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Abstract: This paper is about the geometric and radiometric consistency of diverse and overlapping
datasets acquired with the Parrot Sequoia camera. The multispectral imagery datasets were acquired
above agricultural fields in Northern Italy and radiometric calibration images were taken before each
flight. Processing was performed with the Pix4Dmapper suite following a single-block approach: images
acquired in different flight missions were processed in as many projects, where different block orientation
strategies were adopted and compared. Results were assessed in terms of geometric and radiometric
consistency in the overlapping areas. The geometric consistency was evaluated in terms of point
cloud distance using iterative closest point (ICP), while the radiometric consistency was analyzed by
computing the differences between the reflectance maps and vegetation indices produced according to
adopted processing strategies. For normalized difference vegetation index (NDVI), a comparison with
Sentinel-2 was also made. This paper will present results obtained for two (out of several) overlapped
blocks. The geometric consistency is good (root mean square error (RMSE) in the order of 0.1 m), except
for when direct georeferencing is considered. Radiometric consistency instead presents larger problems,
especially in some bands and in vegetation indices that have differences above 20%. The comparison with
Sentinel-2 products shows a general overestimation of Sequoia data but with similar spatial variations
(Pearson’s correlation coefficient of about 0.7, p-value < 2.2 × 10−16).

Keywords: geometric consistency; radiometric consistency; point clouds; ICP; reflectance maps;
vegetation indices; Parrot Sequoia

1. Introduction

1.1. Key Topics

Precision agriculture (PA) [1] is a very significant societal challenge and promises to enable several
significant improvements: increase of productivity; optimal, and thus reduced, use of pesticides and
fertilizers; and decreased use of water. These will translate into substantial benefits, including making
more food available for mankind, increasing environmental sustainability, and contributing to the
mitigation of climate change effects [2]. One key component of precision agriculture is crop health
diagnostic capability. Within this context, in the last 5 years the use of lightweight unmanned aerial
vehicles (UAVs) equipped with multispectral sensors has become quite popular. UAV-based surveys
offer unprecedented ground resolution and operational capability. The second feature is particularly
significant when periodic monitoring has to be performed, as the operator is free to choose the optimal
time to fly.
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1.2. Background

The processing of large datasets that cover wide areas and which need to be acquired by several
UAV missions is still a challenging task. As for photogrammetric projects, these types of datasets,
composed of various sub-blocks, require a careful assessment of the accuracy of the final products,
from both geometric and radiometric points of view. This is even more true when time-series are
analyzed; the consistency between data is mandatory in these cases.

Regarding geometric issues, the recent evolution of UAVs has provided low-cost systems with
direct georeferencing (DG) capability. DG has several advantages: it allows flights in remote areas
where access could be difficult or impossible [3], and reduces mission time and costs, since no ground
control points (GCPs) need to be installed and measured. Unfortunately, navigation-grade GPS/GNSS
receivers (Global Positioning System/Global Navigation Satellite System), such as the one integrated
with the Parrot Sequoia sensor [4], are not of sufficient quality in the solution position for georeferencing
of images. Some authors investigated this topic [3,5,6], obtaining metric errors. GCPs are traditionally
suggested for georeferencing purposes. The number and distribution of GCPs have been explored by
several authors [7–10]. Independently from the extent of the surveyed area, they state that a small
number of GCPs is useful when they are only needed to perform datum transformation, while a
larger number is necessary when camera self-calibration must be performed. For this second aim,
their spatial distribution is important too, as ground points must cover the whole area of interest.
However, GCPs cannot always be guaranteed in some applications, such as in precision agriculture,
where inaccessibility is a frequent condition due to crops’ stages of growth. In this case, other ground
information can be useful, such as pre-existing orthophotos [11].

Independently from the strategy used for images orientation, the geometric quality of the results must
be assessed both in terms of accuracy and consistency. Such analysis can be focused on exterior orientation
parameters (EOPs) or on the photogrammetric products, such as dense point clouds or orthophotos.
EOPs are traditionally evaluated by using a set of check points (CPs), which are considered during the
bundle block adjustment as simple tie points; residuals between the photogrammetrically obtained object
coordinates of markers and those preliminarily determined by surveying are then evaluated [12–14].
Photogrammetric products are assessed using additional information acquired by alternative systems, such
as GNSS receivers and total stations [15,16] or light detection and ranging (LIDAR) [17–19].

Data quality can also be assessed in terms of consistency. This term means the agreement
between different (partially overlapping) datasets acquired at the same time or at different times.
Consistency can be assessed on various photogrammetric products, such as point clouds or orthophotos.
The mentioned criterion is particularly significant when time-series are processed or when different
processing strategies are tested, as in our case. Within this framework, [20] evaluated volumetric
changes of a landslide areas using point clouds over a time-series, while [21] assessed the consistency
of UAV-derived point clouds in relation to the focal length and target set.

While geometry is almost always considered when quality assessment is performed, radiometry
is less often investigated but plays a key role in several applications, such as precision agriculture
and environmental pollution detection. Regarding radiometry, some critical issues remain unsolved,
such as which corrections must be considered and modelled, and several authors recently started to
investigate these aspects. Honkavaara et al. [22] studied and assessed a processing methodology for
biomass estimation in agriculture with a lightweight UAV spectral camera under varying illumination
conditions. In [23], authors captured images from an UAV with Parrot Sequoia and assessed canopy
reflectance consistency in avocado and banana orchards in Australia, while in [24] reflectance anisotropy
of potato canopies in the Netherlands was mapped with a frame camera mounted on an UAV.

Although in recent years sensor manufacturers have improved in describing sensor performance
and providing tools for performing radiometric corrections [25], the radiometric quality of data is still
uncertain. The reliability of spectral information acquired by multispectral sensors mounted on UAVs
is not completely clear [26]. Absolute accuracy might be insufficient for some applications, so that
calibration procedures will be required [27].
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The proposed radiometric calibrations are based on the availability of spectral targets, whose
reflectance response is measured in situ with a spectrometer [28–33]. After evaluating costs, surveying
and processing times, and required instrumentations and expertise, this calibration methodology
cannot be adopted as a routine method in precision agriculture. Indeed, farmers must take into
consideration data quality as well as economic impact [26]. To ensure the dissemination and the
use of calibration procedures in the agriculture sector, it is advisable to optimize the exploitation of
consumer-friendly tools, and best practices must be simplified.

1.3. Motivation

Nowadays equipment vendors are making an effort to supply easy-to-use HW (Hardware) and
SW (Software) so that crop monitoring can be performed by individual farmers. The bundle of Parrot
Sequoia© (Parrot S.A., Paris, France) and Pix4D© (Pix4D S.A., Prilly, Switzerland) is a clear and
popular example of this approach. The present paper arises from one simple yet crucial question:
what is the reliability of the radiometric information and of the related vegetation indices acquired by
the Sequoia camera and processed with the bundled Pix4DMapper software? Considering that UAV
surveys for precision agriculture typically are multitemporal, the original question can be rephrased:
what is the consistency between repeated surveys? In other words, when two datasets highlight
differences for a certain part of a field, to what extent is this due to acquisition and processing errors,
and to what extent does this point out a variation in the status of the crop? The importance of such
questions is confirmed by the fact that only a few papers in the literature have explored them to date.

The present work studies geometric and radiometric consistency of two overlapping datasets,
acquired with a Sequoia camera and processed with the bundled software. We focus on geometry to
avoid the influence of its inconsistencies on the quality of the radiometry. A distinctive feature of the
paper is that the geometric consistency is not assessed by means of a (generally limited) number of
check points (CPs), as is usually done. Instead, we assess it by exhaustively evaluating the distance
between the whole generated point clouds. We investigate radiometry as well, because it is the main
source for agronomic studies. Moreover, we compare datasets acquired almost at the same time. This is
a strength, as the difference assessed in vegetation indices can only be attributable to sensor noise,
and possibly to issues in the radiometric calibration procedure.

2. Methods

2.1. The Equipment

The dataset was acquired with the HEXA-PRO™ UAV, which is operated by the Laboratory of
Geomatics of the University of Pavia and is shown in Figure 1a. The vehicle was made by a small
Italian company named Restart® and has the following main characteristics: 6 engines (290 W each
one), Arducopter-compliant flight controller, maximum payload of 1.5 kg (partly used by the gimbal,
weighting 0.3 kg), flight autonomy of approximately 15 min. The UAV was equipped with a Parrot
Sequoia camera (see Figure 1c). Sequoia has a high-resolution RGB camera with a 4608 × 3456 pixel
sensor, a pixel size of 1.34 µm, and a focal length of 4.88 mm; the ground sampling distance (GSD) is
1.9 cm at 70 m height above ground level (AGL). Sequoia also has four monochrome cameras that are
sensitive to the following spectral bands: green (G, 530–570 nm), red (R, 640–680 nm), red-edge (RE,
730–740 nm), and near-infrared (NIR, 77–810 nm). Their resolution is 1280 × 960, with a pixel size of
3.75 µm and a focal length equal to 3.98 mm; the GSD is 6.8 cm at the 70 m flying height (AGL), which
was adopted for the described survey.
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Figure 1. The equipment operated by the Laboratory of Geomatics of the University of Pavia: (a) the 
HEXA-PRO™ unmanned aerial vehicle (UAV) used for the survey; (b) the Airinov calibration target 
supplied with the camera; (c) the Parrot Sequoia camera (the imaging and irradiance sensors are 
shown); (d) an example of the artificial markers used. 

2.2. The Block Structure 

On September 13, 2017, a photogrammetric survey was performed on the Santa Sofia farmstead, 
near Pavia, Northern Italy (Figure 2a). The test-site is a flat area totaling about 36 ha, used exclusively 
to cultivate rice. The whole acquisition was obtained by five flight missions, the planning for which 
is shown in Figure 2b, where the optical orthomosaic, which was used as background, was derived 
from a previous survey. In total, the project constituted about 1300 multispectral images, each 
composed of four bands. The AGL height was 70 m and image overlapping was 80% and 60% along- 
and across-track, respectively. The Sequoia camera was adopted, as previously mentioned. Twelve 
markers were placed on the ground and surveyed with the network real-time kinematic (NRTK) GPS 
mode. Virtual reference station (VRS) differential corrections were applied via connecting networked 
transport of RTCM (Radio Technical Commission for Maritime) via internet protocol (NTRIP - 
Networked Transport of RTCM via Internet Protocol) to the GNSS positioning service of “Regione 
Piemonte and Regione Lombardia” [34]. GCP coordinates have a planimetric and altimetric accuracy 
of 2–3 cm and 4–5 cm, respectively. GCPs were constituted by artificial markers with black and gray 
diamond shapes (Figure 1d); marker positions are illustrated in Figure 2b. At the beginning of each 
flight, the recommended radiometric calibration procedure was performed by acquiring the 
calibration target (Figure 1b). 

The present paper will only focus on flights 3 and 4, as these had a methodological purpose. The 
overlapping area allowed us to deeply analyze geometric and radiometric congruency under several 
processing scenarios (as described in Section 2.3), because it is quite wide (23 ha) and encompasses 4 
GCPs. 

Figure 1. The equipment operated by the Laboratory of Geomatics of the University of Pavia: (a) the
HEXA-PRO™ unmanned aerial vehicle (UAV) used for the survey; (b) the Airinov calibration target
supplied with the camera; (c) the Parrot Sequoia camera (the imaging and irradiance sensors are shown);
(d) an example of the artificial markers used.

2.2. The Block Structure

On September 13, 2017, a photogrammetric survey was performed on the Santa Sofia farmstead,
near Pavia, Northern Italy (Figure 2a). The test-site is a flat area totaling about 36 ha, used exclusively
to cultivate rice. The whole acquisition was obtained by five flight missions, the planning for which is
shown in Figure 2b, where the optical orthomosaic, which was used as background, was derived from
a previous survey. In total, the project constituted about 1300 multispectral images, each composed
of four bands. The AGL height was 70 m and image overlapping was 80% and 60% along- and
across-track, respectively. The Sequoia camera was adopted, as previously mentioned. Twelve markers
were placed on the ground and surveyed with the network real-time kinematic (NRTK) GPS mode.
Virtual reference station (VRS) differential corrections were applied via connecting networked transport
of RTCM (Radio Technical Commission for Maritime) via internet protocol (NTRIP - Networked
Transport of RTCM via Internet Protocol) to the GNSS positioning service of “Regione Piemonte and
Regione Lombardia” [34]. GCP coordinates have a planimetric and altimetric accuracy of 2–3 cm
and 4–5 cm, respectively. GCPs were constituted by artificial markers with black and gray diamond
shapes (Figure 1d); marker positions are illustrated in Figure 2b. At the beginning of each flight,
the recommended radiometric calibration procedure was performed by acquiring the calibration target
(Figure 1b).

The present paper will only focus on flights 3 and 4, as these had a methodological purpose.
The overlapping area allowed us to deeply analyze geometric and radiometric congruency under several
processing scenarios (as described in Section 2.3), because it is quite wide (23 ha) and encompasses
4 GCPs.
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Figure 2. Unmanned aerial vehicle (UAV) survey framework: (a) site location; (b) the sub-block 
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clearly visible. The one considered in the paper is highlighted in red and includes four ground control 
points (GCPs), named 6, 7, 8, and 9. GCP locations are reported with green triangles. Coordinate 
reference system (CRS): WGS84/UTM 32N. Central coordinates (E, N): 506500, 5005600. 
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was disregarded, as it is recorded in the JPEG format with a high compression factor, and has low 
quality compared to photogrammetry requirements. The processing followed the usual pipeline 
[35,36]: image alignment, tie point extraction, manual measurement of GCPs and CPs, bundle block 
adjustment (BBA), generation of dense point clouds, digital surface modeling (DSM), and creation of 
orthomosaic and reflectance maps. The software allows only one set of calibration target images to 
be used per project, so the photogrammetric processing followed a single-block approach. Four 
scenarios were depicted based on georeferentiation methodology and radiometric processing:  

1. Direct georeferencing (DG) scenario: no GCPs were inserted in the BBA and each sub-block was 
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This scenario was used only in geometric assessment. 

2. Independent georeferentiation/independent radiometric processing (Ig/Ir) scenario: the two 
blocks were independently processed in terms of geometry and radiometry. This scenario was 
used both in geometric and radiometric assessment. 

3. Independent georeferentiation/joint radiometric processing (Ig/Jr) scenario: this scenario is a 
variation of the previous one, in which orientation parameters were computed for each block 
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Figure 2. Unmanned aerial vehicle (UAV) survey framework: (a) site location; (b) the sub-block
compositions. Note: light blue lines represent the flight outlines where the overlapping areas are clearly
visible. The one considered in the paper is highlighted in red and includes four ground control points
(GCPs), named 6, 7, 8, and 9. GCP locations are reported with green triangles. Coordinate reference
system (CRS): WGS84/UTM 32N. Central coordinates (E, N): 506500, 5005600.

2.3. The Photogrammetric Processing

The photogrammetric project was carried out with Pix4Dmapper Pro, version 4.4.9. Only the
four multispectral channels were considered, having 6.8 cm GSD; higher resolution RGB imagery was
disregarded, as it is recorded in the JPEG format with a high compression factor, and has low quality
compared to photogrammetry requirements. The processing followed the usual pipeline [35,36]: image
alignment, tie point extraction, manual measurement of GCPs and CPs, bundle block adjustment
(BBA), generation of dense point clouds, digital surface modeling (DSM), and creation of orthomosaic
and reflectance maps. The software allows only one set of calibration target images to be used per
project, so the photogrammetric processing followed a single-block approach. Four scenarios were
depicted based on georeferentiation methodology and radiometric processing:

1. Direct georeferencing (DG) scenario: no GCPs were inserted in the BBA and each sub-block was
processed by direct photogrammetry using positions from the Sequoia integrated GPS receiver.
This scenario was used only in geometric assessment.

2. Independent georeferentiation/independent radiometric processing (Ig/Ir) scenario: the two
blocks were independently processed in terms of geometry and radiometry. This scenario was
used both in geometric and radiometric assessment.

3. Independent georeferentiation/joint radiometric processing (Ig/Jr) scenario: this scenario is a
variation of the previous one, in which orientation parameters were computed for each block
independently, as in the second scenario, but the two flights were then merged for dense point
cloud and reflectance maps generation. This scenario coincides with the so-called “merge option”
in Pix4Dmapper software, and it is the recommended procedure for processing photogrammetric
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blocks with a large number of images and an overlapping area. It should ensure that radiometric
differences caused by a misalignment in the dense point clouds are avoided. Scenario Ig/Jr was
used only in radiometric assessment.

4. Joint georeferentiation/independent radiometric processing (Jg/Ir) scenario: the two blocks
were jointly orientated, and the obtained exterior orientation parameters were then transferred
to a single-block project for generation of dense point clouds and reflectance maps. In this
scenario, possible radiometric inconsistencies due to separate computation of interior and
exterior orientation parameters are eliminated. This scenario was used in both geometric and
radiometric assessment.

The bundle block adjustment parameters were set according to the described scenario, since they
differ in terms of calibration method and camera optimization. In DG scenario, the calibration method
was set to the “alternative” option. This choice is recommended when the surveyed area is flat (as in this
case) and there is availability of good image geolocation; for the Sequoia sensor, the used geolocation
comes from the on-board GPS receiver, even if its quality is low, as discussed before. For camera
optimization, external parameters were all re-estimated, while for the internal ones they were adopted
from the camera model that is delivered by Sequoia directly into the EXIF (Exchangeable image file)
section of each image. As we knew from the Pix4D technical support, the parameters delivered into
the EXIF are individually determined for each item at the factory. Their reliability is good, as reported
in [11], in which the changes between nominal and optimized camera parameters were as low as
0.01%. In Ig/Ir and Ig/Jr scenarios, the calibration method was again set to “alternative”. For camera
optimization, since the GCPs were imported and measured on each of the two blocks, both external
and internal parameters were optimized. Finally, Jg/Ir is a two-step scenario in which the two blocks
were jointly processed, and so the obtained internal and external parameters were used to separately
generate the dense point clouds for each block. For the first step (image orientation), the parameters
were set as equal to Ig/Ir; for the second step (single-block dense point cloud generation), the calibration
method was set to geolocation-based, since accurate positioning and orientation are available from the
first step. Besides, in this case, neither interior nor external parameters were optimized because they
were directly imported in the first step of the project.

All dense point cloud generation was performed by adopting the default options: half image size
resolution images, point density was set to optimal, and a cloud point was accepted only if it was
positively matched in at least three images. The average density was between 11 to 14 points per m3.
In a preliminary test, the original image size resolution was also evaluated, but higher point density
did not significantly improve the generation of orthophotos and reflectance maps; the requirements
for precise agriculture are lower in comparison to other applications, such as 3D mapping, and the
obtained resolution was considered satisfactory for the research aims.

Pix4Dmapper allows generation of orthophotos and reflectance maps during step 3 of the
processing, together with the computation of the DSM. In this study, products were generated with
GSD equal to 0.10 m and project settings were the same for all considered scenarios. Reflectance maps
were generated by setting camera and sun irradiance correction in the radiometric processing and
calibration panel. This allows one to apply corrections to the camera parameters stored in the image
metadata (i.e., vignetting, dark current, ISO), as well as for the sun irradiance information acquired with
the proper sensor (see Figure 1c). Images of the calibration target are required to perform corrections.
Hence, during the survey, the prescribed radiometric calibration procedure of the Parrot Sequoia
camera was performed and the suitable calibration target (see Figure 1b) was imaged several times,
with different exposure times. Acquisitions were taken at the beginning of each flight, so that different
calibration data were stored for each flight, ensuring similar sky and illumination conditions between
calibration images and flight images.

For the radiometric processing and calibration, calibration images with the highest value of
exposure time were retained and the software automatically detected target on them, defining the
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proper reflectance values for each spectral band as equal to 0.172, 0.215, 0.266 and 0.369 for green, red,
red-edge, and NIR, respectively.

2.4. Geometric Consistency Assessment

The iterative closest point (ICP) methodology was adopted to register overlapping point clouds,
evaluate their distance, and estimate their geometric consistency. As is well-known in literature [37–39],
ICP is a procedure aiming to align point clouds without requiring the identification of homologous
points. It starts by associating each point of cloud A to its closest point belonging to cloud B, then a
coordinate transformation (typically a roto-translation, having six parameters, also known as a rigid
body transformation in literature [40]) is estimated, based on the obtained coupled points, and applied
to one point set. The procedure is iterated until the latest estimated transformation is negligible.
A dedicated Matlab procedure was specifically developed at the University of Pavia, implementing
ICP and including some unique features. Procedure flowcharts are reported in Figure 3 and Figure 5.
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Preliminarily (Figure 3), the common enveloped area for the two point clouds is determined.
The clouds are then trimmed according to this area, adding a further precautionary buffer to avoid edge
effects; the buffer value is set manually. Therefore, a subset of points is extracted (the so-called skeleton)
from each of the point clouds that have a variable density. The skeleton is constituted by squared
meshes with sides measuring 2 m and belonging to two classes. There are skeleton points inside
meshes. Those lying on flat terrain contain 1 pt/m2, and therefore the spacing is 1 m. The others, which
lie where there are ditches and escarpments, contain 64 pt/m2, with a spacing of 0.125 m. The skeleton
was adopted to reduce the complexity of the calculation and to avoid flat terrain parts, where most of
the original points are de-facto overweighed.

The classification of each mesh of the skeleton was performed by selecting all the original
cloud points lying in the mesh and estimating the interpolating plane. By imposing suitable criteria
concerning the residuals (low residuals mean flat areas) and the deviation from the vertical of the
plane normal, the two classes (flat and variable terrain) were decided quite effectively. In the current
version, the thresholds used for skeleton classification must be tuned by the operator and inserted
manually; an improved one is under development, based on machine-learning. An example of the
skeleton structure is reported in Figure 4 for sub-block 3, showing the skeleton points for flat and steep
parts of the terrain.
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After defining the skeleton as described above, we used it to define a new point cloud. By this,
we mean a set of points for which we know the 3D coordinates, the normal vector of the surface at
their position, and the color, totaling 9 descriptors. Original point clouds A and B will be referred
with the acronyms PCA and PCB, respectively, while point clouds obtained from skeletons will be
named skeleton point clouds A and B, shortened to SPCA and SPCB, respectively. Each element of the
skeleton point clouds has 9 descriptors, as stated before; some were known from the definition and
some were calculated. For each skeleton mesh, the fitting plane was used to estimate the height of
the interior skeleton points. The plane’s cartesian equation was also used to obtain its normal vector.
Finally, the color was determined for each skeleton point by picking that of the closest original point.

To perform quality assessment, data filtering, and further analysis, data used for each plane
estimation was stored in a complex data structure. It is named cell array in the Matlab environment
and can be thought of as a matrix where each element can store any kind of data structure. We created
a cell array containing as many rows as the meshes constituting the skeleton and with 9 columns
(the same number as the descriptors associated with each point cloud, but purely by chance—there
is no relationship). For each mesh, the associated 9 cells contain the planimetric coordinates of the
central point; mesh size; mesh point density, where we counted the number of the cloud points lying
in the mesh and divide this by the area; mesh planimetric bounding box; mesh edge, intended as the
points defining the corresponding polygon; coordinates of the original cloud points lying in the mesh;
interpolating plane’s normal vector; parameters of the plane and its fitting goodness (the so-called
Matlab gof (goodness of fit) data structure); and the descriptors of the skeleton points located inside.

Once SPCA and SPCB were created, they were used to fit the ICP transformation. The procedure
(Figure 5) is iterative; it starts with the original SPCA and SPCB and finally produces the parameters of
a six-parameter 3D rigid transformation aligning SPCB to SPCA. Each iteration:

• has in its input the running SPCB (produced by the previous iteration; in the first iteration, this
is SPCB itself), the SPCA (remaining unaltered for all the process), and the running 3D rigid
transformation determined so far;

• couples each point of the running SPCB with the closest point belonging to SPCA;
• performs outlier rejection based on the points’ distances, the angle between the surface normals at

the two points considered, and the norm of the difference between their RGB vectors;
• determines the parameters of a refinement of the 3D rigid transformation aligning running SPCB

and SPCA, by solving a non-linear least squares (NLLS) problem defined by Equation (1); in plain
words, the NLLS solver evaluates the distance between each B-point (belonging to running SPCB)
and the plane passing through the paired A-point (belonging to SPCA) and the normal to SPCA;
it determines the unknowns in order to minimize the sum of all the distances;
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• applies the determined 3D transformation to the running SPCB;
• composes the newly determined transformation with that received in the input;
• returns the updated running SPCB and coordinate transformation.
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The process is stopped when the latest estimated transformation is negligible. The above-described
process was coded in a Matlab toolbox coded at the University of Pavia. Among other features, the NLLS
problem is solved with a robust approach, based on the Huber method. Moreover, the procedure takes
advantage of the k-d tree functionalities (k-dimensional tree) to speed up point coupling, which are
available in the used Matlab environment [40]. The k-d tree engine is trained for SPCA, which was
kept fixed throughout the procedure.

The mathematical formulation [41,42] of the estimation for the coordinate transformation is

CPTopt = arg min
T

∑
((CPT · SPCBi – SPCAi)· ni)

2 (1)

where SPCBi is the generic point of the skeleton B; SPCAi is the correspondent point of the skeleton
A, derived by nearest neighbor searching; ni is the normal vector at point SPCAi; CPT is the 4 × 4
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3D rigid-body transformation matrix estimated from previous iterations; and CPTopt is the 4 × 4 3D
rigid-body transformation matrix estimated during the current iteration.

2.5. Radiometric Consistency Assessment

Radiometric consistency was assessed by computing, pixel by pixel, differences for the co-registered
reflectance maps in the overlapping area of photogrammetric blocks 3 and 4. Respective statistics were
also analyzed. Considering that Sequoia is a sensor mainly dedicated to agricultural applications,
assessment was conducted also for some vegetation index (VI) maps, since they commonly represent a
proxy of vegetation parameters to be used for agronomy purposes. VI maps were computed in Matlab,
by applying an index formula to proper reflectance maps (Table 1).

Table 1. Vegetation indices (VIs) used in this study.

Index Name Formula References

NDVI Normalized Difference Vegetation Index Nir−Red
Nir+Red [43]

GNDVI Green Normalized Difference Vegetation Index Nir−Green
Nir+Green [44]

NDRE Normalized Difference Red-Edge Index Nir−RedEdge
Nir+RedEdge [45]

NDVIre Red-Edge Normalized Difference Vegetation Index RedEdge−Red
RedEdge+Red [46]

NGRDI Normalized Green Red Difference Index Green−Red
Green+Red [47]

For Ig/Ir and Jg/Ir scenarios, maps derived from blocks 3 and 4 were directly compared, while
Ig/Jr scenario was checked with respect to the single blocks of Ig/Ir scenario (see Section 2.3 for more
details about scenario characteristics). From here on, maps are identified with the names “3 Ig/Ir”,
“4 Ig/Ir”, “3 Jg/Ir”, “4 Jg/Ir”, “Ig/Jr”, where “3” stands for block 3, and “4” for block 4. DG scenario was
not considered for radiometric assessment.

Moreover, since no ground truth was available, the reliability of reflectance and VI
maps was evaluated by comparing maps with the one obtained from Sentinel-2 (S2) imagery.
Indeed, a Sentinel-2 acquisition two days after the survey (September 19, 2017) was available.
Maps derived from the photogrammetric blocks (having a GSD equal to 0.10 m) were upscaled with
a nearest-neighbor resampling to 10 m spatial resolution, to match Sentinel-2 imagery resolution.
Correlation analysis was applied and statistics were performed on differences in terms of single bands
and radiometric indices.

Although a comparison with ground truths calculated with a spectroradiometer would have
been more effective, a test on compatibility between Sequoia and S2 data is also of scientific relevance,
given the growing interest in the integration of data acquired from satellite and UAV platforms [48]
for environmental applications [49,50], including PA [51–53], both from research and applied points
of view.

3. Results

3.1. Geometric Consistency

3.1.1. Reliability of the ICP-Derived Transformations

Since geometric consistency is based on ICP, it is mandatory to find a way to quantify the quality
of this procedure, because if ICP fails, the estimated distance will not correspond to the actual one.
It is known that the ICP estimation is not always reliable, especially when it is used to register almost
flat clouds, as in our case. Registration is performed between two point clouds, namely PCA and
PCB; it is possible to estimate the transformation PCA-to-PCB, which when applied to PCA, aligns
it to PCB. This transformation is constituted by a roto-translation (i.e., the composition of a 3D shift
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and a 3D rotation). Of course, it is possible to estimate the PCB-to-PCA transformation, which should
coincide, aside from uncertainties, with the inverse of the first one. We used the comparison between
the estimated and calculated inverse transformation to infer the precision of our estimations.

Results are shown in Table 2, where columns 3–5 report the components of the estimated shift (delta
E, delta N, delta H) in meters and columns 6–8 show the rotation angles (ω, ϕ, κ) in degrees. Rows are
grouped in fours, with each chunk being associated with one processing configuration. Row 1 reports
the transformation (3-to-4) aligning point cloud 3 to cloud number 4. Row 2 shows the parameters
of the calculated inverse transformation. Row 3 displays the parameters of the 4-to-3 estimated
transformation and row 4 shows the differences between rows 2 and 3.

Table 2. Reliability of the iterative closest point (ICP)-estimated transformations to be used for
cloud registration.

Translation Components [m] Rotation Angles [deg]

Scenario Direction delta E delta N delta H deltaω delta ϕ delta κ

DG

3-to-4 −1.526 0.406 −2.417 0.3322 0.3721 −0.1110
calc-4-to-3 1.511 −0.389 2.429 −0.3314 −0.3727 0.1088

4-to-3 1.626 −0.352 2.326 −0.4372 −0.3867 0.0840
differences −0.115 −0.037 0.103 0.1057 0.0134 0.0248

Ig/Ir

3-to-4 0.119 0.055 0.139 0.2388 −0.0648 −0.0082
calc-4-to-3 −0.120 −0.055 −0.139 −0.2388 0.0648 0.0085

4-to-3 −0.072 −0.044 −0.181 −0.2810 0.0662 0.0139
differences −0.048 −0.011 0.042 0.0422 −0.0016 −0.0054

Jg/Ir

3-to-4 0.081 0.069 0.045 0.0704 −0.0057 −0.0197
calc-4-to-3 −0.081 −0.069 −0.045 −0.0704 0.0057 0.0197

4-to-3 −0.022 −0.033 0.010 −0.0110 0.0064 0.0194
differences 0.059 0.036 0.055 0.0594 0.0007 −0.0003

Scenario abbreviations: direct georeferencing (DG); independent georeferentiation/independent radiometric
processing (Ig/Ir); joint georeferentiation/independent radiometric processing (Jg/Ir).

Excluding the DG scenario, in which direct georeferencing is adopted and point clouds are
slightly deformed, the worst residual is 6 cm for the shift components and 0.06 deg for rotations.
A distance-equivalent error (e) can be computed for the resulting angular residual (α) by assuming a
distance (d) of 100 m, corresponding to the half-width of the considered test area. By applying the
simple formula e = dα, where the angle α is expressed in radiants, it can be found that e = 12 cm.

Now, we must consider the granularity of the datasets (i.e., the points’ linear spacing). For the
skeleton, this is considered for ICP estimation; as already explained, the spacing is 12.5 cm for dense
parts and 100 cm elsewhere. As residuals of the transformation equal the discretization size of the
considered datasets, we consider the estimated transformations reliable and precise.

3.1.2. Assessment of the Distance between Overlapping Blocks

There are three processing scenarios, and for each of them the distance between the two overlapping
clouds (blocks 3 and 4) was assessed. Given two clouds, the ICP procedure was used to estimate the
rigid transformation to register point cloud-A to point cloud-B. For the ICP procedure, the skeleton
structures were used, as explained in Section 2.4, while for distance evaluation the original point
clouds were considered. Once the transformation was applied, each point of B was coupled with the
closest point from A; the components and the norm of the connecting vector were stored, together
with the two indices addressing the selected point in the lists representing the two point-clouds.
To work out the distance before ICP, the original point clouds were used with the same point couplings
mentioned before.

Limited data cleaning was performed. First, a buffer (0.9 scale factor) was created along the
border of the analyzed regions and points inside were disregarded. The goal was to ignore border
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effects, where the geometry of photogrammetric measurements is weak, and consequently model
deformations might occur. Furthermore, a limited blunder rejection was performed. The empirical
cumulative distribution function (CDF) of the 3D distances between coupled points was calculated
and the pairs corresponding to values exceeding the 99th percentile were discarded.

Point cloud distances were assessed for the three scenarios, and descriptive statistics were applied
to 4-tuples constituted by x, y, and z components of the displacement vector plus its norm. All the
results are shown in Table 3. The first column reports the identifier of the scenario and how many
point couples were used to evaluate the surface distance; columns 3 to 5 focus on the three components
of the original clouds, while column 6 focuses on the 3D distance.

Table 3. Summary statistics of the 3D distance between overlapping point clouds.

delta E [m] delta N [m] delta H [m] delta 3D [m]

DG#
367982

Min. −2.210 −0.164 −4.874 1.625
Max. −1.352 1.050 −0.368 5.254
Mean −1.736 1.214 −2.609 3.236
STD 0.098 0.193 1.092 0.877

RMSE 1.739 0.464 2.828 3.353

Ig/Ir#
366061

Min. −0.241 −0.294 −0.480 0.003
Max. 0.361 0.377 0.362 0.493
Mean 0.061 0.051 −0.043 0.167
STD 0.080 0.089 0.098 0.066

RMSE 0.100 0.103 0.107 0.179

Jg/Ir#
378018

Min. −0.253 −0.265 −0.291 0.001
Max. 0.272 0.350 0.250 0.369
Mean 0.006 0.038 −0.022 0.132
STD 0.079 0.093 0.058 0.053

RMSE 0.079 0.101 0.062 0.143

The DG scenario shows large values, as expected, as the overlapping point clouds have an average
3D distance of 3.24 m. The considered scenario is based on direct georeferencing and the reported
results confirm that the Sequoia’s on-board GPS receiver is unfit for georeferencing photogrammetric
products. This is not a surprise for the authors, nor should it be for any aware user. However, in times
of widespread use of photogrammetry [54], we thought it was worth noting. Ig/Ir and Jg/Ir scenarios
both adopt GCPs within different adjustment strategies. The RMSE values of the residuals for the
single components x, y, and z are range between 6 and 11 cm. Considering the already mentioned
granularity of the analyzed datasets, the reported figures highlight that the overlapping point clouds
are optimally aligned and consistent.

Maps of the 3D distances between the overlapping point clouds are meaningful. Figure 6 shows
them for all the three scenarios assessed. Remarkably, the three sub-figures shown adopt the same
color map, even if Figure 6b,c only shows a small part of it. We also remark that values shown in
Table 3 and plots reported in Figure 6 are related to the original point clouds, as they were generated by
the photogrammetric procedure. ICP was only used to properly couple points belonging to different
clouds in order to conveniently evaluate their distance.

Figure 6a highlights that in scenario DG, the clouds are quite far. Moreover, the map of the
distances is a sort of a ramp, meaning that the two clouds are not simply displaced but are also affected
by a significant rotation. The other two sub-figures are related to Ig/Ir and Jg/Ir scenarios and confirm
that the distances are limited in size and are substantially constant. Moreover, Jg/Ir scenario shows
lower values above the fields, where the terrain is flat, while distances are slightly greater beside dirt
roads and ditches, where low vegetation is present.
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3.2. Radiometric Consistency

3.2.1. Assessment of the Radiometric Differences between Overlapping Blocks

For the three processing scenarios, differences were calculated pixel by pixel among corresponding
reflectance and VI maps in the overlapping area. While Ig/Ir and Jg/Ir scenarios were independently
evaluated, Ig/Jr scenario was compared to the single blocks of Ig/Ir scenario (see Section 2.5).
Descriptive statistics for differences calculated on reflectance maps are shown in Table 4, and results of
VIs maps are reported in Table 5. Although differences have similar ranges, it is important to remember
that reflectance maps have values in the range [0, 1], while values for VIs maps are in the range [−1, 1].

The computed RMSE values are quite close to zero for all cases, but significant differences among
single reflectance maps and VI maps can be stressed, considering minimum and maximum absolute
values. In particular, differences with maximum and minimum values above 0.4 are calculated for the
NIR maps, differences reach values close to 0.3 for the red-edge map, and lower values are registered
for the green and red maps, with minimum and maximum absolute values below 0.2 for the red maps
in some cases. A similar behavior is also evident for the VI maps, where the differences calculated on
NDVI maps assume lower RMSE values, while maximum and minimum values even greater than
0.5 are calculated for many VIs. The comparison between the statistics computed for Ig/Ir and Jg/Ir
scenarios shows that both reflectance and VI map differences reach very similar values.
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Table 4. Summary statistics of the differences between reflectance maps in the overlapping area.

Green Red Red-Edge NIR

3 Ig/Ir–4 Ig/Ir

Min. −0.1923 −0.1640 −0.2957 −0.5217
Max. 0.2822 0.2194 0.4168 0.5931
Mean 0.0088 −0.0013 0.0268 0.0368
STD 0.0572 0.0272 0.0367 0.1103

RMSE 0.0579 0.0272 0.0454 0.1163

3 Ig/Ir–Ig/Jr

Min. −0.0947 −0.1042 −0.2336 −0.3432
Max. 0.2538 0.1763 0.3557 0.6642
Mean 0.0166 0.0061 0.0182 0.0482
STD 0.0305 0.0131 0.0208 0.0692

RMSE 0.0348 0.0144 0.0276 0.0843

4 Ig/Ir–Ig/Jr

Min. −0.1791 −0.1964 −0.3547 −0.3863
Max. 0.1915 0.1696 0.2769 0.5047
Mean 0.0079 0.0075 −0.0086 0.0115
STD 0.0338 0.0195 0.0213 0.0613

RMSE 0.0347 0.0208 0.0230 0.0624

3 Jg/Ir–4 Jg/Ir

Min. −0.1826 −0.1761 −0.3217 −0.5519
Max. 0.2670 0.1874 0.4511 0.5831
Mean 0.0087 −0.0014 0.0270 0.0365
STD 0.0572 0.0276 0.0446 0.1104

RMSE 0.0579 0.0277 0.0522 0.1163

Table 5. Summary statistics of the differences between VI maps in the overlapping area.

NDVI GNDVI NDRE NDVIre NGRDI

3 Ig/Ir–4 Ig/Ir

Min. −0.4431 −0.3859 −0.2651 −0.5629 −0.4726
Max. 0.4749 0.5066 0.3567 0.4930 0.6011
Mean 0.0293 0.0064 −0.0003 0.0361 0.0392
STD 0.0242 0.0678 0.0767 0.0616 0.0910

RMSE 0.0380 0.0681 0.0767 0.0714 0.0991

3 Ig/Ir–Ig/Jr

Min. −0.3822 −0.2891 −0.2033 −0.4939 −0.3508
Max. 0.5734 0.5924 0.4426 0.4208 0.4884
Mean 0.0142 −0.0012 0.0248 −0.0008 0.0245
STD 0.0183 0.0310 0.0513 0.0311 0.0538

RMSE 0.0232 0.0310 0.0570 0.0311 0.0591

4 Ig/Ir–Ig/Jr

Min. −0.2675 −0.2200 −0.2502 −0.400 −0.5166
Max. 0.3856 0.3130 0.3924 0.4575 0.3907
Mean −0.0151 −0.0077 0.0252 −0.0370 −0.0146
STD 0.0208 0.0450 0.0418 0.0467 0.0481

RMSE 0.0257 0.0457 0.0488 0.0596 0.0503

3 Jg/Ir–4 Jg/Ir

Min. −0.4354 −0.3559 −0.4354 −0.6301 −0.4934
Max. 0.5024 0.5452 0.7340 0.6121 0.6811
Mean 0.0293 0.0062 0.0003 0.0359 0.0394
STD 0.0271 0.0689 0.0861 0.0688 0.0942

RMSE 0.0400 0.0691 0.0861 0.0775 0.1021

To assess the significance of the calculated values, the differences are presented in the form of box
and whisker plots. Figure 7 reports box and whisker plots for differences computed on reflectance
maps, while in Figure 8 VI results are shown. The plots do not refer to the Jg/Ir scenario, as similar
results are obtained with respect to Ig/Ir scenario.



Appl. Sci. 2019, 9, 5314 15 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 24 

 

greater than 0.5 are calculated for many VIs. The comparison between the statistics computed for 
Ig/Ir and Jg/Ir scenarios shows that both reflectance and VI map differences reach very similar values. 

To assess the significance of the calculated values, the differences are presented in the form of 
box and whisker plots. Figure 7 reports box and whisker plots for differences computed on reflectance 
maps, while in Figure 8 VI results are shown. The plots do not refer to the Jg/Ir scenario, as similar 
results are obtained with respect to Ig/Ir scenario. 

 
Figure 7. Box and whisker plots of differences computed on different reflectance maps in the 
overlapping area. 

 
Figure 8. Box and whisker plots of differences computed on different VI maps in the overlapping 
area. 

From the plots it is evident that results vary from map to map, but few general considerations 
can be drawn. Median values are overall around 0, while maximum and minimum values are outside 
of the confidence intervals and can be considered as outliers. For most cases, the variability of the 
differences is contained in the range [−0.2, 0.2]; thus, this interval of values is retained as significant 
for further analysis. The VIs can mitigate the effects of single reflectance maps, specifically the high 
differences registered for NIR maps are rather compensated in the NDVI maps. Moreover, with 
respect to the differences computed between single blocks (i.e., 3 Ig/Ir–4 Ig/Ir), results obtained 
considering Ig/Jr scenario (i.e., 3 Ig/Ir–Ig/Jr and 4 Ig/Ir–Ig/Jr) have narrower confidence intervals. 

Spatial distribution of the differences in the overlapping area is shown in Figures 9–11. For the 
sake of brevity, only the most significative results are presented. As a matter of fact, similar results 
were registered for Ig/Ir and Jg/Ir scenarios. As regarding Ig/Jr scenario, green, NIR, and NDVI maps 

Figure 7. Box and whisker plots of differences computed on different reflectance maps in the
overlapping area.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 24 

 

greater than 0.5 are calculated for many VIs. The comparison between the statistics computed for 
Ig/Ir and Jg/Ir scenarios shows that both reflectance and VI map differences reach very similar values. 

To assess the significance of the calculated values, the differences are presented in the form of 
box and whisker plots. Figure 7 reports box and whisker plots for differences computed on reflectance 
maps, while in Figure 8 VI results are shown. The plots do not refer to the Jg/Ir scenario, as similar 
results are obtained with respect to Ig/Ir scenario. 

 
Figure 7. Box and whisker plots of differences computed on different reflectance maps in the 
overlapping area. 

 
Figure 8. Box and whisker plots of differences computed on different VI maps in the overlapping 
area. 

From the plots it is evident that results vary from map to map, but few general considerations 
can be drawn. Median values are overall around 0, while maximum and minimum values are outside 
of the confidence intervals and can be considered as outliers. For most cases, the variability of the 
differences is contained in the range [−0.2, 0.2]; thus, this interval of values is retained as significant 
for further analysis. The VIs can mitigate the effects of single reflectance maps, specifically the high 
differences registered for NIR maps are rather compensated in the NDVI maps. Moreover, with 
respect to the differences computed between single blocks (i.e., 3 Ig/Ir–4 Ig/Ir), results obtained 
considering Ig/Jr scenario (i.e., 3 Ig/Ir–Ig/Jr and 4 Ig/Ir–Ig/Jr) have narrower confidence intervals. 

Spatial distribution of the differences in the overlapping area is shown in Figures 9–11. For the 
sake of brevity, only the most significative results are presented. As a matter of fact, similar results 
were registered for Ig/Ir and Jg/Ir scenarios. As regarding Ig/Jr scenario, green, NIR, and NDVI maps 

Figure 8. Box and whisker plots of differences computed on different VI maps in the overlapping area.

From the plots it is evident that results vary from map to map, but few general considerations can
be drawn. Median values are overall around 0, while maximum and minimum values are outside
of the confidence intervals and can be considered as outliers. For most cases, the variability of the
differences is contained in the range [−0.2, 0.2]; thus, this interval of values is retained as significant
for further analysis. The VIs can mitigate the effects of single reflectance maps, specifically the high
differences registered for NIR maps are rather compensated in the NDVI maps. Moreover, with respect
to the differences computed between single blocks (i.e., 3 Ig/Ir–4 Ig/Ir), results obtained considering
Ig/Jr scenario (i.e., 3 Ig/Ir–Ig/Jr and 4 Ig/Ir–Ig/Jr) have narrower confidence intervals.

Spatial distribution of the differences in the overlapping area is shown in Figures 9–11. For the
sake of brevity, only the most significative results are presented. As a matter of fact, similar results
were registered for Ig/Ir and Jg/Ir scenarios. As regarding Ig/Jr scenario, green, NIR, and NDVI maps
are shown, since the other maps have a similar spatial behavior. The remaining results are reported in
Supplementary Materials (Figures S1–S3).
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Figure 11. Spatial distribution of differences in the overlapping area for Ig/Jr scenario, with respect to
block 4: green (a), NIR (b), NDVI (c).

A clear spatial pattern can be noted from the plots—the reflectance values tend to be overestimated
as moving away from the center of the block (i.e., approaching the borders of the block); an analogous
effect is visible in VI difference maps. This effect is more evident considering the differences calculated
between the single blocks of Ig/Ir scenario (Figure 9). Tt is less evident when introducing also Ig/Jr
scenario (Figures 10 and 11). No difference or very small differences are found in NDVI maps for all
considered cases, which are uniformly distributed with no specific spatial profile in the overlapping
area of blocks 3 and 4.

3.2.2. Comparison with Sentinel-2 Imagery

As described in Section 2.5, the reliability of Sequoia maps was assessed with respect to
Sentinel-2 data to evaluate the feasibility of data integration. First, an upscaling of maps derived from
Sequoia imagery was required, then correlation analysis was computed (N = 265 samples). Results for
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the correlation analysis are reported in Figure 12 and map statistics are summarized in Table 6. For the
sake of brevity, only results for NDVI are shown. As a matter of fact, other studies are present in the
literature focusing on the comparison of NDVI only [51,52]. RMSE values reported in Table 6 were
calculated by considering the NDVI map from S2 imagery as a reference.
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Figure 12. Scatter plot and regression line for NDVI maps computed on S2 imagery with respect to
Sequoia imagery: 3 Ig/Ir (a), 4 Ig/Ir (b), Ig/Jr (c). For each graph, the coefficient of determination (R2)
and the Pearson’s correlation coefficients (%) are reported (p-value < 2.2 × 10−16).

Table 6. Summary statistics of the NDVI maps computed from S2 imagery and Sequoia imagery, in the
overlapping area.

S2 3 Ig/Ir 4 Ig/Ir Ig/Jr

NDVI

Min. 0.3197 0.0998 0.0764 0.0221
Max. 0.7787 0.8731 0.8926 0.8946
Mean 0.5583 0.6262 0.5945 0.6119
STD 0.0906 0.1323 0.1331 0.1324

RMSE - 0.1140 0.0984 0.1090

The correlation with NDVI map from S2 imagery shows a good correspondence: coefficients
of determination are 0.5197 for 3 Ig/Ir, 0.5249 for 4 Ig/Ir, and 0.4840 for Ig/Jr. The NDVI map with
the highest correspondence against S2 imagery is the one derived from 4 Ig/Ir data, with Pearson’s
correlation coefficient % and RMSE equal to 0.7245 and 0.0984, respectively. Nevertheless, the regression
lines show a slight overestimate of Sequoia data compared to S2; NDVI maps from Sequoia imagery
report higher values with respect to the S2 map (as also summarized by higher values for max. and
mean in Table 6) and cover wider ranges (lower values for min. and higher values for STD in Table 6).

4. Discussion

4.1. Geometric Consistency

Geometric consistency was evaluated by computing the distance between the whole dense point
clouds for the DG, Ig/Ir, and Jg/Ir scenarios. The Ig/Jr scenario was disregarded because although it is
interesting for the study of radiometry, it is based on the extraction of a unique, common point cloud,
and therefore there is nothing to check. Thanks to the high numerosity of the samples (the used clouds
have between 105 and 106 points), we obtained very significant statistical figures. In addition, we could
perform a sort of continuous evaluation of the distance between the overlapping surfaces.

The datasets considered are quite challenging for ICP, as the terrain is quite flat and the only
height variations are due to medium-sized streams. Nevertheless, our developed algorithm proved to
be reliable; indeed, we performed the closure check by composing direct and inverse transformations
and obtained residual parameters (shift components and rotation angles), which are limited in size
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and equivalent to the granularity of the considered point clouds, having an average distance of around
12 cm (see Section 3.1.1).

Cross checks of overlapping point clouds can be usefully applied when no or few CPs are
available. Moreover, this allows detection of fine-grained deformations. Scenario DG is related to
direct georeferencing, performed through the measurements of the Sequoia’s on-board GPS receiver.
Results are poor, not surprisingly, as the average distance between the clouds is above 3 m. The point
sets are significantly shifted and rotated. This result was largely expected, but we think it is worth
mentioning to warn newer photogrammetrists. Such georeferencing precision is not acceptable, even
for precision agriculture applications. In Ig/Ir and Jg/Ir scenarios, bundle block adjustment was
performed by means of 4 GCPs. Similar results are shown for both scenarios. Indeed, RMSE values of
the components of the point-wise shift vectors are within 10 cm. It is the order of magnitude of the
granularity of point clouds and of the pixel size of the generated orthomosaics. Such figures assure us
that no difference or negligible radiometric differences are induced by geometric consistency issues.

In summary, two main findings come from geometry assessment: we have been able to reliably
estimate a rigid 3D transformation by robust ICPs between almost flat point clouds; and we have
demonstrated that the geometric consistency is good, so that the inconsistencies shown by radiometry
have a different origin.

4.2. Radiometric Consistency

As already stressed by many authors in the literature [28–30,55], radiometric corrections are
necessary when using sensors mounted on UAV for PA, but the ease of use and diffusion is limited.
The radiometric processing available in Pix4Dmapper software for the Sequoia camera provides most
of the corrections, including vignetting, dark current, exposure time, and sunlight irradiance, but omits
other possible causes of radiometric variations [23]. First, this research points out that radiometric
inconsistencies due to differences in the acquisition geometry remain unsolved. Reflectance values of
pixels at the borders of the blocks tend to be overestimated, as a consequence of the inclination of the
point of view during the photogrammetric survey. From Figure 9, it is evident that differences are not
uniformly distributed, but present a clear spatial pattern. Higher difference values (absolute values) are
measured at the borders of the overlapping area, while the lowest values approach the center of the area.
This demonstrates the presence of a high edge effect on the reflectance maps, which must be considered
during flights planning. In practical use, it is advisable to plan UAV surveys covering an area wider
than the one of interest. Enlarging the survey area should guarantee uniformity in the acquisition
geometry even in the edges, otherwise characterized by non-negligible radiometric distortions.

Radiometric differences are not affected by different geometric processing of the blocks,
as confirmed by the similar values of the differences computed for Ig/Ir and Jg/Ir scenarios for
both reflectance and VI maps (Tables 4 and 5). As can be noted from RMSE values reported in the
tables, differences calculated for some VI maps are lower than values obtained for reflectance maps,
meaning that some indices can decrease inconsistencies of single reflectance bands [56]. Considering the
Ig/Jr scenario, the differences are moderate with respect to Ig/Ir scenario for both reflectance and VI
maps, with mean values overall close to zero. The edge effect is also still evident from the spatial
distributions shown in Figures 10 and 11, however with lower values, as is evident in the box plots
in Figures 7 and 8. As a matter of fact, it should be recalled that the Ig/Jr scenario corresponds to
the procedure recommended by Pix4Dmapper software to process large photogrammetric blocks.
For adjacent blocks acquired with separate but temporally close flights, the recommended merging
option can partially correct the effect of illumination geometry and mitigate radiometric inconsistencies
in the overlapping areas between blocks.

There are still uncertainties regarding the obtained absolute values of reflectance and for the
derived indices [56], and consequently in the quantitative use of the Sequoia data for the possible
calculation of biophysical parameters. From the results reported in this study, it should be noted that in
some areas, differences have values close or even larger than 0.2 (absolute value). Therefore, the different
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processing scenarios have an impact on the results in terms of radiometry. A difference of this magnitude
cannot be neglected in the operational phase for precision agriculture applications; even more so if
used for multitemporal surveys. As a matter of fact, the map that shows the most homogeneous values
in all cases is NDVI, which is widely used in most agriculture applications [57–60].

Regarding the comparison with S2, which is limited in this paper to NDVI, it should be mentioned
that despite the analysis being affected by the different geometric resolutions of sensors and acquisition
platforms, a significative correlation is found between Sequoia and S2 maps. Following the approach
of [52], the Pearson’s correlation coefficient can be adopted as a map similarity measure. The obtained
coefficients, which are close to 0.7, prove a coherence between the data collected from the different
platforms and show similar spatial variability values of NDVI maps, which are to be interpreted as the
same behavior in terms of crop vigor [61]. Therefore, the compatibility and integration of NDVI maps
obtained by Sequoia and Pix4D systems should be feasible along with the Sentinel-2 products.

5. Conclusions

Even though producers and developers have made great efforts to enhance them, radiometric
corrections leave significant radiometric distortions in orthomosaics obtained by Sequoia and Pix4D
systems, which can result in biased absolute values. This study shows that relevant differences are found
depending on flight geometry and block processing choices, with differences that can reach 20% of pixel
values for single reflectance bands or VIs, thus reducing the effective use in PA. Moreover, available
radiometric corrections do not guarantee uniform accuracy and consistency of results, and this can
cause difficulties in comparing surveys carried on out different lightening conditions. Careful planning
of the survey, together with proper choices of image processing, can enhance the results. Very high
image overlap yields uniformity over a single block, and edge distortions can be reduced by surveying
a wider area that includes the study area.

Nevertheless, for large surveys that imply the acquisition and processing of separated sub-blocks,
the merge option suggested by Pix4D is effective in reducing radiometric inconsistencies in adjacent
areas. This fact, together with the high correlation found with S2 products, proves that Sequoia is
suitable for agronomic purposes, but great attention must be paid to the planning of the survey and to
the data processing.

Therefore, it is necessary to increase the awareness in the use of sensors and semi-automatic data
processing to deeply understand the strengths and weaknesses of UAV usage for PA. In this study,
the choice to process the dataset following the proposed scenarios (Section 2.3) instead of a standard
workflow was driven by the apparently impossibility of attributing the corresponding calibration set of
images to each block. The new Sequoia+ sensor should bypass this issue because no calibration target
is needed; imagery processing exploits a new fully automatic calibration pipeline in Pix4D. The authors
do not have experience with this new camera release, however, they consider the proposed processing
method an interesting and simple way to assess the performance of new sensors.

Finally, the applicability of the proposed method can be extended. In this paper, geometric and
radiometric consistency was evaluated comparing results obtained from two almost contemporaneous
flights, processed following a single-block approach. The same method can be used to evaluate
consistency between two or more blocks acquired days or month apart; in other words, the method
can be used to assess time-series.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/24/5314/s1.
Figure S1: Spatial distribution of differences in the overlapping area for scenario Ig/Jr with respect to block 3: red
(a), red-edge (b), GNDVI (c), NDRE (d), NDVIre (e), NGRDI (f). Figure S2: Spatial distribution of differences
in the overlapping area for scenario Ig/Jr with respect to block 4: red (a), red-edge (b), GNDVI (c), NDRE (d),
NDVIre (e), NGRDI (f). Figure S3: Spatial distribution of differences in the overlapping area. Scenario Jg/Ir: green
(a), red (b), red-edge (c), NIR (d), NDVI (e), GNDVI (f), NDRE (g), NDVIre (h), NGRDI (i).
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