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Abstract: Ethanol is an energy commodity and a biofuel that has contributed to mitigate the use of
fossil fuels. Nonetheless, the environmental benefits derived from the use of ethanol can occur at the
expense of the agricultural commodities prices, affecting their volatilities and efficiency. This problem
occurs because most of the raw materials currently used to produce biofuels, such as corn in the US,
sugarcane in Brazil and oilseeds in Europe, are also important global commodities. This work adopts
several mathematical tools, namely the Detrended Fluctuation Analysis, fractal dimension, and the
Hurst and Lyapunov exponents. This set of tools measures the market efficiency and the prices’
predictability for the ethanol and some agriculture commodities that revealed price transmission
(cointegration), in a previous work. The results show that, in general, the ethanol has a lower
predictability horizon than the other commodities. Moreover, it is discussed a quantitative measure
to assess the market performance, by means of the efficiency index. We observe that the ethanol
efficiency is similar to the other agricultural commodities evaluated.
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1. Introduction

The mitigation of the climate change is a concern not only of researchers and governments,
but also of a significant part of the world’s population. Nevertheless, fossil fuels are used worldwide
and they play a major problem in the global warming and in climate change [1].

Since the 1970s, Brazil contributes to minimize these unwanted effects by increasing the usage of
biofuels, notably ethanol [2,3]. However, this topic is still in debate, as a future cropland expansion for
ethanol and other biofuels can indirectly increase deforestation, having the opposite effect from
the expected greenhouse gas emissions mitigation [4–6]. The ProAlcool program, the flex-fuel
(ethanol/gasoline) vehicles production and a large number of financial subsidies for sugarcane
producers (i.e., the feedstock for the production of Brazilian ethanol) were important encouraging
policies for the sugar and alcohol sector in Brazil [7,8].

Nowadays, Brazil is preparing to a new round of investments in this biofuel market. The new
Renovabio 2030 program is part of this initiative that aims the mandatory increasing blend of ethanol
in gasoline toward 30% by 2022 and 40% by 2030 [9], against the current 27%.

Indeed, in the last decade, the Brazilian ethanol production suffered a retention due to the
government policies to avoid (artificially) domestic gasoline prices fluctuation relatively to the
international market ones. For this reason, during this period, the gasoline prices in the domestic
market were forced down. To guarantee the competitivity of the ethanol, and vis a vis the gasoline
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prices, its cost was also kept low, making the sector inefficient or even unfeasible [10].
Several works studied the ethanol price dynamics [9,11–18]. Albarracine et al. [11] investigated

the efficiency of the energy (ethanol) and agricultural (sugar) markets and their findings pointed out
to a higher market efficiency for the energy than for the agriculture. Quintino et al. [16] analyzed
the relationship between the spot and futures prices of the ethanol in Brazil and unraveled that the
future market is more efficient in price discovery and information transmission. However, the cash
market leads to a long-run price discovery process. Other studies also pointed that the energy market
is influenced by the agricultural commodities prices [9,19–30].

We must have in mind not only the efficiency of a market is related to how its information is
transmitted to the prices, but also the significant magnitude of Brazil with regard to the ethanol and
agricultural production and the price transmission between two or more markets. The influence in
their efficiencies can lead to new strategies for traders, hedgers, and investors. For example, the more
efficient a market, the smaller the likelihood that information of other markets reflect significantly on
its prices. As ethanol is produced from sugarcane in Brazil, it is expected that it can also be affected by
the market volatility that is presented in such agricultural commodities.

In fact, the study of the volatility has been widely applied in commodity prices and leads
to the adoption of models that can effectively help predict those price imbalances [20,24,31–33].
Furthermore, the prices volatility mitigation is a practice that is also seen in country policies [34–36].
For example, in Brazil’s 2014 elections the government tried to control the volatility of ethanol and
gasoline prices by adopting a disguised freeze of their values. Despite that, the efficiency of a market
can also give information about their volatility, since efficiency is also an indicative of low volatility,
i.e., of small variance of the prices [37].

Hereafter, we adopt several tools [38–40], namely the Detrended Fluctuation Analysis (DFA),
fractal dimension (dA), and Hurst (H) exponent to measure the market efficiency through the so-called
“efficiency index” (EI) and the Lyapunov (λ) exponent, to quantify the prices’ predictability for the
ethanol and several agricultural commodities.

Such goods revealed price transmission (cointegration) in a previous study [19]. In fact,
not only some agricultural commodities [9,28], but also relevant commodities for Brazil’s economy,
(e.g., the cotton, live cattle, corn, soybean, Arabica coffee, and Robusta coffee) have a direct linkage
with the Brazilian ethanol.

The paper is structured as follows. In Section 2, the price time series (TS) are introduced, and the
DFA, H, dA, EI, and λ indices are formulated. In Section 3, the results are presented and discussed.
Finally, in Section 4, the main conclusions are outlined.

2. Data and Methodology

David et al. [19] investigated the cointegration and price transmission through a bivariate analysis
between the ethanol (ETH) and seven important commodities in the Brazilian GDP. Those agricultural
commodities consist of the sugar (SUG), cotton (COT), live cattle (LCA), Arabica coffee (ARA), Robusta
coffee (ROB), corn (COR), and soybean (SOY). The presence of breakpoints in the ethanol price series
was identified using the Bai–Perron algorithm [41], and the period and sub-periods were classified as
follows; Full-period (Jan/2011 to Dec/2018), Sub-period 1 (P1: Jan/2011 to May/2012), Sub-period 2
(P2: May/2012 to Nov/2013), Sub-period 3 (P3: Nov/2013 to Sept/2015), Sub-period 4 (P4: Sept/2015
to Oct/2017) and Sub-period 5 (P5: Oct/2017 to Dec/2018). Table 1 summarizes the cointegrations
found by David et al. [19].
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Table 1. Johansen cointegration by means of the Max-Eigen and Trace tests from David et al. [19].
Significance levels of 10% (*), 5% (**) and 1% (***) for rejecting the null-hypothesis of no cointegration.

Pairs Tests
Periods

Full-Period P1 P2 P3 P4 P5

ETH-SUG Max-Eigen 13.90 * 11.52 6.80 13.34 7.72 8.55
Trace 17.67 18.61 * 10.37 15.51 8.60 11.13

ETH-COT Max-Eigen 21.1 *** 14.87 * 5.57 8.63 7.61 10.51
Trace 26.6 *** 19.24 * 7.95 9.35 10.85 14.95

ETH-ARA Max-Eigen 9.88 10.34 4.27 9.61 11.66 9.87
Trace 13.56 11.34 7.56 18.75 * 14.55 14.56

ETH-ROB Max-Eigen 14.30 * 15.18 * 3.81 8.33 6.88 13.15
Trace 17.47 18.94 * 5.25 12.82 10.24 19.16 *

ETH-COR Max-Eigen 14.05 * 12.02 7.31 15.02 * 4.88 11.03
Trace 18.05 * 16.99 10.77 17.92 * 6.51 14.45

ETH-LCA Max-Eigen 11.43 12.65 8.40 13.72 5.58 7.33
Trace 14.23 14.51 10.47 20.75 *** 6.64 10.39

ETH-SOY Max-Eigen 10.63 11.57 7.54 8.70 8.94 7.41
Trace 15.43 13.08 11.38 9.57 13.14 9.47

The data was obtained from the Center for Advanced Studies on Applied Economics/University
of Sao Paulo (CEPEA/USP) and the CEPEA methodology for the daily pricing of these products can
be found on its website www.cepea.esalq.usp.br.

We propose the EI, calculated using H and dA, introduced by Kristoufek and Vosvrda [42] and
described later to assess the market efficiency, for the ethanol and agricultural commodities. The main
idea is to observe the distance of the actual market state with respect to an ideal benchmark index for
the full-period, and for the sub-periods P1, P3, and P5. Additionally, we employ the EI in two different
perspectives, where we firstly consider EI as a unique value representing each of the cointegrated TS
as described in Section 2.3. Secondly, we explore EI using a ”Rolling Window Approach”, that allows
the visualization of the dynamics of the index along time. Moreover, we investigate in Section 2.4 the
predictability of the price TS using the Lyapunov exponent.

2.1. Detrended Fluctuation Analysis and Hurst Exponent

The DFA scaling coefficients is one of the most employed methods to measure H, as it allows its
calculation using the slope of a variability function F(m) plotted versus m on a log–log scale, where m
are the time slots that divide the TS [43–46].

The H exponent was introduced by H. Hurst [39] and is related to the concepts of Brownian
motion (Bm) and fractional Brownian motion (fBm) being often used to quantify the long-range,
or long-memory dependence in the TS [47–50].

We find a variety of computational techniques for determining H, such as the classical rescaled
range analysis originally developed in [51,52], Fourier analysis using the FFT algorithm [53,54],
Detrended Moving Average (DMA) [55,56], and wavelet decomposition [57,58]. However, the DFA
allows calculating H with a simple procedure, avoiding the spurious detection of correlation or
self-similarity, and can be applied for processing nonstationary TS [59,60].

The H index [39,61] value can be interpreted considering the following properties,

• 0 < H < 1,
• H = 1/2, for a random walk (Bm). The TS has no long memory process,
• H > 1/2, for a persistent (long memory or correlated) process that leads to the concept of the fBm,

and
• H < 1/2, for an antipersistent (short-term memory, anticorrelated) process.

www.cepea.esalq.usp.br
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Thus, the closer the H value is to 1, the higher the probability for the next change to be positive,
if the last change was also positive and vice versa.

The calculation of the H index using the DFA involves several steps. The first step [59,62] consists
on the following estimation,

P(i) =
N

∑
i=1

(Pt − P), (1)

where N is the number of observations in the TS, Pt represents the value (price) observed at the time
instant t, and P denotes the arithmetic average of the price. The second step [59,62] calculates the
quantity F(m), that is, the root-mean-square error (RMSE), by means of

F(m) =

√√√√ 1
N

N

∑
i=1

[P(i)− Pm(i)]2, (2)

where Pm(i) is the ordinary least squares value that is subtracted from P(i), for removing any trend.
The process is repeated for distinct values of m and the slope of the line relating log(F(m)) with

log(m) determines the scaling H exponent.
If k ∈ N, then the kth order auto-covariance is defined as

γ(k) = Covariance[Pt, Pt+k], (3)

and the kth order autocorrelation can be determined as

ρ =
γ(k)√

Var(Pt)
√

Var(Pt+k)
=

γ(k)
γ(0)

. (4)

Peters [63] explored an important relation between H and the autocorrelation function ρ, given by

ρ = 22H−1 − 1. (5)

In this work, the value of H is used as a component to calculate the EI index for the ethanol
and the cointegrated agricultural commodities. If we obtain H > 1/2, then it indicates the long-term
memory in the TS [47]. However, the index can be affected by short-term memory bias or distributional
properties [64]. Therefore, H values deviating from the theoretical value of H = 1/2 do not necessarily
indicate the absence of random walk phenomenon. To mitigate this problem, other measures are
proposed in addition to H in the follow up.

2.2. Fractal Dimension

The local memory of a TS can be measured by the fractal dimension dA, with 1 < dA ≤ 2.
The index dA is intensively connected to H, so that dA + H = 2. This relationship allows the accurate
reflection from a local behavior (fractal dimension) to a global behavior (long-term memory) [42] of a
given TS.

Similarly to the H definition, the dA properties [42,64] can also be summarized as three
different intervals:

• 1 < dA ≤ 2;
• dA = 3/2, for a random walk (Bm) such that the TS has no long memory process and no local

anticorrelations;
• dA < 3/2, corresponds to a persistence (long memory or correlated) process that leads to the

concept of the fBm;
• dA > 3/2, for an antipersistent process (short-term memory, anticorrelated).
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In this work, the dA is obtained from two methods, namely, by means of the so-called Hall-Wood
(HW) and the Robust Genton (RG) estimators [40]. Therefore, both ̂dAHW and ̂dAHW are combined and
its mean value M̂D is obtained in order to calculate the EI index as described in Section 2.3.

2.2.1. Hall-Wood Estimator

The HW proposed in [65] is a box-counting estimator that admits small scales. The area of
the boxes covers the curve instead of just their sum. Formally, let us have a scale εl = l/n, where
l = 1, 2, 3, ...n. The aforementioned area is

̂A(l/n) = (l/n)
[n/l]

∑
i=1

(xil/n − x(i−1)l/n), (6)

where [n/l] is the integer part of n/l. The HW estimator is given by the expression

̂dAHW = 2−
(

L

∑
i=1

(si − s) log ̂(A(l/n)

)(
L

∑
i=1

(si − s)2

)−1

, (7)

where L ≥ 2, sl = log(l/n) and s = (1/L)∑L
i=1 si. Using L = 2, as suggested by Hall-Wood to avoid

bias [65], one obtains ̂dAHW = 2− log ̂(A(2/n))− log ̂(A(l/n))
log(2)

. (8)

Similarly to H, the fractal dimension ̂dAHW is applied as a component to calculate the EI index for
the ethanol and for the cointegrated agricultural commodities.

2.2.2. Robust Genton Estimator

Genton [66] introduced the RG estimator to calculate the dA based on a highly robust estimator of
scale. It is well known classical variogram estimators are not robust against outliers in the data and,
therefore, the estimator developed by Genton is adopted. The calculation is given by

̂V2(l/n) =
1

2(l − n)

n

∑
i=l

(Xi/n − X(i−l)/n)
2, (9)

Similarly to the HW, one obtains the RG estimator as

d̂ARG = 2− 1
2

(
L

∑
i=1

(si − s) log ̂(V2(l/n))

)(
L

∑
i=1

(si − s)2

)−1

, (10)

where L ≥ 2, sl = log(l/n) and s = (1/L)∑L
i=1 si. Using L = 2 to mitigate bias, one obtains

d̂ARG = 2− log ̂(V2(2/n))− log ̂(V2(l/n))
2 log(2)

. (11)

The fractal dimension d̂ARG is also used as a component to calculate the EI index for the ethanol
and the cointegrated agricultural commodities.
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2.3. Market Efficiency Measure

The EI index is defined [42,64,67] as

EI =

( M̂H −M∗H
RH

)2

+

(
M̂D −M∗D

RD

)2
1/2

, (12)

where M∗H = 1/2 and M∗D = 3/2 are the expected values for the efficient market and RH and RD
are the ranges of the measures related H and dA, respectively. We note that M̂H is the measure of
H and the value M̂D is obtained from M̂D = ( ̂dAHW + d̂ARG )/2, with ̂dAHW and d̂ARG calculated by
Equations (8) and (11), respectively. We consider RH = 2 for the Hurst exponent and RD = 1 for the
fractal dimension, so that the maximum deviation from the efficient market value is the same for
all measures.

Values of EI near zero imply a more efficient market, meaning lower distance (deviation) between
the measured and the market efficiency values.

2.4. Lyapunov Method

The Lyapunov concepts [68,69] are a useful mathematical tool for analyzing non-linear and
chaotic systems. The Lyapunov (λ) exponent [70] determines how the presence of chaos addressees
the predictability of the future [71].

As the H index is related to the fractal dimension (dA) of a TS by the condition dA = 2− H,
a relation between the Hurst and Lyapunov exponents can be estimated from the global dimension
(dG). This is used to find the neighboring points in the TS and must be at least or greater than 2dA in
order to avoid false neighbors in the calculation [70]. Then, one can write [70,72]

dG ≥ 4− 2H. (13)

In this work, we obtain the Lyapunov exponent from a TS by means of the algorithm developed
by Wolf et al. [71]:

λi(t) =
1

tM − t0

M

∑
k=1

log2

(
εi(tk)

ε0(tk−1)

)
, (14)

where M is the total number of replacement steps and tk − tk−1 = ∆ is the time step.
The signs of the Lyapunov exponents provide information about the system dynamics.

Indeed the value of λ is an important index to diagnose chaotic motion since a positive value indicates
that the system is chaotic. Besides, the Lyapunov exponent can be an indicator of how far into the
future forecasts can be made in a TS [73]. Bearing this fact in mind, we applied such technique to
calculate the Lyapunov exponent for the price TS.

3. Results and Discussion

In this section, several numerical experiments are conducted to explore the Hurst exponent,
the fractal dimension, the efficiency market index, and the Lyapunov exponent. We use H and dA
in order to obtain the EI index. We highlight that the closer EI is to zero, the higher is the efficiency
of the market. Also, the Lyapunov exponent is used to evaluate the maximum predictability of a
price TS. The numerical value 1/λ can be calculated and interpreted as a quantitative measure of the
predictability of the future of the TS based on its past.

Table 2 and Figure 1 show that the ROB is the most efficient (EI = 0.0672), whereas COR, SUG,
ETH, and COT are less efficient when considering the full-period. Moreover, the COT has also the
lowest value of λ implying the highest prediction horizon for this period. The similarity of the EI
values for the ETH and SUG may indicate a market linkage effect between those commodities. On the
other hand, the ROB is the most efficient and the ETH presents the shortest prediction horizon (e.g.,
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1/λ = 3.2520), which is inferior to four full days.
For P1 the ROB shows the lowest value of EI, followed by the SUG, ETH, and COT. Also, SUG

achieves the highest prediction horizon when compared to the other commodities.
It is possible to note that the ARA has the lowest values of EI = 0.0224 and also the lowest value

of the prediction horizon (e.g., 1/λ = 2.5803) during P3. The values of EI for the other commodities
analyzed in this period are 0.1477, 0.1027, and 0.0961 for COR, LCA, and ETH, respectively.

The ETH achieved its lowest value of EI during P5 when compared to all periods investigated in
this work, indicating a moving towards the efficiency market for the ETH. In an opposite direction,
ROB has been increasing its EI value over the evaluated periods.

We also adopt a “Rolling Window Approach” to accurately explore the EI dynamics along
time. This approach means that the EI is calculated in a rolling fixed window with a length of
100 observations. Therefore, we start at the first of the one-hundred observations and roll until the last
one, for a sample of 135 observations. The window size is chosen having in mind that it must be long
enough to reflect the index dynamics and provide statistical significance [74,75].

Figure 2 depicts the dynamics of EI for all periods and commodities with cointegrations confirmed
in [19]. Figure 2a shows the results achieved for the full-period. One can note that the price series
of the ROB commodity is the one that fluctuates closer to the values pointing to a more efficient
market. In turn, the COT commodity presents the highest EI values for the full-period. Despite
the Brazilian cotton market not presenting strong evidences of price transmission with international
prices [76,77], it is widely known that major players (e.g., the USA) affect the price dynamics of this
sector. In consequence, the Brazilian cotton sector still has difficulties to compete with international
prices, resulting in importation as the most feasible option for domestic firms in some cases [78].
Figure 2b illustrates the dynamic behavior of EI when P1 is considered. Also, the value for the ROB
maintains its state achieving the lowest values for the EI index.

Table 2. The Hurst, Fractal Dimension, Efficiency Indexes, and Lyapunov exponents values for the
applied commodities.

Commodities Hurst (H) Fractal Dimension (dA) EI Lyapunov (λ) 1/λ (days)

Full-period

SUG 0.7381 1.3105 0.1521 0.2026 4.9371
COT 0.7167 1.1491 0.2062 0.1697 5.8917
ETH 0.6175 1.2113 0.1559 0.3075 3.2520
COR 0.6211 1.3063 0.1142 0.2181 4.5844
ROB 0.6318 1.4737 0.0672 0.2923 3.4216

P1

SUG 0.7614 1.3487 0.1510 0.1901 5.2598
COT 0.7884 1.0215 0.2794 0.3868 2.5856
ETH 0.6585 1.1620 0.1867 0.4444 2.2501
ROB 0.7610 1.5675 0.1348 0.5672 1.7632

P3

ARA 0.4820 1.4590 0.0224 0.3876 2.5803
LCA 0.7030 1.5318 0.1027 0.3605 2.7740
ETH 0.5840 1.3271 0.0961 0.2935 3.4075
COR 0.6988 1.2816 0.1477 0.2497 4.0053

P5
ETH 0.6699 1.4989 0.0849 0.1576 6.3472
ROB 0.7271 1.1515 0.2080 0.2684 3.7265
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Figure 1. Static efficiency index results for the cointegrated commodities and its respective periods.

We verify from Figure 2c that the ARA presents lower values of EI during P3. Also, the COR
and LCA have the highest values of EI and can be moving along time very closely or even together.
As pointed out in [19], the cointegration between the ETH and COR prices possibly forced the LCA to
be also cointegrated with the ETH. This evidence becomes clearer when EI is analyzed, as the two
commodities are also moving together in terms of efficiency.

Figure 2d illustrates the dynamic behavior of EI for ETH and ROB during P5, being the only
cointegrated pair for this period [19]. Note that the values of EI are increasing along time in P5 for
the ETH indicating that it is losing efficiency. Thus, it can be an evidence that after the Brazilian
presidential process, when the prices of gasoline began fluctuating back from international prices,
the ETH prices increased inefficiency in a volatile manner because of the discontinuation of the effective
policy regulations. Conversely, the ROB is decreasing its EI values and pointing to a gain of efficiency.

The pattern of high efficiency showed by the ROB during the full-period, P1 and P5, as well as by
the ARA in P3, is expected for these commodities since coffee is the most liquid and oldest contract
traded in the Brazilian Exchange (B3). Therefore, traders and market agents tend to respond faster to
changes in the market information [78,79].

In the following, we pay special attention to the Lyapunov exponent for the cointegrated TS and
its periods. Figure 3 shows that λ is positive for all commodities and for all periods explored, meaning
that the TS have a chaotic behavior and a low predictability. We highlight that the closer λ is to 0,
the greater is the prediction horizon calculated by 1/λ. We note that the smallest values of λ occur
for surfaces related to the full-period (Figure 3a), and also to the subperiod P5 (Figure 3d), indicating
a greater predictability for these periods when compared to the subperiods P1 and P3 in Figure 3b,c,
respectively. Anyway, for all the commodities price series, an accurate predictability is limited to a
few days.
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(a) Full-period (b) Subperiod 1

(c) Subperiod 3 (d) Subperiod 5

Figure 2. Dynamic efficiency index results for the cointegrated commodities and their respective periods.

(a) Full period (b) Subperiod 1

(c) Subperiod 3 (d) Subperiod 5

Figure 3. Lyapunov exponents results for the cointegrated commodities and their respective periods.

4. Conclusions

The detrended fluctuation analysis, fractal dimension, and the exponents of Hurst and Lyapunov
provide quantitative information about market efficiency and prices’ predictability for the ethanol and
some agriculture commodities, whose price transmission (cointegration) was reported in a previous
work. All results suggest that the measure of market efficiency is similar for most commodities and
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that the ethanol has lower predictability than the others. However, the coffee commodities (ARA and
ROB) showed higher efficiency for all periods. This behavior is expected since coffee is the most liquid
and the oldest contract traded in the Brazilian Exchange, and thus market agents tend to respond faster
to market information. The low predictability of ethanol can indicate an increase in its volatility in the
posterior period (P5) of the energy policies maintaining energy prices low for the domestic market.
Also, when the ETH is cointegrated with the COR and LCA during P3, the similarity between the COR
and LCA in what concerns their EI dynamics indicates a strong linkage between these markets even in
terms of efficiency.

The results can provide assertive information about predictability and efficiency, contributing
to the clarification of price relationships between the ethanol and other commodities. This can
help agents in the markets to make decisions involving hedging, risk exposure, and investment
incentives, as inefficiency and prediction horizon are features that can lead to better, more accurate
forecasting strategies.
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The following abbreviations are used in this manuscript.

TS Time series
CEPEA Center for Advanced Studies on Applied Economics/University of Sao Paulo
ETH Brazilian ethanol
SUG Sugar
COT Cotton
LCA Live cattle
ARA Arabica coffee
ROB Robusta coffee
COR Corn
SOY Soybean
P1 Sub-period 1
P2 Sub-period 2
P3 Sub-period 3
P4 Sub-period 4
P5 Sub-period 5
DFA Detrended Fluctuation Analysis
EI Efficiency Index
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40. Gneiting, T.; Ševčíková, H.; Percival, D.B. Estimators of fractal dimension: Assessing the roughness of time

series and spatial data. Stat. Sci. 2012, 247–277. [CrossRef]
41. Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom.

2003, 18, 1–22. [CrossRef]
42. Kristoufek, L.; Vosvrda, M. Measuring capital market efficiency: Global and local correlations structure.

Phys. A Stat. Mech. Appl. 2013, 392, 184–193. [CrossRef]
43. Teng, Y.; Shang, P. Detrended fluctuation analysis based on higher-order moments of financial time series.

Phys. A Stat. Mech. Appl. 2018, 490, 311–322. [CrossRef]
44. Shang, P.; Lu, Y.; Kamae, S. Detecting long-range correlations of traffic time series with multifractal detrended

fluctuation analysis. Chaos Solitons Fractals 2008, 36, 82–90. [CrossRef]
45. David, S.A.; Quintino, D.D.; Inacio, C.M.C., Jr.; Machado, J.A.T. Fractional dynamic behavior in ethanol

prices series. J. Comput. Appl. Math. 2018, 339, 85–93. [CrossRef]
46. Ayadi, O.F.; Williams, J.; Hyman, L.M. Fractional dynamic behavior in Forcados Oil Price Series:

An application of detrended fluctuation analysis. Energy Sustain. Dev. 2009, 13, 11–17. [CrossRef]
47. Granger, C.W.J.; Joyeux, R. An introduction to long-memory time series models and fractional differencing.

J. Time Ser. Anal. 1980, 1, 15–29. [CrossRef]
48. Cizeau, P.; Liu, Y.; Meyer, M.; Peng, C.K.; Stanley, H.E. Volatility distribution in the S&P500 stock index.

Phys. A Stat. Mech. Appl. 1997, 245, 441–445. [CrossRef]
49. Ausloos, M.; Vandewalle, N.; Boveroux, P.; Minguet, A.; Ivanova, K. Applications of statistical physics to

economic and financial topics. Phys. A Stat. Mech. Appl. 1999, 274, 229–240. [CrossRef]
50. Di Matteo, T.; Aste, T.; Dacorogna, M.M. Scaling behaviors in differently developed markets. Phys. A Stat.

Mech. Appl. 2003, 324, 183–188. [CrossRef]
51. Mandelbrot, B.B. Statistical methodology for nonperiodic cycles: From the covariance to R/S analysis.

In Annals of Economic and Social Measurement, Volume 1, Number 3; NBER: Cambridge, MA, USA, 1972;
pp. 259–290.

52. Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long
run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [CrossRef]

http://dx.doi.org/10.1111/j.1574-0862.2010.00464.x
http://dx.doi.org/10.1016/j.energy.2019.05.067
http://dx.doi.org/10.1093/erae/jbq046
http://dx.doi.org/10.1016/j.eneco.2015.11.018
http://dx.doi.org/10.1016/j.resourpol.2016.08.005
http://dx.doi.org/10.22004/ag.econ.122530
http://dx.doi.org/10.1007/978-1-4419-7634-51
http://dx.doi.org/10.1111/1467-8489.12210
http://dx.doi.org/10.1007/s11698-010-0055-y
http://dx.doi.org/10.1038/srep00315
http://www.ncbi.nlm.nih.gov/pubmed/22419991
http://dx.doi.org/10.1214/11-STS370
http://dx.doi.org/10.1002/jae.659
http://dx.doi.org/10.1016/j.physa.2012.08.003
http://dx.doi.org/10.1016/j.physa.2017.08.062
http://dx.doi.org/10.1016/j.chaos.2006.06.019
http://dx.doi.org/10.1016/j.cam.2018.01.007
http://dx.doi.org/10.1016/j.esd.2008.12.002
http://dx.doi.org/10.1111/j.1467-9892.1980.tb00297.x
http://dx.doi.org/10.1016/S0378-4371(97)00417-2
http://dx.doi.org/10.1016/S0378-4371(99)00307-6
http://dx.doi.org/10.1016/S0378-4371(02)01996-9
http://dx.doi.org/10.1029/WR005i005p00967


Appl. Sci. 2019, 9, 5303 13 of 14

53. Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time
averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [CrossRef]

54. Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of
time series. Int. J. Remote Sens. 2000, 21, 1911–1917. [CrossRef]

55. Carbone, A. Detrending moving average algorithm: A brief review. Dimension 2009, 49, 59. [CrossRef]
56. Xu, L.; Ivanov, P.C.; Hu, K.; Chen, Z.; Carbone, A.; Stanley, H.E. Quantifying signals with power-law

correlations: A comparative study of detrended fluctuation analysis and detrended moving average
techniques. Phys. Rev. E 2005, 71, 051101. [CrossRef] [PubMed]

57. Simonsen, I.; Hansen, A.; Nes, O.M. Determination of the Hurst exponent by use of wavelet transforms.
Phys. Rev. E 1998, 58, 2779. [CrossRef]

58. Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge,
UK, 2006; Volume 4.

59. Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of
DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [CrossRef] [PubMed]

60. Shieh, S.J. Long memory and sampling frequencies: Evidence in stock index futures markets. Int. J. Theor.
Appl. Financ. 2006, 9, 787–799. [CrossRef]

61. Tarnopolski, M. On the relationship between the Hurst exponent, the ratio of the mean square successive
difference to the variance, and the number of turning points. Phys. A Stat. Mech. Appl. 2016, 461, 662–673.
[CrossRef]

62. Serinaldi, F. Use and misuse of some Hurst parameter estimators applied to stationary and nonstationary
financial time series. Phys. A Stat. Mech. Appl. 2010, 389, 2770–2781. [CrossRef]

63. Peters, E.E. Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility; John
Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 1.

64. Kristoufek, L. How are rescaled range analyses affected by different memory and distributional properties?
A Monte Carlo study. Phys. A Stat. Mech. Appl. 2012, 391, 4252–4260. [CrossRef]

65. Hall, P.; Wood, A. On the performance of box-counting estimators of fractal dimension. Biometrika
1993, 80, 246–251. [CrossRef]

66. Genton, M.G. Variogram fitting by generalized least squares using an explicit formula for the covariance
structure. Math. Geol. 1998, 30, 323–345.:1021733006262. [CrossRef]

67. Kristoufek, L.; Vosvrda, M. Commodity futures and market efficiency. Energy Econ. 2014, 42, 50–57.
[CrossRef]

68. Wolf, A. Quantifying chaos with Lyapunov exponents. Chaos 1986, 16, 273–290.
69. Sprott, J.C. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003; Volume 69.
70. Bryant, P.; Brown, R.; Abarbanel, H.D.I. Lyapunov exponents from observed time series. Phys. Rev. Lett.

1990, 65, 1523–1526. [CrossRef] [PubMed]
71. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series.

Phys. D Nonlinear Phenom. 1985, 16, 285–317. [CrossRef]
72. Hanias, M.; Magafas, L.; Stavrinides, S. Chaotic Analysis of Gold Price Index. J. Eng. Sci. Technol. Rev.

2015, 8, 16–18. [CrossRef]
73. Casdagli, M. Nonlinear prediction of chaotic time series. Phys. D Nonlinear Phenom. 1989, 35, 335–356.

[CrossRef]
74. Jiang, Y.; Nie, H.; Ruan, W. Time-varying long-term memory in Bitcoin market. Financ. Res. Lett.

2018, 25, 280–284. [CrossRef]
75. Sensoy, A.; Tabak, B.M. Dynamic efficiency of stock markets and exchange rates. Int. Rev. Financ. Anal.

2016, 47, 353–371. [CrossRef]
76. Nigatu, G.; Adjemian, M.K. The U.S. Role in the Price Determination of Major Agricultural Commodities.

In Proceedings of the 2017 Allied Social Sciences Association (ASSA) Annual Meeting, Chicago, IL, USA,
6–8 January 2017; doi:10.22004/ag.econ.250119. [CrossRef]

77. Costa, S.M.A.L.; Ferreira Filho, J.B.d.S. Commercial liberalization in Brazil and integration in the markets of
agricultural commodities: The cotton, corn and rice markets. Rev. Econ. E Sociol. Rural 2000, 38, 183–210.

http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1080/014311600209814
http://dx.doi.org/10.1109/TIC-STH.2009.5444412
http://dx.doi.org/10.1103/PhysRevE.71.051101
http://www.ncbi.nlm.nih.gov/pubmed/16089515
http://dx.doi.org/10.1103/PhysRevE.58.2779
http://dx.doi.org/10.1103/PhysRevE.49.1685
http://www.ncbi.nlm.nih.gov/pubmed/9961383
http://dx.doi.org/10.1142/S0219024906003780
http://dx.doi.org/10.1016/j.physa.2016.06.004
http://dx.doi.org/10.1016/j.physa.2010.02.044
http://dx.doi.org/10.1016/j.physa.2012.04.005
http://dx.doi.org/10.1093/biomet/80.1.246
http://dx.doi.org/10.1023/A:1021733006262
http://dx.doi.org/10.1016/j.eneco.2013.12.001
http://dx.doi.org/10.1103/PhysRevLett.65.1523
http://www.ncbi.nlm.nih.gov/pubmed/10042292
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.25103/jestr.081.04
http://dx.doi.org/10.1016/0167-2789(89)90074-2
http://dx.doi.org/10.1016/j.frl.2017.12.009
http://dx.doi.org/10.1016/j.irfa.2016.06.001
http://dx.doi.org/10.22004/ag.econ.250119


Appl. Sci. 2019, 9, 5303 14 of 14

78. Mattos, F.; Garcia, P. Price discovery in thinly traded markets: Cash and Futures relationships in Brazilian
agricultural futures markets. In Proceedings of the NCR-134 Conference on Applied Commodity Price
Analysis, Forecasting, and Market Risk Management, St. Louis, MO, USA, 19–20 April 2004.

79. Bohl, M.T.; Gross, C.; Souza, W. The role of emerging economies in the global price formation process of
commodities: Evidence from Brazilian and U.S. coffee markets. Int. Rev. Econ. Financ. 2019, 60, 203–215.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.iref.2018.11.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data and Methodology
	Detrended Fluctuation Analysis and Hurst Exponent
	Fractal Dimension
	Hall-Wood Estimator
	Robust Genton Estimator

	Market Efficiency Measure
	Lyapunov Method

	Results and Discussion
	Conclusions
	References

