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Abstract: When the mechanical transmission mechanism fails, such as gears and bearings in the
gearbox, its vibration signal often appears as a periodic impact. Considering the influence of noise,
however, the fault signal is often submerged in the noise, so it is necessary to propose a feasible and
effective fault extraction method. MOMEDA (multipoint optimal minimum entropy deconvolution
adjusted) overcomes the tedious iterative process of MED (minimum entropy deconvolution) and
overcomes the resampling trouble in MCKD (maximum correlated kurtosis deconvolution). It is
suitable for dealing with periodic impact signal. Besides, aiming at the poor ability of MOMEDA to
capture the deconvolution result of target function in a strong noise environment, this paper proposes
an improved MOMEDA gearbox fault feature extraction method. Considering that MOMEDA
has poor anti-noise performance and can easily cause misdiagnosis in a strong noisy environment,
this paper constructs an autoregressive mean sliding model to improve the noise immunity of
MOMEDA. Firstly, the stability of the test signal is judged by the autocorrelation coefficient (ACF)
and the partial correlation coefficient (PACF). Secondly, the ARMA (autoregressive moving average)
model is constructed and a set of optimal model coefficients are obtained to filter the signal, which
greatly improves MOMEDA’s ability to capture fault features. Thirdly, the fault feature is extracted by
MOMEDA, and the fault information is extracted accurately under a strong noise environment. Finally,
compared with AR-MED, ARMAMED, and other methods, the advantages of ARMAMOMEDA are
verified. Moreover, the effectiveness and superiority of the proposed method are verified by simulation
signals and experimental data from the Case Western Reserve University Bearing Data Center.

Keywords: autoregressive moving average model; multipoint optimal minimum entropy
deconvolution adjusted; feature extraction; rotating machinery

1. Introduction

When bearing gear, inner ring, outer ring, or rolling element faults occur, the transmission system
will be affected and the vibration signal will appear periodically impacted [1–5]. When the bearing faults
occur, the background noise becomes loud owing to the gearbox harsh working environment [6–10].
The weak fault signal is often overwhelmed by noise, and it is difficult to extract the characteristic
information. Therefore, the weak fault extraction of the rotating machine is still a big challenge [11–14].

The extraction of the fault information is actually to weaken the noise in the collected
vibration signals through an optimal filter, which effectively preserves the integrity of the fault
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information [15–18]. At present, the existing fault diagnosis methods include time-frequency analysis,
mode decomposition [19], sparse theory [20], order tracking [21], fuzzy theory [22], morphology
theory [23–25], stochastic resonance [26], intelligent recognition method [27], deconvolution theory,
and others. As the noise and fault characteristics in the vibration signals are convolution,
the deconvolution of vibration signals can separate the noise and fault information. Minimum
entropy deconvolution (MED) is an adaptive system identification method. Its basic principle is to
solve the deconvolution so that the results highlight a few sharp pulses, and the maximum kurtosis is
used as the iterative termination condition [28].

Sawalhi N [29] first applied MED to the diagnosis of rolling bearing and gear faults in 2007.
However, the MED algorithm is susceptible to noise and the maximum kurtosis as the objective
function cannot reasonably reflect the continuity of the impact signal [30,31]. In order to overcome
the shortcomings of MED, Geoff et al. [32] proposed a fault feature extraction method of rotating
machinery, called multi-point optimal minimum entropy deconvolution (MOMEDA). Compared
with MED, this method can obtain the optimal filter without iteration. It defines the position and
weight of the deconvoluted pulse sequence with the time objective function [33,34]. Every rotation
period can be collected with the shock pulse. When the fault period is not an integer, MOMEDA can
directly extract the fault without resampling. In addition, owing to the introduction of multi-point
kurtosis, the periodic components of fault signals can be calculated, which provides a new idea for
the fault feature extraction of rotating machinery [35]. The MOMEDA method proposed by Geoff

et al. mainly focuses on the gear fault in the gearbox at the beginning of the fault signal extraction.
The fault signal is a strong shock signal, but the fault information extraction performance of MOMEDA
is significantly variable under different SNR (signal-to-noise ratio) conditions. In order to ensure
the accuracy of MOMEDA algorithm for fault information extraction, it is necessary to improve the
anti-noise performance of MOMEDA. Wang, Z.J. et al. [36] successfully extracted the fault features
in the wind turbine gearbox by combining MED and MOMEDA, however, the defects of the MED
algorithm in iteratively selecting filters cannot be ignored [37,38].

The time series autoregressive (AR) model is widely used in the noise reduction processing of
vibration signals. Takalo, R. et al. [39] applied the AR (autoregressive) model to reduce the noise
in SPECT (single photon emission computed tomography) images, which compared the filtered
signal of an AR filter with a Butterworth filter to verify the advantages of the AR filter in noise
reduction. In recent years, AR has been successfully applied to fault diagnosis. H. Endo [40] proposed
an autoregressive minimum entropy deconvolution (AR-MED) fault extraction method. Using AR
filtering technology is insensitive and can be better to distinguish the performance of noise and pulse,
thus improving the fault feature extraction ability of MED; this method can also be used to achieve
fault extraction for gear spline and tooth angle crack. On this basis, Qing Li et al. [41] improved the
method under the limitations of the autoregressive minimum entropy deconvolution (AR-MED) in
a strong noise environment and proposed a method combining autoregressive minimum entropy
deconvolution and variational mode decomposition (AR-MED-VMD) to extract the bearing outer
ring fault. However, the existing methods only use the AR model, while the parameterized ARMA
(autoregressive moving average) model can more accurately describe the objective law of the dynamic
system and the accuracy of data processing is better than with the AR model. Gao, S. et al. [42] obtained
the relationship between mortar noise, velocity, and concentration by reducing the noise of the slurry
by the ARMA model. Therefore, this paper proposes the combination of ARMA and MOMEDA to
extract the weak fault features, improve the anti-noise performance of MOMEDA through ARMA,
and realize the accurate fault information extraction by MOMEDA in a strong noise environment.
The feasibility of this method is verified by the simulation and the experiment.



Appl. Sci. 2019, 9, 5313 3 of 19

2. Basic Theory

2.1. MOMEDA Method

MED can only extract a single pulse. In order to improve this defect, Geoff L. proposed maximum
correlated kurtosis deconvolution (MCKD), but the length, noise reduction interval, and shift number
of the algorithm parameter filter have a great influence on the effect. Furthermore, MCKD can only
effectively extract a limited number of pulses, which limits the detection efficiency. Therefore, in 2016,
Geoff L. [32] successfully extracts continuous periodic impact by solving the idea of optimal filter by
the non-iterative method. Named MOMEDA, the idea of this method is as follows:

Vibration signal collected by the sensor y(n):

y(n) = h(n)x(n) + q(n), (1)

where q(n) is noise, x(n) is the impact sequence, and h(n) is the transfer function. The purpose of
MOMEDA is to obtain an FIR (finite impulse response) filter, making the output y(n) match the original
impact signal x(n) to the maximum extent.

MOMEDA is a deconvolution algorithm for multi-pulse identification of signals. In order to obtain
continuous impact pulses, the concept of MDN (Multiple D-norm) is introduced in Equation (2), and its
maximum value is the minimum entropy deconvolution (MOMEDA) of multi-point optimization in
Equation (3):
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Therefore, Equation (4) can be written as follows:
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Let Equation (5) equal 0 and it will become the following:
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The MOMEDA filter and output solution can be summarized as follows:
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As the multiple of the filter is the solution of Equation (10), the multiple of
→

f = (X0XT
0 )
−1X0

→

t is
the solution to the MOMEDA problem. This method completely avoids the effect of iterative operations
and periodicity on the noise reduction effect of integers.

2.2. ARMA Method

The parametric ARMA model can accurately describe the objective laws of dynamic systems.
The autoregressive parameters are most sensitive to the changes in working conditions and have
obvious advantages in small damage identification, noise reduction, and operability. In general,
the time series required for prediction is a stationary time series, which is also a precondition for
the differential autoregressive moving average model. In reality, most sequences are non-stationary
sequences. Therefore, it is smoothed by appropriate differentiation of the sequence or logarithmic
transformation, and then the differential autoregressive moving average model is used for modeling.

The general formula of the autoregressive moving average model ARMA(n, m) can be expressed
as follows:

xt =
n∑

i=1

ϕixt−i + αt −

m∑
j=1

θ jαt− j, (11)

where n is the autoregressive order; m is the moving average order; ϕi(i = 1, 2, · · · , n) is the
autoregressive parameter; θ j( j = 1, 2, · · · , m) is the moving average parameter; and αt is a Gaussian
white noise process with a mean of 0 and a variance of σ2

α.
The ARMA (n, m) model has the tailing properties of both the autocorrelation coefficient and

the partial autocorrelation coefficient. Trailing means that, as the independent variable k increases
indefinitely, the function value tends to 0 at a negative exponential speed. When m = 0, the ARMA(n, m)

model degenerates into the AR(n) model. When n = 0, the ARMA(n, m) model degenerates into
the MA(m) model. The choice of ARMA for the prediction of vibration data of rolling bearings is to
analyze the partial autocorrelation coefficient and autocorrelation coefficient of the sample to be tested,
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so as to select the appropriate model to fit the sequence to be tested, and finally use the information
criterion to test the applicability of the model.

The simple correlation between each sequence value xt, xt−1, · · · , xt−k that makes up the time series
is called autocorrelation.

The autocorrelation coefficient γk can be used to measure the degree of autocorrelation. k is a
time interval.

γk =
E[xtxt+k]

E
[
x2

t

] =

a−k∑
t=1

(xt − x)(xt+k − x)

a∑
t=1

(xt − x)2
, (12)

where a is the sample size, k is the period of lag, and x is the sample average mean. It is known from
Schwarz’s inequality E[xy] ≤

√
E[x2]E[y2] that [−1, 1] is the value field of the autocorrelation coefficient

γk, and the absolute value of the autocorrelation coefficient is close to 1, the degree of autocorrelation
is higher.

Partial autocorrelation is defined as time series Xt, which indicates the conditional correlation
between time series values under certain conditions. The partial autocorrelation coefficient ϕkk is used
to measure its correlation, and the value range ϕkk is [−1, 1].

γ1

γk−
k−1∑
j=1

ϕk−1, jγk− j

1−
k−1∑
j=1

ϕk−1, jγ j

(13)

The AIC (Akaike’s Information Criterion) criterion extracts the maximum amount of information
in the observation sequence and, from this point on, is suitable for testing the ARMA (n, m) model order.

The criteria function is defined as follows:

AIC(p) = −2 ln L + 2p, (14)

where p = m + n, L is the likelihood function of the time series xt; if the time series xt is stationary and
normal, then

L =
N∏

t=1

1
√

2πσa
exp[−

1
2σ2

a
(xt −

∧
µt)

2
], (15)

where
∧
µt is the mathematical expectation estimate of xt whose time is t, that is, E[xt]. Then,

by substituting xt −
∧
µt = at into the above formula and performing the multiplication calculation,

Formula (16) is obtained.

L = (
1

2πσ2
a
)

N
2

exp[−
1

2σ2
a

N∑
t=1

a2
t ], (16)

where σ2
a is calculated as follows:

σ2
a =

1
N

N∑
t=1

a2
t . (17)

Substituting Equation (17) into Equation (16) and taking the natural logarithm on both sides of
the equal sign, there are the following:

ln L = −
N
2
(ln 2π+ ln σ2

a) −
N
2

, (18)
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which is

− 2 ln L = N ln 2π+ N ln σ2
a + N. (19)

Substituting Equation (19) into Equation (13), for a given data type, the length is N, and the latter
two of Equation (19) are constant, which has no effect on the comparison result of AIC(p) and can be
omitted, thus obtaining the following:

AIC(p) = N ln σ2
a + 2p. (20)

Obviously, given a model parameter estimation method,AIC(p) is a function of p. If p increases,
then ln σ2

a decrease, but the latter 2p increases. Therefore, the model order p when the value of AIC(p)
is the smallest is the applicable model order.

After the order of the ARMA model is determined, the parameters in AR and MA should be
estimated. In this paper, sequence estimation method is used in the simultaneous order theory
estimation method to first estimate ϕi, and then estimate θ j.

It can be known from the recursive formula of Rk that, when k > m, the formula of Rk will not
contain θ j.

Rk = ϕ1Rk−1 + ϕ2Rk−2 + · · ·+ ϕnRk−n(k > m) (21)

Note the subscript of Rk in the above equation. When k < 0, as Rk is the property of the even
function, there is R−k = Rk, separately k = m + 1, · · · , m + n, the following matrix equation can be seen:

Rm+1

Rm+2

· · ·

Rm+n

 =


Rm Rm−1 Rm−2 · · · Rm−n+1

Rm+1 Rm Rm−1 · · · Rm−n+2

· · · · · · · · · · · · · · ·

Rm+n−1 Rm+n−2 Rm+n−3 · · · Rm



ϕ1

ϕ2

· · ·

ϕn

. (22)

If both sides of the equation are divided by R0, then each Rk in the equation is transformed into
the autocorrelation coefficient ρk. This equation is the modified Yule–Walker equation, which can be
abbreviated as follows:

RA = RBϕ. (23)

In Equation (23), RA is the n-dimensional column vector to the left of the matrix equation, RB is
the n-order order square matrix to the right of the matrix equation, and ϕ is a n-dimensional column
vector composed of autoregressive coefficients. This matrix is not a Toeplitz matrix, but generally has
an inverse matrix, so the matrix equation can be solved, and the estimated value of the autoregressive
parameter is as follows:

ϕ = R−1
B RA. (24)

At this point, the autoregressive parameters ϕi(i = 1, 2, . . . , n) of the ARMA model have
been determined.

In the ARMA model in Equation (11), let yt = xt −
n∑

i=1
ϕixt−i, then yt = at −

m∑
j=1

θ jat− j.

This can also be recorded as follows:

yt = −
n∑

i=0
ϕixt−i(ϕ0 = −1)

yt = −
m∑

j=0
θ jat− j(θ0 = −1)

(25)

Multiply both sides of the AR model of Equation (25) by yt−k and find the mathematical expectation,
there is
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Ry,k = E

 n∑
i=0

ϕixt−i

n∑
j=0

ϕixt−k− j

 = n∑
i=0

n∑
j=0

ϕiϕ jE
[
xt−ixt−k− j

]
=

n∑
i=0

n∑
j=0

ϕiϕ jRk+ j−i, (26)

where Rk+ j−i is the autocorrelation function of the observation time series {xt},

Rk =
1
N

N∑
t=k+1

xtxt−k(k = 0, 1, 2, . . . , N − 1). (27)

Similarly, the MA model of Equation (25) has

Ry,k = E

 m∑
i=0

θiat−i

m∑
j=0

θiat−k− j

 = m∑
i=0

m∑
j=0

θiθ jat−iat−k− j =
m∑

i=0

m∑
j=0

θiθ jσ
2
aδk+ j−i, (28)

which is

Ry,k = σ2
a

m∑
j=0

θ jθ j+k. (29)

For the MA model of Equation (29), the B operator polynomial ϕ(B) = 1 in the autoregressive
part, then the spectral density function Syy(ω) is as follows:

Syy(ω) = σ2
a

∣∣∣∣∣∣θ(B)ϕ(B)

∣∣∣∣∣∣2
B=e−iω∆

= σ2
a

∣∣∣θ(B)∣∣∣2B=e−iω∆ . (30)

In Equation (30), in the moving average part, θ(B) is a B operator polynomial, and if the
characteristic root of the MA part is denoted by ηi, then

Syy(ω) = σ2
a

∣∣∣∣∣∣∣∣
m∏

j=1

(1− ηiB)

∣∣∣∣∣∣∣∣
2

B=e−iω∆

. (31)

Obviously, when B = 1/η j, Syy(ω) = 0. On the other hand, according to the definition of the
spectral density function,

Syy(ω) = F
[
Ry,k

]
=

∞∑
k=−∞

Ry,kBk
∣∣∣
B=e−iω∆ . (32)

It is known from Equation (29) that, as the subscript j of the model parameter θ j can only change
range (0, m), when j > m, θ j = 0, and thus the subscript k of Ry,k varies in the range of (0, m), otherwise
Ry,k = 0. Therefore, the sum of the Fourier transforms in this equation can be written as follows:

Syy(ω) =
∞∑

k=0

Ry,kBk
∣∣∣
B=e−iω∆ . (33)

This formula should be equal to Equation (31), so when B = 1/η j, there should be

m∑
k=0

Ry,k(
1
η j
)

k
= 0, (34)

which is

Ry,0 + Ry,1
1
η j

+ Ry,2(
1
η j
)

2
+ . . .+ Ry,m(

1
η j
)

m
= 0. (35)
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This formula is a one-dimensional m-order equation for 1/η j, then m roots 1/η j( j = 1, 2, . . . , m)

can be solved by this formula; then, η j is substituted into the polynomial.

θ(B) =
m∏

j=1

(
1− η jB

)
= 1−

m∑
j=1

θ jB j (36)

Comparing the same power factor of the B operator can get θ j.
At this point, the sliding average parameter θ j( j = 1, 2, . . . , m) of the ARMA model has

been determined.
The ARMA forecasting process is as follows:
Step 1: Determine the stationarity of the test sequence. If the test sample is an unstable sequence,

the sequence is subjected to a differential operation to transform it into a stationary random sequence,
and then subjected to an averaging process;

Step 2: Calculate the autocorrelation coefficient (ACF) and the partial correlation coefficient
(PACF) of the test sequence after the differential operation, and judge the stationarity again;

Step 3: Calculate the parameter values of the model using the least-squares method, and use the
AIC criterion to determine the order;

Step 4: Test the obtained model and make a reasonable optimization;
Step 5: Use the optimal model obtained in the above steps to predict unknown sequence data.

3. Limitations and Improvements of MOMEDA

The MOMEDA algorithm has a good effect in the extraction of periodic fault features. The algorithm
can obtain the optimal filter without iteration and can extract continuous pulses, but it also has certain
limitations. For example, noise has a great influence on it, and it is not ideal to extract weak shock
signal under normal working conditions. Aiming at this limitation of the MOMEDA fault extraction
method, this paper proposes a fault diagnosis method based on ARMA-MOMEDA. The parametric
ARMA model can accurately describe the objective law of the dynamic system; the autoregressive
parameters are most sensitive to the change of working conditions, and have obvious advantages in
small damage identification, noise reduction, and operability. By building an autoregressive moving
average model for fault signals, a set of optimal models is obtained. The model is used to filter the
fault signal and separate the uncorrelated impact components. Therefore, ARMA is used as a pre-filter
of MOMEDA to denoise the signal to improve the limitation of MOMEDA in extracting fault features
in a strong noise environment.

3.1. Limitations of the MOMEDA Method

In the single fault diagnosis, MOMEDA has certain limitations in the extraction of weak faults.
The periodic impact it finds may be false components and cannot be accurately identified for fault
features [33–35].

To illustrate the impact of different noise on MOMEDA performance, an analog signal is constructed,
as shown in Equation (37), for comparison.

x1(t) = Am × exp(− g
Tm

) sin(2π fat)
x2(t) = x1(t) + noise

(37)

where x(t) a is the periodic impact signal, Am is the amplitude of the impact, g is the damping coefficient,
Tm is the period of the impact, and fa is the natural frequency of the shaft. The parameter is set to the
following: g = 0.1, Tm = 0.02 s, fa = 320 Hz.

In order to further verify the effect of noise on MOMEDA extraction faults, different noise sizes
are selected for simulation analysis. The extraction effect of MOMEDA is shown in Figures 1–3. It can
be seen from the Figures 1–3 that, as the signal-to-noise ratio decreases, the 50 Hz shock period is
gradually submerged by noise. In Figure 1d or Figure 2d, the fault period (T = 50) can also be extracted,
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but as the signal-to-noise ratio decreases again, the fault period in the envelope spectrum in Figure 3d
cannot be extracted accurately. Figure 1a is the simulated bearing fault impact signal. Figure 1b is
the noise of 7.76 dB, Figure 1c shows the signal diagram with 7.76 dB noise added, Figure 1d shows
the MOMEDA extracts the result when 7.76 dB noise is added, and Figure 1e shows the results of the
envelope spectrum. Figure 2a is the simulated bearing fault impact signal, Figure 2b is the noise of
1.74 dB, Figure 2c shows the signal diagram with 1.74 dB noise added, Figure 2d shows the MOMEDA
extracts the result when 1.74 dB noise is added, and Figure 2e shows the results of the envelope
spectrum. Figure 3a is the simulated bearing fault impact signal, Figure 3b is the noise of −3.11 dB,
Figure 3c shows the signal diagram with −3.11 dB noise added, Figure 3d shows the MOMEDA extracts
the result when −3.11 dB noise is added, and Figure 3e shows the results of the envelope spectrum.
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3.2. Based on Improved MOMEDA Fault Diagnosis Method

On the basis of the limitations of the MOMEDA method in the gearbox fault diagnosis process,
the ARMA-MOMEDA method proposed in this paper is used to extract the gearbox fault to verify
the rationality of this method. Because MOMEDA cannot identify the fault feature in the noisy
environment, and the periodic impact component of the characterizing bearing fault is less correlated
with other components in signal, the ARMA model estimated by the autocorrelation function is used
for filtering, the periodic impact component in the fault signal can be effectively separated from other
unrelated components. After ARMA filtering, the fault signal is mainly composed of a highly correlated
periodic impact component and partial noise. The flow chart of the ARMA-MOMEDA method is
shown in Figure 4. The method steps are as follows:

Step 1: Detect signal stability. Firstly, the inverse order test is used to judge the stationarity of the
signal. If it is not stable, the d-differential operation is used to enhance the stationarity.

Step 2: Use the autocorrelation coefficient (ACF) and partial autocorrelation coefficient (PACF)
spectra to judge the signal stationarity again.

Step 3: Given the selection range of (n, m) and estimating the parameters ϕi and θi of the ARMA
(n, m) model.

Step 4: Use the AIC criteria to determine the order of ARMA (n, m).
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Step 5: After the signal is denoised by the fixed-stage ARMA filter, the fault is extracted
using MOMEDA.

Step 6: For multi-fault diagnosis, first use the multi-point kurtosis theory to divide the fault
extraction interval of the ARMA noise-reduced signal. The MOMEDA filter is used in sequence for the
feature extraction.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 19 
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4. Simulation Verification

In order to verify the effectiveness and superiority of the proposed method, the following signals
were constructed for simulation experiments. The vibration signal of the bearing fault is usually
expressed as a periodic impact. The model is shown in Equation (38):

x1(t) = Am × exp(− g
Tm

) sin(2π fat)
x2(t) = x1(t) + noise

(38)
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where x(t) is the periodic impact signal, Am is the amplitude of the impact, g is the damping coefficient,
Tm is the period of the impact, and fa is the natural frequency. The parameter is set as follows:
g = 0.2, Tm = 0.025 s, fa = 320 Hz. The resulting fault frequency is 1/Tm = 40 Hz. Figure 5 shows the
time domain waveform of the simulated signal. Figure 5a is the simulated bearing fault impact signal.
Figure 5b is the noise of −4.36 dB. Figure 5c shows the signal diagram with −4.36 dB noise added.
It can be seen that the impact signal shown in Figure 5a simulating the bearing fault is submerged by
random noise, and no periodic impact is observed in the composite signal, shown in Figure 5c.
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In order to fully illustrate the superiority of ARMA-MOMEDA, the above simulation signals
are processed by the AR filter [43], ARMA filter [44], MED filter [38], AR-MED [41], ARMA-MED,
and ARMA-MOMEDA; Envelope analysis is performed on the processed result to obtain an envelope
spectrum, so that the effects of each method were fully compared.

Figure 6 shows the results obtained by the respective methods. Figure 6a is a time-domain diagram
and a frequency-domain diagram after AR filter processing. From the time domain diagram, it can be
seen that the signal can be noise-reduced, and the partially submerged shock signal appears in the
time-domain waveform, but the impact has no obvious periodicity. In the envelope spectrum results,
the spectral lines are also cluttered, and the spectral lines corresponding to the obvious faults are not
resolved. Therefore, in a noisy environment, AR cannot accurately diagnose the fault frequency.

Figure 6b is a time-domain diagram and a frequency-domain diagram after ARMA filter processing.
From the time-domain diagram, it can be seen that the impact that is submerged by noise appears,
and the impact has a certain periodicity. The envelope spectrum also shows the spectral line of the fault
characteristic frequency. It can be seen that the ARMA result is better than the AR result. However,
a large amount of noise can still be observed from the time-domain map, and the periodic impact is
not obvious. However, although the frequency corresponding to the fault appears in the envelope
spectrum, there are fewer spectral lines and the fault characteristics are not obvious. If you increase the
noise, ARMA will also not detect the fault information.
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Figure 6c is a time-domain diagram and a frequency-domain diagram after MED filter processing.
The impact of being submerged by noise appeared from the time-domain diagram, but no periodicity
was observed. The frequency of the fault can be observed in the envelope spectrum, but there is no
multiplier and there is a lot of noise. It can be seen that the MED extraction results are better than the
AR filter, but not as good as the ARMA filter results.

Figure 6d is a time-domain diagram and a frequency-domain diagram after AR-MED filter
processing. In the time-domain diagram, the impact of being submerged by noise appears, and a
certain periodicity can be observed. The envelope spectrum also shows the fault frequency. It can be
seen that the results of AR-MED are better than those of AR and MED, and AR-MED can improve AR
and MED filters. However, it can be seen from the time-domain diagram that the noise-reduced signal
still contains a lot of noise, so that the periodic impact is not obvious. The envelope spectrum also
shows only a distinct line, and there is no multiplier.

Figure 6e is a time-domain diagram and a frequency-domain diagram after ARMA-MED filter
processing. It can be seen from the time-domain diagram that the impact of noise inundation can
be extracted after ARMA-MED filtering. In the envelope spectrum, the fault frequency and double
frequency and treble frequency can also be observed. It can be seen that the effect is better than that
of AR-MED. However, it can be seen that the envelope spectrum contains a large amount of noise,
resulting in an insignificant line.

Figure 6f is a time-domain diagram and a frequency-domain diagram after ARMA-MOMEDA
filter processing. It can be seen from the time-domain diagram that the ARMA-MOMEDA filter can
extract the impact that is submerged by noise, and the periodicity is obvious, and the noise is smaller
than other methods. In the envelope spectrum, the fault frequency and double frequency, treble
frequency, and quadruple frequency can also be clearly observed. The amplitude is also larger than
the amplitude of ARMA-MED, and the noise in the envelope spectrum is much smaller than that of
ARMA-MED, which shows that the effect is better than that of ARMA-MED.
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To elaborate on the performance advantages of the proposed method, we use permutation
entropy [45] and the fault energy ratio [46] to compare several methods from time to time and across
the frequency domain. The comparison results are shown in Table 1.

Table 1. Comparison of simulation results. ARMA, autoregressive moving average; MOMEDA,
multipoint optimal minimum entropy deconvolution adjusted.

Method AR ARMA MED ARMED ARMAMED ARMAMOMEDA

Permutation
Entropy 4.6870 4.5623 4.7073 4.7069 4.7033 4.3100

Fault Energy
Ratio 0.0211 0.03971 0.0263 0.0286 0.02674 0.06707

It can be seen from the results of Table 1 that the permutation entropy value of the proposed
method is smaller than that of other methods, which proves that the signal of the simulated signal
processed by the method is more regular. By comparing the fault energy ratio, the value of the
fault energy ratio of the proposed method is larger than that of the original fault diagnosis method.
The performance of the proposed method is proven by the verification of the simulation results by
permutation entropy and the fault energy ratio.

5. Experimental Verification

In order to verify the effectiveness of the proposed method in engineering applications, the data
of Case Western Reserve University Bearing Data Center were used for experimental verification [47].
The test bench shown in Figure 7 mainly includes a test gearbox, a console, a motor, and a piezoelectric
acceleration sensor. The motor has a power of 2 horsepower.
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Figure 7. Bearing fault diagnosis test bench.

The fault of the rolling bearing is achieved by machining the inner ring of the bearing with a
spark. The bearing type is 6205-2RS JEM SKF (Svenska Kullargerfabriken). During the experiment,
the motor speed is 1797 RPM, the sampling frequency is 48,000 Hz, and the sampling point is 4096.
The fault frequency can be obtained by calculation, as shown in Table 2.

Table 2. Fault frequency.

Rotation Speed Rotational Frequency Fault Frequency of Inter Ring

1797 rpm 30 Hz 162.4 Hz

Figure 8 shows the time-domain diagram and envelope spectrum of the fault signal. It can be seen
from the above Figure 8a that the collected vibration signal contains fault information, but the fault
information is not clearly located. The envelope spectrum analysis of the time domain signal is shown
in Figure 8b, and only one tip pulse is extracted. The fault frequency cannot be accurately described.
The vibration signal is processed separately by the traditional MOMEDA and the ARMA-MOMEDA
proposed in this paper, and the effects of each method are compared.
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5.1. The Analysis Results of MOMEDA

The obtained vibration signal is analyzed by the MOMEDA method, and the obtained analysis
result is shown in Figure 9. Figure 9a is a time-domain graph of the analysis result, and Figure 9b is an
envelope spectrum graph of the analysis result. It can be seen that the number of effective pulses in
the envelope spectrum of the original signal processed by MOMEDA is increased, and the extracted
fault frequency is 162.4 Hz. The experimental results were compared by permutation entropy and the
fault energy ratio. The results of the comparison between the original experimental signal and the
signal processed by MOMEDA are shown in Table 3. It can be seen from the results in Table 3 that
permutation entropy of the experimental signal is reduced after MOMEDA processing, which proves
that the regularity of the signal increases, and the fault energy ratio of the signal also increases.
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Table 3. Comparison of experimental results of MOMEDA.

Method Original Signal MOMEDA

Permutation Entropy 4.7653 4.3218
Fault Energy Ratio 0.03658 0.04136

5.2. Decomposition Results of the Method Proposed in this Paper

The signals were analyzed using the method proposed in this paper. First, the collected vibration
signal is filtered once by the ARMA filter, and the filtered signal is as shown in Figure 10. Figure 10a is
the time-domain signal of the experimental signal, and Figure 10b is the time-domain diagram of the
experimental signal after ARMA processing. It can be seen that the amplitude of the noise amplitude
of the signal after ARMA filtering has an intuitive drop, and the effective residual signal is retained.
This makes the effect of noise on the MOMEDA filter weakened, making the extraction of weak faults
more accurate.
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Figure 10. The time-domain comparison diagram of the experimental signal and the signal processed
by ARMA. (a) The time-domain diagram of the experimental signal; (b) the time-domain diagram after
ARMA processing.

Then, according to the work of [35], the length of filter L = 200 is selected in this paper, and the
calculated failure frequency is 162.4 Hz, and the corresponding sampling points are 295.5, so the
selected filter interval is [220, 24,000]. The MOMEDA algorithm is used to extract the fault features
of the ARMA noise-reduced signal. The extraction result is shown in Figure 11. Figure 11a is the
time-domain graph of the analysis result, and Figure 11b is the envelope spectrum graph of the
analysis result. It can be seen that the amplitude of the time-domain diagram is more obvious after
the processing of the method proposed in this paper and five peaks can be clearly highlighted in the
envelope spectrum. The extracted fault frequency is 162.4 Hz.
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ARMA-MOMEDA. (a) The time-domain diagram; (b) spectral envelope diagram.

Compared with the MOMEDA method, the proposed method can extract fault information with
higher precision and has better performance in weak fault feature extraction. It can be seen from
Table 4 that the value of the permutation entropy of the proposed method is smaller than the that with
the MOMEDA method, and the fault energy ratio is larger than the MOMEDA method. It can be seen
that, in practical applications, the proposed method is superior to the traditional MOMEDA method.

Table 4. Comparison of experimental results of ARMA-MOMEDA.

Method MOMEDA ARMA-MOMEDA

Permutation Entropy 4.3218 4.0362
Fault Energy Ratio 0.04136 0.06536

6. Conclusions

This paper proposes an ARMA-MOMEDA method that was successfully applied to gearbox
bearings’ fault diagnosis. The method can extract the weak fault features in the gearbox with higher
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precision, and the effectiveness is verified through simulation and experiment. Through simulation
and experiment, the following conclusions are drawn:

MOMEDA can extract significant faults, but its extraction effect is easily affected by the noise.
In order to promote its weak fault feature extraction performance, it is improved via the following
steps. Before processing the collected vibration signal, noise reduction is performed by ARMA, so as
to better highlight the fault feature. Then, the fault feature of the vibration signal is extracted by the
MOMEDA algorithm. The method extracts the fault feature of the bearing inner ring in the gearbox
with high precision. The simulation results and experimental results are verified by the permutation
entropy and the fault energy ratio. The method provides a new idea for extracting weak fault features
and has a certain reference value.
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