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Abstract: Flexible needles have been widely used in minimally invasive surgeries, especially in
percutaneous interventions. Among the interventions, tip position of the curved needle is very important,
since it directly affects the success of the surgeries. In this paper, we present a method to estimate the tip
position of a long-curved needle by using 2D transverse ultrasound images from a robotic ultrasound
system. Ultrasound is first used to detect the cross section of long-flexible needle. A new imaging
approach is proposed based on the selection of numbers of pixels with a higher gray level, which can
directly remove the lower gray level to highlight the needle. After that, the needle shape tracking
method is proposed by combining the image processing with the Kalman filter by using 3D needle
positions, which develop a robust needle tracking procedure from 1 mm to 8 mm scan intervals. Shape
reconstruction is then achieved using the curve fitting method. Finally, the needle tip position is estimated
based on the curve fitting result. Experimental results showed that the estimation error of tip position is
less than 1 mm within 4 mm scan intervals. The advantage of the proposed method is that the shape and
tip position can be estimated through scanning the needle’s cross sections at intervals along the direction
of needle insertion without detecting the tip.
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1. Introduction

With the help of the beveled-tip needle, percutaneous interventions and therapies have been widely
involved in current clinical procedures, such as brachytherapy [1,2], tissue biopsy [3,4], and drug
delivery [5,6]. In intervention procedures, less needle misplacement will lead to a more reliable treatment
and a more accurate medical practice. According to the clinical studies [7,8], the needle is easy to be
deflected, which will cause needle tip misplacement and may lead to unsafe procedures. Due to the
needle-tissue interaction, improper insertion force or physiological motions, such as breathing may cause
targets or obstacles to be unstable, which will lead to an unexpected error. To address the challenge,
real-time feedback is highly required. Usually, medical imaging devices are used, such as ultrasound
(US) [9], computerized tomography (CT) [10,11], or magnetic resonance imaging (MRI) [2,12]. Generally,
the image-guided percutaneous interventions are conducted with the use of CT or MRI. However,
ultrasound-guided procedures are more attractive due to their advantages such as none ionizing radiations
and real-time detection.
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Many studies for the guidance of the needle during the insertion operation have been conducted
with the help of ultrasound devices, and 2D ultrasound images are quite general to use, especially for
the sagittal one (shown in Figure 1). Elif et al. proposed to use circular Hough transform to locate the
needle tip accurately, even when the imaging is out-of-plane [13]. Kaya et al. localized the needle axis
and estimated the needle tip by using a Gabor Filter in sagittal US images [14]. To execute in real-time,
they improved the processing time by applying the bin packing method [15]. Recently, a template-based
tracking method with the efficient second-order minimization optimization method has been used to track
the needle [16]. In recent studies, more and more novel ideas have been used to locate the needle and
evaluate its tip to sagittal US images, such as the use of signal attenuation maps [17], convolution neural
networks (CNN) [18], and maximum likelihood estimation sample consensus (MLESAC) method [19].
However, a demerit of using sagittal US images is that out-of-plane bending of the needle cannot be
detected. Therefore, the methods applied on sagittal US images are not suitable for the needle which may
be deflected by the inevitable factors, especially for long needles.

Needle

Sagittal US Image Transverse US Image

US Probe

Figure 1. Two methods by using 2D ultrasound for detection.

An alternate solution for this problem is to use a 3D US image, which has been widely studied in
recent researches. Yue et al. used a RANSAC method to detect the needle in a 3D US situation and
Kalman filter has been used to reduce the error [20]. Chatelain et al. used the particle filtering to track
a robot-guided flexible needle by using 3D US [21]. In addition, a convolutional neural network with
conventional image processing techniques has also been used to track and detect the needle [22] and a
naive Bayesian classifier was used to localize the needle among 3D US volume voxels [23]. However,
the large 3D US volumetric dataset would make it difficult to obtain and process the online data.

Due to the above disadvantages, sagittal US images and 3D US volume are not suitable for a long
flexible needle. To locate the needle accurately, methods that use transverse US images (shown in Figure 1)
have been used successfully in some studies. For example, Vrooijink et al. [24] present a method to track the
flexible needle during the insertion into a gelatin tissue by using 2D US images perpendicular to its needle
tip. However, the background is pure without noise, which makes it impractical. Waine et al. [25–27] focus
on the research about the needle insertion, in permanent prostate brachytherapy (PPB), where needles are
typically 200 mm and easily to be deflected, indicating the fact that the rectum limits the movement of US
probe. As a result, it is hard to acquire the sagittal images of the curved needle to observe the deflection
during needle insertion. This is because the sagittal method has a strong relationship to the movement
of the US probe when the needle is out of the view-field of the US images, and this movement maybe
deforms the prostate as well as affects the needle target. For a deflected needle, the transverse US image is
a better choice for its detection. Compared to the sagittal images, the transverse US images are easy to be
acquired when the US probe scanning along the needle, no matter how much the needle is curved.
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In this paper, we present a method to track a long-curved needle from the 2D transverse US images
and estimate its tip for the guidance of needle insertion. Ultrasound is first used to detect the cross-sections
of the long-flexible needle (shown in Figure 2 STEP 1). The needle shape tracking method combined
needle detection with Kalman filter develops an accurate location and a robust tracking procedure with
scan intervals from 1 mm to 8 mm (shown in Figure 2 STEP 2). Unlike the previous study [26], the 3D
needle positions obtained from 2D US images and optical tracking systems have been used in KF for
the precise location. The curve fitting method is then used to achieve the shape reconstruction and the
needle tip position is estimated based on its length and the curve fitting result (shown in Figure 2 STEP 3).
The advantage of the proposed method is that the shape and tip position can be estimated through
scanning the needle’s cross-sections at intervals along the direction of needle insertion without detecting
the tip. Besides, a novel histogram method is introduced to detect the needle in image processing, which
can improve the needle localization under the effect of needle comet tail and the poor reflection, despite of
the abrupt intensity changes. In addition, a robotic ultrasound system (RUS) [28] is built to evaluate the
proposed needle tip estimation method. Results showed that the estimation of the tip position is less than
1 mm with 4 mm scan intervals.

Tip

STEP 2

STEP 3

Needle

RUS

Moving direction

STEP 1

Scan 
interval

Figure 2. The proposed tip estimation method. STEP 1: 2D transverse US images with needle cross-sections
are collected by using RUS; STEP 2: Needle cross-sections are detected and tracked in the successive US
images; STEP 3: Needle shape is constructed and its tip is estimated.

The rest of this paper is organized as follows. The proposed methods will be introduced in detail in
Section 2. Section 3 intends to represent the experimental setup and the results. Finally, the discussion and
conclusions are detailed in Section 4.

2. Materials and Methods

The proposed needle tip estimation method in successive transverse US images can be divided into
three stages: needle detection, needle shape tracking, and tip estimation. The processing diagram are
shown in the Figure 3. The needle location will be manually selected as an initial region of interest (ROI)
by the binary method in the first US image. After that, the prediction of needle position from a Kalman
filter can be transformed in the transverse US images. At the same time, the next needle position in this
ROI can be found through the histogram method. The KF is then updated for the current precise needle
position and prediction of the next position. After all the cross-sections of the needle have been collected,



Appl. Sci. 2019, 9, 5305 4 of 17

the needle shape can be fitted by the curve fitting method (part C in Figure 3). Finally, the position of
the needle tip can be estimated from the curve fitting result based on the length of the needle. In this
study, the ROI is set as a square window with a length of three times larger than the needle diameter
and its center represents the needle position. Needle detection (part B in Figure 3) is mainly about image
processing, while the Kalman filter is used for needle shape tracking (part A in Figure 3).

ROI Configuration

KF Initialization

KF Prediction

Needle Location

Image Processing

KF Update

Shape Construction

Tip Estimation

Data Collection

A

B

C

Figure 3. The pipeline of curved needle tip estimation. As the ROI configuration finished, needle tracking
with needle detection begins step by step. Part A shows the needle tracking by KF, while Part B shows the
needle detection to locate the needle tip. Part C shows the shape construction and tip estimation.

2.1. Needle Detection

Needle detection is mainly for identifying the cross-section of the needle in the US images by
using the binary method and the histogram method. As the ultrasound is quite sensitive to the metal,
the needle-inside area can be brighter than others. A binary method [26] is first used to select ROI in
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the first image and then a histogram method is used to locate the needle despite the US shadows and
poor reflection.

Binary method intends to strengthen the contrast of brightness to highlight the brighter area to select
them. This method is used for the initialization which supposes to find the candidates in the first image.
It includes intensity normalization, background reinforcement, and brightness enhancement. The center of
the area is the location of the needle. During the experiment, a histogram method is proposed to find the
needle accurately. The histogram method contains intensity normalization and background reinforcement.
The histogram method tends to find an area of high-intensity pixels, which intends to find the upper face
of the needle and then locate the needle based on the diameter. The background reinforcement part can be
described as follows:

min It

s.t.
255

∑
It

nIj ≤ Mδ

It ∈ [0, 255]

(1)

where Ij is the gray level of the pixel and nIj is the number of pixels which have the gray level of Ij. M is
the size of ROI, and δ is the manually selected parameter to limit the bright pixels. In this work, M is a
square of 45× 45, and δ is set to 0.08 based on empirical tests.

There are two unexpected situations that may affect the position accuracy, namely the comet tail and
the poor reflection. The comet tail will affect the size of the needle area and usually lead to a larger area
than the actual size (Figure 4a). On the contrary, the poor reflection makes the needle area look much
smaller in the image (Figure 4b). Therefore, the accurate location should be intended to eliminate the effect
of shadows and poor reflection. In Figure 4, there are two examples which are used the two methods
relatively. As the example shown in Figure 4a, the noise (yellow circle in the histogram of ROI) may
probably be concerned as the needle while the needle is just concerned about a few pixels (red circle in
histogram of ROI). The two methods can both filter the noise and locate the needle correctly. However,
in ROI configuration (shown in Figure 3), the histogram method intends to find more candidates than the
binary method, since the former focuses on the higher intensity pixels while the latter focuses on the area
and intensity. Therefore, the binary method is more feasible in ROI configuration.

However, in the case of poor reflection, the needle displays a little in the image, and the area of the
needle is smaller than the expected. Because the needle would reflect as long as the image gain is high
enough or the sound power is big enough, it would reveal apparently compared to its surroundings.
An example of the histogram of ROI is shown in Figure 4b, the red circle represents the upper surface
of the needle. Moreover, the ROI square is darker than the one in Figure 4a, while the settings of the
ultrasound are the same in Figure 4. From the figure, the histogram method seems to be more accurate
than the binary method. In fact, the error of two methods, in this case, is 0.34 mm with 1.2 mm diameter of
the needle. It is not that obvious to judge the accuracy. In this study, we use the histogram method during
the experiment.
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Histogram Method

Needle
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(a) Elimination of Comet tail.

Needle

Needle

Binary Method

Histogram Method

(b) Poor reflection.

Figure 4. Two cases may generate the errors: (a) the comet tail of needle with binary method process,
histogram method process and the histogram of ROI; (b) the poor reflection of the needle with histogram
method process and the histogram of ROI.

2.2. Needle Shape Tracking

As indicated in previous researches [20,29,30], Kalman filter has been successfully used for tracking
needle in the successive ultrasound images. In this study, the Kalman filter is used to improve the
estimation of the needle location in successive frames. As shown in Figure 5, the applied Kalman filter has
two processes, prediction and update. The prediction stage intends to locate the needle position previously
and set the ROI (red and yellow square in Figure 5) to find the needle precisely with a small window,
which is supposed to reduce the computation. The update stage is the result of the needle position after
the measurement from the histogram method.
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Prediction

Update

(𝒙m, 𝒚𝒎, 𝒛𝒎 , ∆𝒙𝒎, ∆𝒚𝒎, ∆𝒛𝒎) 

(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔, 𝒚𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔, 𝒛𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔, ∆𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔,∆𝒚𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔,∆𝒛𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔)

(𝑰𝒙_𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏, 𝑰𝒚_𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏)

(𝑰𝒙_𝒖𝒑𝒅𝒂𝒕𝒆,𝑰𝒚_𝒖𝒑𝒅𝒂𝒕𝒆)

(𝒙prediction, 𝒚prediction, 𝒛prediction)

(𝒙𝒄, 𝒚𝒄, 𝒛𝒄, ∆𝒙𝒄,∆𝒚𝒄,∆𝒛𝒄)

Figure 5. The two steps of the Kalman filter. As the next US image is acquired, the previous
state (xprevious, yprevious, zprevious,4xprevious,4yprevious,4zprevious) is used to predict the needle position
(xprediction, yprediction, zprediction, which then will be transformed to (Ix_prediction, Iy_prediction) in the image
as the center of ROI. The yellow square is the ROI corresponding to (Ix_prediction, Iy_prediction) and the
red one is the update step in KF by using the measurement data from needle detection to locate
the needle with its center (Ix_update, Iy_update) as the needle position. Finally, the measurement state
(xm, ym, zm,4xm,4ym,4zm) and the current state (xc, yc, zc,4xc,4yc,4zc) can be obtained.

The state prediction t̂i intends to represent the prediction state of the transverse needle center position
(x, y, z) in the reference frame with the change of the needle position (4x,4y,4z) at sample i according
to the state t. (4x,4y,4z) are the difference between the previous needle position and the current needle
position. ti is the result from the previous iteration, which is as follows:

ti =



xi
yi
zi
4xi
4yi
4zi


(2)

where4x1 and4y1 are set to be 0, while4z1 is equal to the scan interval. The prediction equations are
as follows:

t̂i = Ati−1, (3)

P̂i = APi−1 AT + Q. (4)

The measurement update equations are as follows:

Ki = P̂i HT(HP̂i HT + R)−1, (5)
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ti = t̂i + Ki(mi − Ht̂i), (6)

Pi = (I − Ki H)P̂i, (7)

where A, H, R, and Q are as follows:

A =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (8)

H =
[

I6×6

]
, R = Q = 10−6 ×

[
I6×6

]
. (9)

A is the state transition matrix, H is the measurement matrix. P̂i and Pi are the priori and posteriori
estimate error covariance, and R and Q are the measurement error covariance and processing error
covariance, respectively. Ki is the Kalman gain at sample i. mi is the measurement state from the
needle detection.

The 3D prediction position (xprediction, yprediction, zprediction) is obtained from the previous state. Before
needle detection in the current US image, the 3D prediction position should be transformed on the
image plane frame as 2D position (Ix_prediction, Iy_prediction). After the update, the needle position
(Ix_update, Iy_update) in the image will be transformed into the 3D position (xm, ym, zm). Meanwhile, we can
get (4xm,4ym,4zm) from:

(4xm,4ym,4zm) = (xm, ym, zm)− (xprevious, yprevious, zprevious). (10)

As a result, the measurement state mi in this frame is acquired as(xm, ym, zm,4xm,4ym,4zm).
Through the measurement update, the current state can be obtained as (xc, yc, zc,4xc,4yc,4zc) from
Equation (6). The relationship between these transformations will be described in the next subsection.
In the previous study [26], the data from the image has only two dimensions, lacking the data from the
direction along the movement of the probe, which leads to an incomplete location. Moreover, the space
information is more capable to locate the needle accurately than the plane information. Therefore, 3D
positions have been used in the KF for the precise location. The KF in this work is not only used for
filtering, but also for predicting the next needle position in the US image. The ROI for the next iteration
is centered around the needle position of the Kalman Filtering prediction, which can help to remove the
outliers from the ROI.

2.3. Tip Estimation

Before tip estimation, 2D points should be transformed into 3D points based on the relationship of
each frame. The relationship among the reference frame, probe frame, marker frame, and image frame are
specified in Figure 6.
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Figure 6. The relationship of the frames.

As shown in Figure 6, the image has one plane with 2 axes (axis x and axis y) and axis z is vertical to
the image. Moreover, the probe has the same frame with image, except that the probe frame is designed
in millimeters and the image frame is set in pixels. Equation (9) implies the transformation from image
to reference:

Point1 = Tre f
marker × Tmarker

probe × Tprobe
image × Point2 (11)

where Point1 and Point2 are the points on the reference frame and image frame, respectively, Tre f
marker is

the transformation from the reference frame to the marker frame, Tmarker
probe is the transformation from the

marker frame to the probe frame, Tprobe
image is the transformation from the probe frame to the image frame.

Through this transformation, the needle position in the image can be directly re-defined in the reference
frame for the needle tracking and curve fitting.

The tip estimation has two steps: curve fitting and tip estimation. In this study, the third-order curve
line is used for the shape construction where the equations can be written as:

f (x) =
3

∑
k=0

akxk, (12)

g(x) =
3

∑
k=0

bkxk, (13)

where f (x) and g(x) are the equations to fit the line along the x, which is the axis with the same direction
of the insertion. (a0, a1, a2, a3) and (b0, b1, b2, b3) are the free parameters of the needle shape model.

After sample points of the inflected needle have been obtained, the least-square curve fitting method
will be used to fit these points as a cubic line. The target functions to fit the cubic line can be defined
as follows:

F(a0, a1, a2, a3) = min
n

∑
i=1

( f (xi)− yi)
2 = min

n

∑
i=1

(
3

∑
k=0

akxk
i − yi)

2, (14)

G(b0, b1, b2, b3) = min
n

∑
i=1

(g(xi)− zi)
2 = min

n

∑
i=1

(
3

∑
k=0

bkxk
i − zi)

2, (15)
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where n is the number of the points (n ≥ 4) and (xi, yi, zi) is the position of point i. By applying the l2
norm minimization in the two-dimensional Euclidean space, it can be formulated as:

arg min
t∈R

‖Xa−Y‖2, (16)

where a = [a0, a1, a2, a3]
′, Y = [y1, y2, . . . , yn]′ and X can be written as:

X =


1 x1 x1

2 x1
3

1 x2 x2
2 x2

3

...
...

...
...

1 xn xn
2 xn

3

 . (17)

The solution can be estimated as follows:

a = (XTX)
−1

XTY. (18)

From this solution, f (x) and g(x) can be obtained to construct needle shape. The tip position can
then be estimated by the following optimum solutions based on the length of the needle:

min ‖
∫ tipx

tailx

√
1 + f ′(x)2 + g′(x)2dx− L‖2

s.t. tipx > tailx

, (19)

where tailx is the measured value of the tail position from the optical tracker, tipx is the expected value of
the tip position in axis x, L is the length of the needle.

3. Results

3.1. Experimental Platform Setup

To verify the proposed tip tracking and shape sensing method, a robotic ultrasound system has been
built, which includes a KUKA IIWA robot arm, a Wisonic ultrasound scanner, an NDI optical tracker,
an NDI electromagnetic (EM) tracker, and a computer. As shown in Figure 7, the US probe is mounted
on the effector of the robot arm by the gripper attached to the passive marker. The phantom or ex-vivo
(like chicken breast in Figure 7) is punctured by an 18G beveled-tip needle with 200 mm long, while the
needle tip is completely exposed for validation. The diameter of the needle is 15 pixels in the image.
The NDI optical tracker is used to localize the marker bound with the probe, while NDI electromagnetic
tracker is used to validate the tip position.

Experiments have been taken in a water tank, which provides a liquid environment for the ultrasound.
And the needle is placed in water or inserted in the silica gel phantom (shown in Figure 8a), pork and
chicken breast. The depth of the ultrasound is set to 4 cm. In this study, the needle is usually detected
in 1 to 3 cm from the US probe. During the experiment, the robot arm automatically moves with the
ultrasound probe along the direction of the needle insertion without any contact with the tissue (shown
in Figure 8b). The whole scan length is at most 160 mm which depends on the scan intervals (shown in
Table 1). The scan interval decreases with the increasing collected points.
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Table 1. Scan lengths with different scan intervals.

Scan Interval Scan Length Points

1 mm 160 mm 160
2 mm 159 mm 80
3 mm 160 mm 54
4 mm 157 mm 40
5 mm 156 mm 32
6 mm 157 mm 27
7 mm 155 mm 23
8 mm 153 mm 20

Robot Arm

Optical Tracker

Ultrasound 

Scanner

Electromagnetic 

Tracker

Computer

Chicken

breast

Needle

Needle 

Tip

Reference

US Probe

Figure 7. The devices of the experiment.

Before data collection, the US image and the marker need to be calibrated. After that, the experiment
starts after the needle finished puncturing manually. The robot arm is used to move the US probe
scanning along the needle. Meanwhile, pose data are collected from the optical tracker and US images
from the ultrasound scanner. Finally, the tail of the needle and its tip are measured by the optical and
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electromagnetic sensors, respectively, for the curve fitting and the tip validation. The needle is inserted
manually, imitating the real situation of percutaneous intervention.

(a) Phantom with inserted needle (b) The probe scans without any contact

Figure 8. The phantom used in the experiment and the movement of the probe.

3.2. Tip Estimation

Four kinds of platforms have been used in the experiments: water, phantom, chicken, and pork. Each
platform was tested several times. Figure 9 shows one test in chicken breast. In this case, the US probe
moved along the needle in the chicken breast every 4 mm. The black square point on the left is the needle
tail position and the blue line is the estimated needle shape. The green points are the detected needle and
considered as the center of the needle, the blue point is the estimated tip position and the red point is
measured tip position from EM. The estimation error is 0.69 mm in this test.

Units in mm

Figure 9. Experiment in chicken breast with a 4 mm scan interval.

The error of the algorithm is shown in Table 2, which suggests that the errors increase with the
increase of scan intervals. Figure 10 shows the results of the experiment on four platforms. The mean
errors are all under 0.4 mm with a 1 mm scan interval in the four experiments, while the error is around
1 mm with an 8 mm interval.
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(a) The experiments in water.
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(b) The experiments in phantom.
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(c) The experiments in pork.
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(d) The experiments in chicken.

Figure 10. The experiment with different scan intervals on the four platforms.

Table 2. The results of tip estimation (mm).

Accuracy

Intervals Water Phantom Pork Chicken

1 mm 0.32 ± 0.10 0.33 ± 0.15 0.37 ± 0.07 0.29 ± 0.09
2 mm 0.36 ± 0.21 0.41 ± 0.16 0.31 ± 0.05 0.31 ± 0.12
3 mm 0.45 ± 0.16 0.46 ± 0.18 0.56 ± 0.08 0.33 ± 0.09
4 mm 0.55 ± 0.16 0.59 ± 0.31 0.68 ± 0.14 0.38 ± 0.21
5 mm 0.60 ± 0.13 0.59 ± 0.29 0.90 ± 0.20 0.40 ± 0.14
6 mm 0.69 ± 0.13 0.48 ± 0.09 0.99 ± 0.13 0.55 ± 0.11
7 mm 0.83 ± 0.17 0.62 ± 0.14 0.84 ± 0.30 0.52 ± 0.17
8 mm 0.95 ± 0.11 0.73 ± 0.26 1.06 ± 0.18 0.81 ± 0.19

4. Discussion and Conclusions

Needle insertion guided by ultrasound images is widely used for percutaneous interventions.
However, the needle detection due to its deflection by the inevitable factors is challenging during the
needle insertion. Such factors include needle-tissue interaction, improper insertion force, physiological
motions, and so on. Automatic needle detection with needle tracking in 2D transverse US images could
overcome these limitations and estimate needle tip through the curve-fitting method. The target of
this study is to develop a robust needle detection and tracking method with the help of ultrasound
images to estimate the needle tip precisely and accurately. We used a histogram method to detect the
needle in transverse US images to decrease the effects of comet tail and poor reflection. In subsequent
post-processing, the needle was tracked by the Kalman filter tracking method in consecutive US images
with the help of the displacement of the probe. A third-order curve fitting method has been used to estimate
the needle tip. When the probe is moved by the robot arm, the scanning time is different. We assume
that the time when the probe stops to collect the data is the same. The less scan interval we choose,
the more collection points we can obtain and the more scanning time it takes. Therefore, the scanning time
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mainly depends on the number of scanning points while the accuracy lies in how short the scan interval
is. In other words, the accuracy of the tip estimation can be improved by reducing the scan interval to
collect more needle positions. However, this will consume more scanning time and reduce the efficiency
of tracking. Inversely, fewer collecting positions would cost less time but may lead to a more possibility of
the failure of shape construction and a more possibility of large error of the tip estimation. As a result, how
to balance precision and scanning time is very important to make the proposed method more efficient.
In our experiment, it is found that a 4 mm scan interval has an error less than 1 mm, which is a better
choice to satisfy both requirements.

In the proposed method, needle shape tracking has a great contribution to the accurate localization,
since the needle can be tracked precisely by Kalman filter through its prediction and update. However,
needle shape tracking is heavily dependent on the scan interval, especially for a large curved needle, since
Kalman filter is generally well functioned in the lineal system. As a result, if the needle is deflected during
insertion, the Kalman filter would make mistakes and wrongly predict the needle position when the scan
interval is large. In this study, it is found that Kalman filter would fail if the scan interval is more than
8 mm. This may due to the impact on the prediction of KF with a large deviation. Moreover, the deviation
will not be eliminated even with the change of the ROI size. However, the Histogram method showed the
accurate and effective detection of the needle, but it relies on the brightness of the image as the needle
could not be easily detected where there are plenty of pixels with the highest intensity (which has a max
value of 255). However, this condition can be controlled by the setting of the ultrasound scanner to expand
the gray level of the image properly.

The proposed method still has its limitations. During the experiment, time is needed for the data
collection from the US scanner and optical tracking system, and the movement of the robot arm, which is
affected by the scan length and scan interval. However, it is very hard to acquire the whole position of
a long needle in one scan for any medical image sensor. Therefore, in the future, it is valuable to find a
method to reduce the times of needle detection in order to reduce the time for the tip estimation. Moreover,
when the robot arm moves with the US probe precisely, the tissue and needle have a possibility to be
deformed by the probe motion. Hence, it is necessary to make the robot arm move smoothly as well as
correctly on the surface of tissue. In addition, patient motion is the biggest uncertain problem, which leads
to the failure of needle insertion and detection.

In the proposed system, we use the 2D US scanner for the detection of the needle in various kinds of
tissue. However, the 3D US scanner can also be used in this system. Although it has volume data and the
detection method is different, the tracking method is able to be similar, as we also use the 3D positions for
tracking in this study. Moreover, time is also needed for data collection and the movement of the robot
arm, especially for the long needle, which is easily out of view-field of US volumes or images. Therefore,
we use 2D US images in this study.

In this paper, a method for tracking a long-curved needle from the 2D transverse US images and
the tip estimation is represented and demonstrated with RUS. Ultrasound is first used to detect the cross
section, with the probe moving along a long-flexible needle. Needle shape tracking method combined
needle detection with Kalman filter by using 3D needle positions develops an accurate location and a
robust tracking procedure. Needle shape is then constructed by using the curve fitting method and its tip
position is estimated based on the former result. A histogram method is introduced to detect the needle
in image processing, which can improve the needle localization despite the abrupt intensity changes.
This new imaging approach is proposed based on the selection of numbers of pixels with a higher gray
level, which can directly remove the lower gray level to highlight the needle. Results of the experiments
suggest that the detection of the needle by the histogram method and Kalman Filter has high precision
with minimum error 0.13 mm with a 1 mm scan interval in the phantom experiment and maximum error
1.35 mm with a 8 mm scan interval in the pork experiment. With the increase of the scan interval, the mean
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error would rise. Moreover, results showed that the estimation of the tip position is less than 1 mm within
4 mm scan intervals. We suggest choosing a 4 mm scan interval to balance the precision and scanning time
to maximize efficiency. In the future, we would make the experiments of how long the scan length is the
best length to estimate the needle tip. The proposed method would be a great assist to surgeons to locate
the needle tip when they perform percutaneous insertion procedures with a long flexible needle, such as
prostate brachytherapy.
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