement
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occurs [3,5,8–23]. Nevertheless, others indicate that fibers do not contribute to the increase of the
strength [24]. In addition, there is research that indicates that improvements may occur up to a certain
value of the fiber content [19,25,26]. Among the reasons given for this variation in opinions are the
effect of fibers on the transversal confinement of the specimens [14,15], the influence of the so-called
fiber factor (product of the volumetric fiber ratio by its fiber aspect ratio, φ f λ) [27], the sensitivity to
the fiber volume–aggregate size relationship, linked to the workability of the material [27], and the
creation of additional voids in the concrete matrix [14,24].

In regard to the elasticity modulus, E f , there also appears a disparity of results. There are works
that demonstrate that the addition of steel-fibers tends to reduce it [13,14,28–30], while in others, an
increase has been recorded [3,15–18]. The reasons for explaining the decrease are associated with the
creation of additional voids that involve the inclusion of fibers [28–30].

With regard to the critical strain at peak load, εc f , there is a consensus that an increase occurs
with the addition of steel-fibers [3,6,8,16–18,31–34], which is associated both with φ f , as well as λ [14]
and with the mentioned fiber factor [18,29]. The influence that the increase of fc f [18,29,35,36] has on
this parameter is also reported.

Once the maximum load is reached is when the principal effect of the steel-fibers is observed
on the compression behavior of the concrete in terms of ductility and toughness. In all the works
consulted, it is evident that the addition of fiber increases the capacity of energy absorption during
the strain of the material, thereby improving its ductility [3–6,14–18,24,31–34,37–39]. This is due
fundamentally to the greater effect of transversal confinement that fibers provide [5,6,14,15,18,24].

On the other hand, the design and analysis of the structural elements made with SFRC requires
the application of models that are capable of representing with exactitude their mechanical behavior
for purposes of being able to be included in the current design codes and structural requirements.
In the scientific literature, there is a variety of models that, as a function of their own experimental data,
pursue approaching the stress–strain response of the SFRC in compression [3,5,6,15,16,18,24,28,40].
With closer study, it may be verified how each one of them correctly adjusts to the data from which
it comes; however, the adjustment is not as strong when they are subjected to the scrutiny of other
experimental sources [30].

With this background, it is pertinent to propose a profound analysis for which the principal
parameters are related to the concrete and steel-fibers that have an influence on the compression
response of the SFRC. In particular, the increase of ductility and the capacity of energy absorption can
be studied by means of the work of volumetric strain in the pre- and post-phases to peak load. For
this purpose, a database has been created through an extensive bibliographic search in the scientific
literature with compression results for SFRC. It includes a total of 197 uniaxial compression tests
on cylindrical specimens with dimensions of 150× 300 mm2 (diameter× height) of SFRC with hook
ended fibers with a single fold, in addition to their corresponding matrices without reinforcement.
Subsequently, applying the response surface methodology [41], a series of factors, associated with
the characteristics of the material (concrete matrix and fiber reinforcement), is analyzed, thereby
identifying which have a great effect on the different responses of the compression strength for SFRC.
Lastly, the compression stress–strain model for SFRC by Ruiz et al. [42] is studied. It permits the
non-linear calculation of the structural elements of SFRC requested under compression that is based
on the increase of ductility and energy absorption that the inclusion of steel-fibers provides to concrete.

2. Materials and Methods

2.1. Creation of the Database

Firstly, we proceed to the bibliographic search for publications with experimental results
for uniaxial compressive tests on SFRC specimens (cylinders with dimensions of 150× 300 mm2,
diameter× height, and steel-fibers with hooked-ends of a single fold), thereby creating a database
with a total of 197 tests. The distribution of the number of tests collected for each one of the responses
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to be studied is summarized in Table 1. Figure 1 shows the distribution of the data of the principal
factors included in the database. Note that all the papers contributing to the database assume that the
compressive behavior of the material is isotropic. This is so because the filling of this type of specimen
does not lead to any preferential orientation of the fibers, since the fresh material does not flow along
the form, nor pass through obstacles like narrow parts or bars.

Table 1. Database for uniaxial compression tests in steel-fiber reinforced concrete (SFRC) specimens.

N◦ Specimens with Fibers N◦ Specimens without Fibers

Compressive strength 167 30
Elastic modulus 83 17

Strain under maximum load 111 19
Volumetric deformation work before the peak load 90 14
Volumetric deformation work after the peak load 73 11

Figure 1. Distribution of the data of the principal factors included in the database: (a) diameter of
steel-fiber, d f ; (b) fiber length, ` f ; (c) fiber aspect ratio, λ; (d) fiber content, φ f ; (e) compressive strength
of SFRC, fc f ; and (f) maximum size of the coarse aggregate, dm.
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2.2. Response Surface Methodology

The response surface methodology (RSM) [41] consists of a collection of statistical-mathematical
techniques applied to the creation of data adjustment models by means of which a series of parameters
may be optimized and find the interactions that are produced between them [43,44]. It is a common
method used in the improvement, development, and process management [45] in various industries,
which has also been applied to those of concrete and cement for the design of mixtures [46–51],
the analysis of resistant behavior [52–56], or the influence that the fiber content and the aspect ratio
have in the optimization of the fracture of the fiber reinforced concrete [57].

This method permits the creation of regression adjustment models (by square minimums) of
a set of data, as well as the optimization of a variable that is related to one or various dependent
variables [58]. The analysis of the variance of the data (ANOVA) establishes the interaction between
the variables for the purpose of estimating the statistical parameters and determining if there are
significant relationships between the responses (dependent variables) and the factors (independent
variables). By means of ANOVA, we verified the differences existing between the means of various
populations, thereby seeking to separate how each source of variation contributes to the variation
observed [59–61]. In addition, ANOVA must verify the normalcy of the populations in the distributions
of the probability of the association between responses and factors, the equality of the variance of the
populations, and the independence of the samples. If the ANOVA of a factor rejects the null hypothesis
of the equality of averages, this signifies that there is a statistically significant association between the
response and the factor, that is the response is influenced by the factor [59–61].

The RSM is based on the following steps: the statistical design and performance of experiments
(or alternatively, as in our case, the formation of a database of experimental results) and the subsequent
selection of the factors that may influence their responses, the choice of a suitable mathematical model
or function to adjust the responses and the estimation of its parameters, the prediction of the responses,
and the verification of the aptitude of the function in the experimental domain [43,62]. If there exists a
continuous function, f , of the n factors that adjusts the actual values of the responses, then the response
that corresponds to any set of factors can be written as:

y = f (x1, x2, ... , xn) + ξ (1)

where:

f (x1, x2, ... , xn): adjusted value of the response;
x1, x2, ... , xn: independent variables or factors;
y: dependent variable or response;
ξ: error (arising principally from the experimental errors and adjustment [52]).

If f is not explicitly known, then it is necessary to find an adequate approximation in the
correlation between factors and responses [43,63]. To do this, factors may be used to establish
an empirical model correlated with the experimental data by means of a polynomial defined by
Equation (2) [43]:

y = β0 +
n

∑
i=1

βi xi +
n

∑
i=1

βii x2
i +

n−1

∑
i=1

n

∑
j>i

βij xixj + ξ (2)

where:

β0: independent term;
βi: linear adjustment coefficients;
βii: quadratic adjustment coefficients;
βij: combined adjustment coefficients;
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xi, xj: factors.

The experimental data that will be analyzed must belong to a family with a normal distribution
function, which is presented through residues (the difference between the experimental values and
the values obtained by the model adjustment). The normalcy of the residues indicates that the
data distribution is normal as well [58]. The analysis was performed by means of the Minitab
mathematical-statistical program [64].

2.2.1. Selection and Analysis of the Factors

The selection of the factors, with which the responses will be studied, is fundamental to achieve
correct results. In addition, the data must proceed from quality sources and be within the ranges of
observation sought for the responses. Thus, prior knowledge of the factors that affect the responses is
a key aspect in the development of the procedure. For that reason, firstly, a selection has been made
of a high number of factors that are considered to be able to have an influence on the compressive
strength of the SFRC. Performing a first analysis in dimensional terms, both in the responses, as well
as in the factors, a second analysis under the conditions of non-dimensionality is made for the purpose
of observing, in addition to the statistical significance of the latter, the influence that they have on
the variability of the responses. Lastly, a selection is made of the most significant factors obtained in
the prior analysis with the objective of applying them to a simple model in a technological format
that explains the uniaxial compression behavior of the SFRC [42]. Namely, they are the compressive
strength of the base concrete, fc, the maximum aggregate size, dm, the diameter of the fiber, d f , the
length of the fiber, ` f , the aspect ratio, λ, the fiber content, φ f , and some combined parameters like
the ratio between the length of the fiber and the maximum aggregate size, ` f /dm (note that the
“Abbreviations” Section at the end of the paper gives a complete definition of all the symbols and
acronyms used in this work).

2.2.2. Selection of the Response Model

Two regression adjustment models of the experimental data will be made, both polynomials,
specifically first and second degree. The selection of the definitive model on which the work will be
done, will be performed on the basis of the following criteria: its capacity to predict the response
within the domain of the levels of the factors and especially adhering to the absence of multicollinearity.
Multicollinearity is a problem that occurs when the explicative variables of the model are correlated
among themselves. This gives rise to a reduction in the precision of the estimation of the coefficients
of the terms of the factors, in addition to the possibility of concealing their statistical significance.
An added difficulty for detecting the multi-collinearity is that it does not affect the goodness of the
adjustment of the model. By means of the statistic variance inflation factor (VIF), the multicollinearity
is studied. This index quantifies the severity of multicollinearity in an ordinary least squares regression
analysis, since it measures how much the variance of an estimated regression coefficient is increased
because of multicollinearity. It is calculated as:

VIF(β̂ j) =
1

1− R2
j

(3)

where β̂ j is the value for the coefficient β j estimated by the model and R2
j is its determination coefficient.

If multicollinearity is severe, the variance of the determination coefficients is increased, which indicates
that such coefficients are unstable, which in turn gives rise to false statistical factors’ significances
and erroneous values/signs of their coefficients. It is commonly accepted that if VIF > 5, then the
multicollinearity is high [64,65].

Thus, VIF ≤ 5 was adopted as a limit for selecting the adjustment model, which is representative
of a moderately low presence of multicollinearity, thereby deeming it very low or absent if VIF' 1 [64].
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2.2.3. Statistical Analysis of the Experimental Data

By means of ANOVA, statistics will be estimated, which will permit us to analyze the information
of the database. The degree of statistical significance will be determined by means of the value of
probability p (p-value) at the confidence interval of 95%. Thus, statistical significance is deemed to
exist if the p-value ≤ 0.05. Concerning the study of factors, if the p-value calculated for a term is less
than or equal to 0.05, there is a statistically significant relationship between said term and the response,
thereby demonstrating that this effect is not due to randomness.

The adjusted determination coefficient R2
a indicates the goodness of the adjustment of the model.

It is calculated with the following equation:

R2
a = 1− N − 1

N − k− 1
(1− R2) (4)

where k is the number of explanatory variables (or predictors) and R2 is the standard determination
coefficient, the formula of which is:

R2 =
∑N

i=1(ŷi − ȳ)2

∑N
i=1(yi − ȳ)2

(5)

where N is the sample size or total number of observations; ŷi is the estimated value for y in observation
i according to the model; ȳ is the mean value of y; and yi is the actual value for y in observation i.
R2

a concerns a more appropriate statistic than R2 for verifying models with a different number of
predictors since R2 always increases when adding a new explanatory variable, even when there is not
a real improvement in the model because such a factor is not relevant. R2

a corrects this overestimation,
thereby reducing its value if an effect does not produce an improvement of the model [64].

2.3. Stress–Strain Model for the Uniaxial Compression Behavior of SFRC for Non-Linear Analysis

Ruiz et al. [42] developed a model, in a technological format, for the non-linear calculation of
the compression behavior of the structural elements of SFRC. This model consists of two stress–strain
curves: The first departs from the origin of the coordinates and reaches the maximum stress value and
is analogous to the curve defined for plain concrete in Eurocode 2 [66] (Equation (6)). The second curve
starts with maximum stress and manages to intercept the x-axis. This segment is defined by means of
an inverted parabola of the vertical axis (Equation (7)), which has been calculated in such a way that
the subsequent post-peak energy consumption is equal to the value of that same energy calculated in
conformity with the data collected in the database. Figure 2 shows the stress–strain relationship, in
reference to the SFRC and presented in a non-dimensional manner. The expression for the first curve
(Stretch 1 in Figure 2) is:

σ∗ =
α ε∗ − ε∗2

1 + (α − 2) ε∗
(6)

where:

σ∗: non-dimensional stress (σ∗ = σ
fc f

);

fc f : compressive strength of the SFRC (cylinders 150× 300 mm2, diameter× height);

α: non-dimensional coefficient (α = 1.05 εc f
E f
fc f

);

εc f : critical strain corresponding to fc f ;
E f : elastic modulus of SFRC;
ε∗: strain relative to the critical strain corresponding to fc f (ε∗ = ε

εc f
).

Note that the light blue area below curve 1 in Figure 2 is equal to W1 f / fc f εc f (= W∗1 ), which is
the non-dimensional volumetric deformation work in the pre-peak branch relative to fc f εc f .
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The second curve (Stretch 2 in Figure 2) can be expressed as:

σ∗ = 1 − 1
4
(1 − σ∗R) (ε

∗ − 1)2 (7)

Report for TG2

Model for the compressive stress-strain relation

of steel-fiber reinforced concrete for non-linear

structural analysis

Gonzalo Ruiz & Ángel de la Rosa
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Gonzalo Ruiz & Ángel de la Rosa

ETSI Caminos, C. y P., Universidad de Castilla-La Mancha,

Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain

July 2018

XXXXX

Stress-strain relation for non-linear structural analysis of
SFRC

The relation between σ and � shown in Fig. XX may be used to model the response
of SFRC to short term uniaxial compression. It has two distinct stretches. The
first one goes from the axes origin to the maximum stress (curve 1 in Fig. XX)
and is described by the following equation:

σ∗ =
α �∗ − �∗ 2

1 + (α− 2) �∗
(1)

where:

σ∗ = σ
fcf

Non-dimensional stress

fcf Compressive strength of SFRC

α = 1.05 �cf
Ef

fcf
Non-dimensional coefficient

�cf Critical strain, i.e. strain that corresponds to fcf

Ef Elastic modulus of SFRC
�∗ = �

�cf
Non-dimensional strain

1

The compressive strength and corresponding strain plus the elastic modulus of
SFRC can be easily obtained by testing. These values can also be estimated using
the following equations:

fcf = fc0

�
1 + 3.877 �∗fφf

�
(2)

�cf = 0.007

�
fc0

f0

�0.31

[1 + 0.4823λ (φf − 0.002606 �∗f )] (3)

Ef = E0 fE(�∗f , λ, φf ) (4)

where:

�∗f =
�f
�0

Non-dimensional fiber length

�0 = 30mm Coefficient to keep non-dimensionality
φf Volumetric fiber ratio
fc0 Compressive strength of the base concrete in MPa, which

is determined according to Table 5.1 of EC2
f0 = 1MPa Coefficient to keep non-dimensionality
λ Fiber aspect ratio
E0 Elastic modulus of the base concrete

The second stretch (curve 2 in Fig. XX) is a softening branch that goes from
the peak stress to zero. The equation defining the curve is the following parabola:

σ∗ = 1 − 1

4
(1 − σ∗

R)(�∗ − 1)2 (5)

where σ∗
R is the following function of the parameters that characterize the fiber:

σ∗
R = 0.5876 + 17.56φf − 0.002457 �∗fλ ≤ 1 (6)

Actually, σ∗
R is the non-dimensional stress corresponding to �∗ = 3, as represented

in Fig. XX, which implies that σ∗
R ≤ 1 as stated in Eq. 6. This second stretch

intercepts the x-axis at:

�∗u = 1 +
2�

1 − σ∗
R

(7)

Note that Eqs. 1 & 5 and related parameters consider that stresses and strains
are positive in compression. Likewise, the softening part of the curve, Eqs. 5–7, is
only valid for SFRC with hook-ended fibers.

2

The compressive strength and corresponding strain plus the elastic modulus of
SFRC can be easily obtained by testing. These values can also be estimated using
the following equations:

fcf = fc0

�
1 + 3.877 �∗fφf

�
(2)

�cf = 0.007

�
fc0

f0

�0.31

[1 + 0.4823λ (φf − 0.002606 �∗f )] (3)

Ef = E0 fE(�∗f , λ, φf ) (4)

where:

�∗f =
�f
�0

Non-dimensional fiber length

�0 = 30mm Coefficient to keep non-dimensionality
φf Volumetric fiber ratio
fc0 Compressive strength of the base concrete in MPa, which

is determined according to Table 5.1 of EC2
f0 = 1MPa Coefficient to keep non-dimensionality
λ Fiber aspect ratio
E0 Elastic modulus of the base concrete

The second stretch (curve 2 in Fig. XX) is a softening branch that goes from
the peak stress to zero. The equation defining the curve is the following parabola:

σ∗ = 1 − 1

4
(1 − σ∗

R)(�∗ − 1)2 (5)

where σ∗
R is the following function of the parameters that characterize the fiber:

σ∗
R = 0.5876 + 17.56φf − 0.002457 �∗fλ ≤ 1 (6)

Actually, σ∗
R is the non-dimensional stress corresponding to �∗ = 3, as represented

in Fig. XX, which implies that σ∗
R ≤ 1 as stated in Eq. 6. This second stretch

intercepts the x-axis at:

�∗u = 1 +
2�

1 − σ∗
R

(7)

Note that Eqs. 1 & 5 and related parameters consider that stresses and strains
are positive in compression. Likewise, the softening part of the curve, Eqs. 5–7, is
only valid for SFRC with hook-ended fibers.

2

The compressive strength and corresponding strain plus the elastic modulus of
SFRC can be easily obtained by testing. These values can also be estimated using
the following equations:

fcf = fc0

�
1 + 3.877 �∗fφf

�
(2)

�cf = 0.007

�
fc0

f0

�0.31

[1 + 0.4823λ (φf − 0.002606 �∗f )] (3)

Ef = E0 fE(�∗f , λ, φf ) (4)

where:

�∗f =
�f
�0

Non-dimensional fiber length

�0 = 30mm Coefficient to keep non-dimensionality
φf Volumetric fiber ratio
fc0 Compressive strength of the base concrete in MPa, which

is determined according to Table 5.1 of EC2
f0 = 1MPa Coefficient to keep non-dimensionality
λ Fiber aspect ratio
E0 Elastic modulus of the base concrete

The second stretch (curve 2 in Fig. XX) is a softening branch that goes from
the peak stress to zero. The equation defining the curve is the following parabola:

σ∗ = 1 − 1

4
(1 − σ∗

R)(�∗ − 1)2 (5)

where σ∗
R is the following function of the parameters that characterize the fiber:

σ∗
R = 0.5876 + 17.56φf − 0.002457 �∗fλ ≤ 1 (6)

Actually, σ∗
R is the non-dimensional stress corresponding to �∗ = 3, as represented

in Fig. XX, which implies that σ∗
R ≤ 1 as stated in Eq. 6. This second stretch

intercepts the x-axis at:

�∗u = 1 +
2�

1 − σ∗
R

(7)

Note that Eqs. 1 & 5 and related parameters consider that stresses and strains
are positive in compression. Likewise, the softening part of the curve, Eqs. 5–7, is
only valid for SFRC with hook-ended fibers.

2

Report for TG2

Model for the compressive stress-strain relation

of steel-fiber reinforced concrete for non-linear

structural analysis

Gonzalo Ruiz & Ángel de la Rosa
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Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain

July 2018

XXXXX

Stress-strain relation for non-linear structural analysis of
SFRC

The relation between σ and � shown in Fig. XX may be used to model the response
of SFRC to short term uniaxial compression. It has two distinct stretches. The
first one goes from the axes origin to the maximum stress (curve 1 in Fig. XX)
and is described by the following equation:

σ∗ =
α �∗ − �∗ 2

1 + (α− 2) �∗
(1)

where:

σ∗ = σ
fcf

Non-dimensional stress

fcf Compressive strength of SFRC

α = 1.05 �cf
Ef

fcf
Non-dimensional coefficient

�cf Critical strain, i.e. strain that corresponds to fcf

Ef Elastic modulus of SFRC
�∗ = �

�cf
Non-dimensional strain

1

Report for TG2

Model for the compressive stress-strain relation

of steel-fiber reinforced concrete for non-linear

structural analysis

Gonzalo Ruiz & Ángel de la Rosa
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Figure 2. Non-dimensional stress–strain relationship in SFRC for structural analysis.

This softening branch of the model (Equation (7)) is determined by a parameter, σ∗R, which is the
residual compressive strength associated with ε∗ = 3 (Figure 2). It is defined so that the softening
parabola consumes the same energy as the actual σ-ε curve between the peak and 3 εc f . Therefore,
the expression to obtain σ∗R from an experimental σ-ε record is:

σ∗R =
3 W2 f

2 fc f εc f
− 2 (8)

where W2 f is the area below the σ-ε curve between εc f and 3 εc f , that is the deformation work per
unit volume consumed by the specimen from the peak of the curve to a strain three times larger than
that of the peak. W2 f / fc f εc f (= W∗2 ) is represented as the dark blue area in Figure 2. The reason for
choosing σR as a reference is due to the fact that in all the tests included in the database that present
diagrams of the σ-ε curves, at least this value is achieved; in other words, these specimens deformed
and consumed energy up to 3 εc f at least. The softening curve in Equation (7) is on the safe side since
the majority of the curves collected are capable of consuming more energy than that proposed in the
model. In addition, σ∗R is always less than the unit in such a way that the model does not take into
consideration the possibility of having hardening due to compression deformation. In the case of
seeking to consider it, the parabola could be replaced by a straight horizontal line (σ∗R = 1), limiting
the ultimate strain value, εu.

The model depends on two points: the value of the maximum compressive strength and its
corresponding strain ( fc f , εc f ) and the value of the stress associated with a strain three times greater
than the critical and said strain (σR, 3 εc f ). In a non-dimensional manner (dividing the stresses by
fc f and the deformations by εc f ) in the curve σ∗- ε∗, the defined points correspond to (1, 1) and
(σ∗R, 3), respectively. The equation that defines σ∗R will be calculated by applying the RSM to the
database as is subsequently seen. Both fc f , as well as εc f and E f may be measured with the uniaxial
compression test [67]; however, they may also be explained by means of equations dependent on the
fiber parameters. All this will be explained in greater detail in the subsequent section.

The most relevant aspect of the model of Ruiz et al. [42] is that it takes into account the capacity of
energy absorption that the SFRC may reach after surpassing the maximum stress value (the area under
the σ-ε curve represents the energy consumption by the unit of volume), which is notably greater than
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that corresponding to its base concrete and is only being considered until a deformation value equal to
3 εc f . As a consequence, the new σ∗- ε∗ curve that is proposed permits considering the increase of the
ductility that the inclusion of steel-fibers provides in SFRC structures.

Finally, it should be highlighted that this σ-ε curve assumes an isotropic behavior of the
material. However, orientation factors similar to those used to modify the constitutive equations in
tension [68,69] could be applied to adjust the proposed compressive σ-ε curve in case it were found
that fiber orientation influences it. Vicente et al. [70] recently studied this topic using CT scanning
to determine the orientation of fibers in concrete cubes that were later on tested in compression.
They concluded that fiber orientation has a small impact on the compressive strength of concrete,
although additional research could be done to determine whether it influences the ductility in
compression or the residual compressive strength.

3. Results and Discussion

3.1. Responses of the Compression Behavior of the SFRC: Analysis with Physical Magnitudes

From the information of the database, the responses that describe the compressive strength of the
SFRC, which are fc f , E f , εc f , W1 f , and W2 f , have been studied. Each one of them has been analyzed by
means of the following factors: the compressive strength of the base concrete or matrix without fibers,
fc, the maximum size of the aggregate, dm, the parameters that define the geometry of the fiber ` f , d f ,
and λ, the fiber volume ratio, φ f , and a parameter that takes into account the relationship between the
sizes of fiber and the aggregate, ` f /dm.

Figure 3 shows a scheme of the process followed to apply the RSM to the results from the database.
All the responses were initially adjusted to two models of complete first and second degree polynomic
regression. However, it was verified that the second degree models did not correctly predict the
responses in the definition domain of the levels of the factors, for which reason they were disregarded
for their use in the analysis. Furthermore, these models had excessively high VIF values in the
majority of their terms, which indicated the presence of a strong multicollinearity. As stated above,
this phenomenon caused the loss of precision in the estimation of the coefficients of the factors, as well
as alterations in the detection of their statistical significance. It bears emphasizing that the fiber factor,
φ f λ, was not found to be significant in the two degree polynomial models, neither in the quadratic nor
in the combined adjustments, as shown in the Pareto diagrams in Figure 4. The corresponding VIFs
were 3.85 and 2.85, respectively. Thus, it can be assumed that the level of multicollinearity for φ f λ in
both cases was low, and consequently, the low significances given by ANOVA were reliable.

Therefore, the analysis of the responses has been performed exclusively with first degree models
(Equation (9)). After verifying that the linear models correctly predicted the responses in the domain
of the definition of factors, the study of the VIF revealed that they were greater than 10 in the majority
of factors, except for fc and φ f , for which VIF' 1. This fact demonstrated that multicollinearity still
existed, for which reason it would be appropriate to make a selection and reduce the number of factors
with which the responses are analyzed.
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Figure 3. Diagram of the steps followed in the RSM calculation process.

Figure 4. Pareto diagrams for the quadratic (left) and combined (right) adjustments of the residual
compressive strength.

The factors that were statistically significant were determined by making use of the Pareto
diagrams. Table 2 contains coefficients of the βi adjustment of the xi factors in the linear models for
each one of the responses, as well as the terms that were statistically significant. Each response can be
calculated as:

y = β0 +
n

∑
i=1

βi xi + ξ (9)

When making an adjustment among the variables that have different units, as is the case, some of
the coefficients of the βi factors also require units to conserve the dimensional stability. Thus, the β0

coefficients will have the corresponding response units (for example, for the response fc f , β0 is
expressed in MPa, and for the εc f response, β0 does not have any units). For the remaining βi
coefficients of the factors, the definition of their units is as follows: the numerator corresponds to
the response unit, and the denominator corresponds to the unit of the factor to which it is associated
(for example, for the E f response, the β2 coefficient, associated with the dm factor, has GPa/mm as
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a unit). Subsequently, a non-dimensional analysis of the variables will be performed so that the βi
coefficients will be expressed without units, which facilitates the manipulation of expressions.

Table 2. βi adjustment coefficients of the xi factors in the linear models with dimensional responses
(bold = statistically significant).

β0 fc (MPa) dm (mm) ` f (mm) d f (mm) λ φ f
` f
dm

R2
a (%)

fc f (MPa) −18.4 1.0573 0.989 −0.107 −11.6 0.020 194.5 3.59 90.4
E f (GPa) 16.5 0.2590 −1.574 −0.380 67.2 0.408 −474 −6.09 45.9

εc f 3894× 10−6 −4× 10−6 −15× 10−6 41× 10−6 −322× 10−5 −14× 10−6 −1689× 10−5 −129× 10−6 22.4
W1 f (GJ/m3) 0.533 0.001431 −0.00823 0.01323 −0.829 −557× 10−5 2.468 −0.02547 72.1
W2 f (GJ/m3) 3.085 −636× 10−6 −0.0935 0.065 −2.59 −0.0158 17.63 −0.563 70.2

The diagrams of the residues obtained in the analysis indicated that they were distributed
randomly, thereby adhering to a function of normal probability (Figure 5 shows two of the diagrams,
for the compressive strength and for the volumetric deformation work in the post-peak). This confirms
the premise that the origin of the experimental data must demonstrate normality in its distribution.
The value of the R2

a goodness adjustment coefficient was not so important insofar as the interest of this
first analysis concerns the identification of the factors that really affect the variation of the response.
These factors were different for each of the responses studied, although it was certain that a series of
factors appeared that had an effect on the majority of them: fc was statistically significant in all the
responses, except in W2 f ; dm and ` f /dm were statistically significant in all except for εc f ; dm was not
significant only in εc f . Nevertheless, it must be highlighted what happens with the fc and φ f factors,
the latter of which had a statistical significance in all the responses (note that W2 f was not affected by
the strength of the matrix, which seemed to make sense since this work corresponded to the post-crack
branch of the matrix). In addition, both fc and φ f were the only factors with VIF ' 1, which was
symptomatic of the true nature of the problem, as may be verified when studying the variables of a
non-dimensional manner.

Figure 5. Residues of the compressive strength ( fc f , left) and the volumetric deformation work in the
post-peak branch (W2 f , right).

3.2. Responses of the Compression Behavior of the SFRC: Non-Dimensional Analysis

Presented below are the results uncovered when applying the RSM in a non-dimensional manner.
Each one of the responses and factors was divided by a parameter that had the same physical dimension:
the responses were divided by the value of the same variable corresponding to the concrete matrix
without fibers from which it proceeded (for example, the f ◦c response resulted from the division of fc f
by fc). Some factors with dimensions of length were divided by an auxiliary parameter, `0, which was
the average value of the fiber lengths included in the database, which was roughly equal to 30 mm.
The analysis of the fc factor was eliminated from the analysis since it was actually present in the
non-dimensional stresses. Besides, we sought to only study the influence of those factors that were
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related to the materials (coarse aggregate and fiber) and not with the strength of the matrix (in the
previous section, the statistical significance of fc was verified in each one of the responses except in
W2 f ).

The objective that was pursued with this analysis was two-fold: on the one hand, to observe how
each one of the factors affected the increase or the decrease of the responses and, on the other hand,
to identify those factors that had a statistical significance that may be used in the proposed model,
which describes the compression strength of the SFRC [42]. The responses were adjusted by means of
the linear model. Table 3 presents the linear coefficients of the βi adjustment of the xi factors for each
one of the responses (all are expressed in a non-dimensional form).

Table 3. Coefficients of βi adjustment of the xi factors in the linear models with non-dimensional
responses (bold = statistically significant).

β0
dm
`0

` f
`0

d f
`0

λ φ f
` f
dm

R2
a (%)

f ◦c 1 0.259 0.1176 −11.65 −0.00178 3.75 0.0223 10.7
E◦c — — — — — — — —
ε◦c 1 0.254 −0.0089 −3.35 −0.00261 −13.94 0.0363 40.0

W◦1 1 −1.889 0.437 19.1 0.0085 48.62 −0.253 35.2
W◦2 0.98 −3.13 0.99 −13 0.0375 110.8 −0.58 54.3

From this analysis, it follows that E◦c did not have a significant relationship with any factor.
This result was in line with that demonstrated by the scientific literature regarding the disparity of
conclusions concerning the effect that the addition of fiber has on the variability of the elastic modulus.

Once again, as a consequence of the number of factors that were introduced in the analysis, the
VIFs obtained were higher in some terms (only φ f maintained a VIF' 5, as occurred in variables with
dimensions). This fact may conceal factors that are significant and that do not appear as such and vice
versa. For this reason, there will be a reduction in the number of factors to study in the compression
behavior model of SFRC proposed by Ruiz et al. [42]. Three parameters: `∗f , λ, and φ f , characteristic of
fiber reinforcement and expressed in a non-dimensional manner, were selected. The reason for this
choice was that the first two defined the geometry of the fiber and the last made reference to its content.
In addition, φ f was the only factor that had a statistical significance in each of the responses, and `∗f
was the next factor with greater significance for all of them. On the other hand, these three parameters
were those that intervened in the majority of the models existing in the literature that describes the σ-ε
compression response of SFRC.

3.3. Stress–Strain Model of the Compression Response for SFRC

This section will study the influence that the factors `∗f , λ, and φ f had on the SFRC compression
model proposed by Ruiz et al. [42]. The most important aspect that must be highlighted is the gain
in the capacity of energy absorption that the addition of steel-fibers in the concrete provides. It may
increase up to 45% in the segment prior to the peak load and reach almost three times more in the
segment subsequent to the peak load in average values with respect to the concrete without fiber
reinforcement. In addition, once the maximum load has been surpassed, W2 f may reach a maximum
value five times greater than the matrix without fiber. This fact demonstrates the increase in ductility
that a structural element of SFRC, requested at uniaxial compression, may exhibit. Table 4 shows the
statistical values of each one of the analyzed responses of the compression strength of SFRC obtained
from the tests included in the database.

From the linear adjustment and the statistical analysis of the relationships between the defined
variables, the βi coefficients of the model were calculated. They are included in Table 5. Figures 6–9
represent the Pareto diagrams for the f ◦c , ε◦c , W◦1 , and W◦2 responses, as well as the adjustment diagrams
of their response surfaces with respect to the statistically significant factors.
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Table 4. Statistics of the responses of the parameters of the σ-ε model for SFRC proposed by
Ruiz et al. [42].

Mean (Std. dev.) [Max.–Min.]

f ◦c 1.04 (0.12) [0.69–1.34]
E◦c 0.99 (0.08) [0.76–1.21]
ε◦c 1.27 (0.30) [0.93–2.51]

W◦1 1.45 (0.52) [0.91–3.73]
W◦2 2.83 (1.09) [1.12–5.49]

Table 5. βi adjustment coefficients of the xi factors and the non-dimensional responses, calculated for
the σ-ε model for SFRC proposed by Ruiz et al. [42] (bold = statistically significant).

β0 `∗f λ φ f R2
a (%) VIF

f ◦c 0.980 0.0151 189× 10−6 2.94 5.3 [1.3–5.3]
E◦c — — — — — —
ε◦c 0.996 −0.0959 185× 10−5 28.23 36.1 [1.5–2.1]

W◦1 0.929 0.143 −251× 10−5 40.97 31.6 [1.3–5.1]
W◦2 0.770 −0.048 1444× 10−5 96.90 50.8 [1.6–4.6]
σ∗R −0.131 −0.0717 609× 10−5 21.72 29.7 [1.0–1.7]

Figure 6. Pareto diagram and response surface of f ◦c .

Figure 7. Pareto diagram and response surface of ε◦c .
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Figure 8. Pareto diagram and response surface of W◦1 .

Figure 9. Pareto diagram and response surface of W◦2 .

Once again, the absence of the statistically significant relationship of E◦c with any factor was
verified, as occurred in the prior analysis, which included a majority of factors in the model, thereby
reinforcing the idea of the absence of the relationship between the variability of the elasticity modulus
and the inclusion of the fiber in the concrete. The physical reason behind this fact maybe that, as the
fiber content increases, the SFRC porosity also increases, which in turn leads to a decrease in the
modulus of the base concrete that compensates the stiffening effect due to the presence of fibers.

Insofar as f ◦c , the SFRC compression strength, it was only significantly affected by φ f , thereby
demonstrating a slight increase as fiber was added. Despite the low value of R2

a (5.3%), the statistical
significance, demonstrated by φ f , and the positive value of its adjustment coefficient in the model
indicated the tendency of the increase of f ◦c , in mean values. This is how this effect must be interpreted,
as observed in Figure 10. The value of f ◦c may be easily measured through the uniaxial strength
test [67] or calculated by means of Equation (10), which was obtained from a new linear correlation
between f ◦c and φ f alone:

f ◦c = 1 + 3.80 φ f (R2
a = 4.5%) (10)

The RSM can also provide the characteristic value, understood as the value corresponding to a
cumulative probability of 5% in the distribution curves, as shown in Figure 10. The result is:

f ◦ck = 0.825 + 3.75 φ f (11)

Furthermore, ε◦c may be experimentally measured with the uniaxial compression test, although it
also may be estimated with the coefficients of Table 5.
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Figure 10. Linear adjustment with the average and characteristic values of f ◦c .

The residual compressive strength, σ∗R, defined in the model of Ruiz et al. [42] (equal to the
non-dimensional compressive stress associated with a deformation ε∗ = 3) is calculated in Equation (12):

σ∗R = − 0.131 + 21.72 φ f + 0.00609 λ − 0.0717 `∗f (R2
a = 29.7%) (12)

In the analysis performed, φ f and λ were statistically significant, for which reason a new analysis
was executed again with the result that both of these factors were once again significant. φ f and λ

were then related to σ∗R by means of Equation (13):

σ∗R = − 0.089 + 21.27 φ f + 0.00407 λ (R2
a = 21.3%) (13)

Figure 11 represents the Pareto diagram and the response surface of the statistically significant
factors of σ∗R. Its corresponding characteristic value is:

σ∗Rk = − 0.389 + 21.14 φ f + 0.00422 λ (14)

It should be noted that Equations (13) and (14) are defined only for concretes with a minimum
fiber content and thus, they do not provide negative values (indeed, all the SFRCs in the database
yielded positive residual strengths since the minimum values in the database for φ f and λ were 0.0024
and 20, respectively). It should be reminded that σ∗R can also be obtained from experimental σ-ε
records using Equation (8). It bears emphasizing that both f ◦c and σ∗R were calculated in mean values
since the database contained exclusively the tests’ results. Nevertheless, in light of the concept of
characteristic resistance (expressed as that corresponding to the quantile of 5% in the distribution of
resistances obtained in a group of tests on similar specimens), Equations (11) and (14) were determined.
They permit calculating the characteristic values of f ◦c and σ∗R, if one wishes to work with them.

The residual compressive strength can also be related to the residual flexural strengths fR,1k
and fR,3k, which are the flexural strengths for crack mouth opening displacements of 0.5 mm and
2.5 mm. Ruiz et al. [71] showed that the dimensional and non-dimensional expressions relating these
parameters, on average and in characteristic fashion, are:

σR = − 1.77 + 1.807 fR,1k + 9.12
fR,3k

fR,1k
(15)

σ∗R = 0.1839 + 0.02203 fR,1k (16)

σRk = − 7.6205 + 1.79989 fR,1k + 9.1151
fR,3k

fR,1k
(17)
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σ∗Rk = 0.1094 + 0.02190 fR,1k (18)

The residual flexural strengths fR,1k and fR,3k in Equations (15)–(18) were introduced in MPa;
the residual compression strengths σR and σRk were obtained in MPa, whereas σ∗R and σ∗Rk were
non-dimensional. Equations (15)–(18) were derived from an RSM study on a flexural database
with experiments reported by Tiberti et al. [72]. Note that non-dimensional values of the residual
compressive strength depended only on fR,1k because the ratio fR,3k/ fR,1k was not found to be
significant for them [71]. It bears emphasizing that fibers greatly enhanced both flexural and
compressive SFRC behavior as compared with the same values of the corresponding base concrete.
However, so far, it was only the flexural behavior of SFRC that was accounted for by the standards
in [68,69], to the extent that the characteristic residual flexural strengths fR,1k and fR,3k were taken as
indices to perform an SFRC classification [69]. Consequently, as stated in [71], it is appropriate to relate
the residual compressive strength σR to its flexural counterparts, not only to the fiber parameters.

Figure 11. Pareto diagram and response surface of σ∗R.

In the responses ε◦c , W◦1 , W◦2 , and σ∗R, the φ f factor was statistically significant, and its effect was
positive on their variation. λ was also significant on ε◦c , W◦2 , and σ∗R with a positive effect on variability.
This demonstrated that the ductility and capacity of energy absorption from the maximum strength
in the phase subsequent to the cracking of the SFRC were governed by a parameter related to the
geometry of the fiber, such as λ, and for the fiber content, φ f . This result was in line with that set forth by
Shah et al. [31,32] for SFRC and by Fanella et al. [31,33] for steel-fiber reinforced mortars. As previously
explained, the importance of the statistical analysis lies with the determination of the significance
of the factors and not with the R2

a goodness adjustment coefficient since this permits determining if
a factor has a real influence on the explanation of the response variability. The coefficients R2

a only
indicated the dispersion of the data around the mean adjustment surface of the selected linear model.
Finally, it must be emphasized that the VIF statistic had a value ≤ 5 in almost all of the analyzed
responses. Actually, the VIF reached a maximum value of 5.3, which may be accepted in terms of the
moderately low multicollinearity in the statistical analysis of the model that was performed.

4. Conclusions

This article studied the influence that a series of parameters, related to the concrete matrix and
reinforcement of fiber, have on the compression behavior of SFRC. By means of an extensive search of
the scientific literature, a database was compiled, which included a total of 197 uniaxial compression
tests performed on 150× 300 mm2 (diameter× height) cylinders. The database included the results
of experimental campaigns developed with steel-fiber reinforced concrete with hooked end fibers
and a single fold and their respective matrices without steel-fiber reinforcement. The data analysis
was performed by means of the response surface methodology, which consisted of a set of statistical
and mathematical techniques applied to the creation of data adjustment models, which enabled the
optimization of parameters and the search for the interactions that occurred between them. The study
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was done with first and second degree polynomic adjustment models. The latter was eliminated for
not correctly predicting the responses in the domain of the definition of the factors and for presenting
strong multicollinearity.

Firstly, the descriptive variables of the compression response of the SFRC ( fc f , Ec f , εc f , W1 f , and
W2 f ) were selected and correlated with factors associated with the matrix without reinforcement ( fc

and dm), with factors that define the geometry of the fiber (` f , d f , and λ), with its content (φ f ), and the
relationship between the sizes of the fiber and aggregate (` f /dm). From the analysis performed, it was
found that φ f was statistically significant for all the responses and that fc was also significant, except
for W2 f , which corresponded to the work on post-crack volumetric deformation. In addition, both of
them were the only factors in which multicollinearity was not present. The so-called fiber factor, φ f λ,
was not found to be significant.

Subsequently, the responses and factors were analyzed in a non-dimensional manner. Only the
fiber content, φ f , was significant for all the responses and demonstrated moderate multicollinearity.
The fiber length, ` f , was the next factor that was shown to have a great influence on responses.
Both factors, together with the aspect ratio, λ, were chosen to analyze the compressive strength model
of the SFRC of Ruiz et al. [42] (it dealt with representative parameters of the geometry and fiber content,
used in the majority of the models applied to the SFRC). The proposed model considered the increase
of ductility and the energy absorption that the inclusion of fiber to the concrete provided. In particular,
its curve, σ- ε, referring to the concrete with fibers, in the softening branch was calculated in such a
manner that the subsequent consumption of energy after peak load was equal to the value of that same
energy calculated in conformity with the data collected in the database. This softening branch was
defined by a parameter, σR, which was the compressive residual strength associated with ε = 3 εc f .
The factor φ f was statistically significant in all the responses, and λ was also in εc f , W2 f and σR. This
fact demonstrated that the ductility and the capacity of energy absorption from the maximum stress in
the post-cracking phase of the SFRC was governed by the geometry of the fiber through the aspect
ratio λ and by its content φ f .
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Abbreviations

The following abbreviations and nomenclature are used in this manuscript:

d f Diameter of steel-fiber
dm Maximum size of coarse aggregate
Ec Elastic modulus of unreinforced concrete matrix in 150× 300 mm2 cylinders
Es Elastic modulus of steel
E f Elastic modulus of SFRC in 150× 300 mm2 cylinders

E◦c =
E f
Ec

Non-dimensional elastic modulus of SFRC
f Mathematical function
fc Compressive strength of unreinforced concrete matrix in 150× 300 mm2 cylinders
fc f Compressive strength of SFRC in 150× 300 mm2 cylinders

f ◦c =
fc f
fc

Non-dimensional compressive strength of SFRC

fR,1k Characteristic residual flexural strength for wM = 0.5 mm of SFRC in
150× 150× 550 mm3 prisms

fR,3k Characteristic residual flexural strength for wM = 2.5 mm of SFRC in
150× 150× 550 mm3 prisms
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i, j Index assigned to factors and responses
k Number of explanatory variables in an RSM adjustment
` f Fiber length
`0 = 30 mm Coefficient to keep non-dimensionality

`∗f =
` f
`0

Non-dimensional fiber length

n Number of factors or independent variables
p-value Statistical parameter to determine statistical significance
R2 Determination coefficient/multiple correlation coefficient
R2

a Adjusted determination coefficient
R2

j Determination coefficient corresponding to estimate β̂ j

RSM Response surface methodology
SFRC Steel-fiber reinforced concrete
VIF Variance inflation factor
W1 =

∫ εc
0 σdε Volumetric deformation work in the pre-peak branch of unreinforced concrete matrix in

150× 300 mm2 cylinders
W1 f =

∫ εc f
0 σdε Volumetric deformation work in pre-peak branch of SFRC in 150× 300 mm2 cylinders

W2 =
∫ 3εc

εc
σdε Volumetric deformation work in post-peak branch of unreinforced concrete matrix in

150× 300 mm2 cylinders
W2 f =

∫ 3εc f
εc f

σdε Volumetric deformation work in post-peak branch of SFRC in 150× 300 mm2 cylinders

W∗1 = W1 f / fc f εc f Non-dimensional volumetric deformation work in pre-peak branch of SFRC relative
to fc f εc f

W∗2 = W2 f / fc f εc f Non-dimensional volumetric deformation work in post-peak branch of SFRC relative
to fc f εc f

W◦1 = W1 f /W1 Non-dimensional volumetric deformation work in pre-peak branch of SFRC relative
to W1

W◦2 = W2 f /W1 Non-dimensional volumetric deformation work in post-peak branch of SFRC to relative
to W1

wM Crack mouth opening displacement
xi, xj Factors or independent variables
y Response or dependent variable
ȳ Mean value of y
ŷi Estimated value for y in observation i
yi Actual value for y in observation i
α Non-dimensional coefficient
β0 Adjusted constant
βi Adjusted coefficient for a linear term
βii Adjusted coefficient for a quadratic term
βij Adjusted coefficient for a combined term
β̂ j Value for the coefficient β j estimated by the RSM model to obtain the VIF
ε Strain
εc f Critical strain at peak load of SFRC in 150× 300 mm2 cylinders
εc Critical strain at peak load of unreinforced concrete matrix in 150× 300 mm2 cylinders
ε∗ = ε

εc f
Strain relative to the critical strain at peak load of SFRC

ε◦c =
εc f
εc

Critical strain at peak load of SFRC relative to the critical strain of the corresponding
unreinforced matrix

εu Ultimate strain of SFRC in 150× 300 mm2 cylinders

λ =
` f
d f

Fiber aspect ratio

ξ Error observed in the response
σ Stress
σR Compressive residual strength; σ(3 εc f )

σ∗ = σ
fc f

Non-dimensional stress

σ∗R = σR
fc f

Non-dimensional compressive residual strength; σ∗(3)

φ f Volumetric fiber ratio (steel-fiber volume per m3)
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