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Abstract: Phytoremediation is a green technology that aims to take up pollutants from soil or water.
Metals are one of the targets of these techniques due to their high toxicity in biological systems,
including plants and animals. Their elimination or, at least, decrease will help keep them from being
incorporated in the trophic chain and thus reaching animal and human food. The metal removal
efficiency of plants is closely related to their growth rate, tolerance, and their adaptability to different
environments. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in
animals, plants, fungi, and bacteria. In plants, it plays an important role related to antioxidant activity,
but also as an important redox network regulator. Thus, melatonin has been defined as a biostimulator
of plant growth, especially under environmental stress conditions, whether abiotic (water deficit and
waterlogging, extreme temperature, UV radiation, salinity, alkalinity, specific mineral deficit/excess,
metals and other toxic compounds, etc.) or biotic (bacteria, fungi, and viruses). Exogenous melatonin
treated plants have been seen to have a high tolerance to stressors, minimizing possible harmful effects
through the control of reactive oxygen species (ROS) levels and activating antioxidative responses.
Furthermore, important gene expression changes in stress specific transcription factors have been
demonstrated. Melatonin is capable of mobilizing toxic metals, through phytochelatins, transporting
this, while sequestration adds to the biostimulator effect of melatonin on plants, improving plant
tolerance against toxic pollutants. Furthermore, melatonin improves the uptake of nitrogen (N),
phosphorus (P), and sulfur (S) in stress situations, enhancing cell metabolism. In light of the above, the
application of melatonin seems to be a useful option for clearing toxic pollutants from the environment
by improving phytoremediation. Interestingly, a variety of stressors induce melatonin biosynthesis in
plants, and the study of this endogenous response in hyperaccumulator plants may be even more
interesting as a natural response of the phytoremediation of diverse plants.

Keywords: abiotic stress; biostimulators; cadmium; cobalt; copper; heavy metals; lead; nickel; plant
growth promoters; zinc

1. Introduction

Phytoremediation may be described as a technology that uses the ability of certain plants,
known as hyperaccumulators, to take up pollutants from soil or water. Phytoremediation is of
particular interest because it is a promising green technology, low cost, and eco-friendly [1]. However,
hyperaccumulator plants are rare, and generally, their slow growth and small biomass limits their
efficiency for phytoremediation purposes. The hyperaccumulator plants used for phytoremediation
mainly accumulate metals in the shoot rather than the root [2]. Compared with non-accumulator
plants, hyperaccumulating plants can concentrate 100 to 1000 times more heavy metals such as copper
(Cu), zinc (Zn), cobalt (Co), manganese (Mn), nickel (Ni), and lead (Pb) [3]. Each plant species acts
in a specific way in phytoremediation, taking up heavy metals by many mechanisms, including
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accumulation, exclusion, translocation, osmoregulation, and distribution. Of these, the most common
is via the accumulation, translocation, and concentration of heavy metals in the aerial parts [4].

Various processes have been used as phytoremediation techniques, including phytoextraction,
phytodegradation, rhizofiltration, phytostabilization, phytovolatilization, phytodesalination, and
phytofiltration [5]. Phytoremediation can be carried out on site, thus reducing exposure risks for
cleanup personnel or secondary contamination during transport. However, the physical, chemical,
and biological properties of mine tailings (or other contaminated soils) may limit plant growth and
their subsequent use in agriculture [6]. Three major phytoremediation techniques can be distinguished,
depending on different plant properties: phytoextraction, phytostabilization, and phytovolatilization [7].
In the first method, plants are used to take up contaminants or metals via their roots. This type
of extraction involves the accumulation or hyperaccumulation of metals in the above ground plant
biomass. Contaminants or metals are then stored in the harvestable parts of plants and disposed of as
hazardous waste or incinerated for metal recovery. In the case of phytostabilization, plants are used as
a vegetation “cap” to not only reduce the mobility and bioavailability of contaminants in the natural
environment, but also the availability for entry into the human food chain. The plant canopy serves to
reduce air dispersion, while plant roots prevent water erosion, immobilize heavy metals, and prevent
leaching. Thus, phytostabilization is a promising technique for the long term stabilization of tailings by
creating a vegetation cap. Finally, phytovolatilization involves plants taking up pollutants (including
organic contaminants) together with water and releasing them into the atmosphere through the stomata;
some of these pollutants pass through the plants and reach the leaves and thereby evaporate into the
atmosphere [8,9].

In constructed wetlands, the interaction between water/soil, plants, and microorganisms occurs
through chemical, physical, and biological processes. A wide range of wastewaters such as municipal,
industrial, agricultural, and storm waters can be remediated in constructed wetlands. The efficiency of
heavy metal uptake by the plants they contain has been demonstrated [10]. The rate of metal removal
by plants varies widely and is related to plant growth rate, plant species, and the concentration of
heavy metals in the wastewater [11]. In wetlands constructed for phytoremediation or wastewater
treatment, the residence time of metals in plants and the potential release of metals closely depend on
the distribution of metals within the plants. Artificial floating islands, another type of constructed
wetlands, are a soil-less planting structure constructed with floating mats, floating aquatic plants,
sediment rooted emergent wetland plants, and related ecological communities. In pilot studies, this
system was seen to improve the quality of polluted waters by removing organic matter, suspended
solids, nutrients, and metals [12].

For the above described systems, aquatic plant species are of interest for use in phytoremediation
processes because they can accumulate more than 1450-fold the concentration of the heavy elements
in water [13]. In free-floating macrophytes, the entire plant body is above water except the roots,
while in submerged macrophytes, the whole plant body remains submerged in water. For their
part, emergent macrophytes are plants rooted in soil, but which emerge to reach significant heights
above the water. A wide range of wetland plant species, such as water hyacinths Eichhornia spp.,
Salvinia spp., water lettuce (Pistia stratiotes), giant duckweed, duckweed (Lemna minor), and Azolla spp.,
submerged species such as Potamogeton spp. and Myriophyllum spp., and emergent species like Typha
spp., Scirpus spp., Limnocharis flava, Spartina spp., Cyperus spp., and Phragmites spp. have shown their
potential for removing metals from various type of wastewaters [14,15]. An extensive web-list of plant
hyperaccumulators, classified by the metals they absorb, can be consulted [16].

Selecting the appropriate plant species is one of the most important considerations in the
phytoremediation process. The plant species chosen should be capable of tolerating high metal levels
and extreme soil conditions, such as high acidity, salinity, or alkalinity [17]. In addition, plants for
revegetation should have other favorable attributes such as dense rooting systems, relatively fast
growth rates, and high biomass production [7]. Furthermore, in semiarid mining regions, plant species
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should also be able to adapt to drought. Metal tolerant native plants are usually selected because they
demonstrate tolerance to local environmental conditions and usually grow well and proliferate [18].

Suitable plants for phytoremediation can be divided into two groups based on their function:
metal hyperaccumulators and biomass producers [19,20]. Metal hyperaccumulators are plants that
exhibit higher levels of metal ion absorption in their tissues, but usually do not produce a high
amount of biomass and have a slow growth rate. Brassicaceae spp. are known to have exceptionally
high metal accumulating capacities [21]. Some authors have reported that Thlaspi species (typical
hyperaccumulators) can accumulate over 1% Zn, 0.1% Ni, and 0.1% Cd in dry tissues. In addition,
other heavy metals, including arsenic (As), Cu, Co, Mn, and Pb, can potentially be hyperaccumulated
from mine tailings [19,20]. Biomass producers include plants that have a high biomass production and
growth rate, but a relatively low metal uptake capacity, such as Brassica juncea (Indian mustard) [21].

Nutrient shortages are one of the main limitations of plants used for phytoremediation in mining
areas, so it is generally necessary to amend the soils. Other biotechniques include: (i) enrichment with
microorganisms, which can play an important role in solubilizing minerals such as P and potassium
(K), releasing nutrients, and supplying them to plants through in situ bioremediation processes [22];
(ii) the use of metabolites such as organic acids, amino acids, and vitamins, which have also been
demonstrated to enhance plant growth [23]; (iii) the addition of plant hormones, siderophores, and
some enzymes synthesized by microorganisms, which may help plant growth [24–26]. In general,
plants inoculated with plant growth promoting bacteria (PGPB) accumulate greater amounts of heavy
metals than non-inoculated plants [27].

2. How Can Melatonin Contribute in a More Efficient Phytoremediation?

Decarboxylation of aromatic amino acids by specific decarboxylases leads to the production
of starter compounds for the biosynthesis of secondary metabolites involved in stress resilience
mechanisms [28]. More in particular, plant tryptophan decarboxylase (TDC) converts tryptophan into
tryptamine [28], the precursor of N-acetyl-5-methoxytryptamine, known commonly as melatonin [29].
The protective effect of melatonin against abiotic stress situations in plants has been widely studied.
Melatonin acts as an effective free radical scavenger against harmful reactive molecules, both reactive
oxygen (ROS) and reactive nitrogen (RNS) species, such as hydroxyl radical, superoxide anion, singlet
oxygen, hydrogen peroxide, hypochlorous acid, nitric oxide, peroxynitrite anion, peroxynitrous
acid, and lipid peroxyl radicals, among others. The excellent properties of melatonin as an in vivo
antioxidant against ROS/RNS, the absence of pro-oxidant effects, and the cascade antioxidant effect of
melatonin related compounds have been the objective of a great number of researchers [30]. Melatonin
is a more effective antioxidant than vitamin C and E, with a scavenging activity 4–6 fold higher [31].
Furthermore, the amphipathic properties of melatonin permit it to scavenge free radicals in both
hydrophilic and lipophilic media [30,32–38]. This direct chemical action of melatonin with ROS and
RNS has been referred to as a receptor independent action [39].

In addition to this direct action, melatonin is capable of inducing many changes in gene expression.
Melatonin changes the expression of a great number of gene elements in different physiological
situations both in plant and animal cells [40–42]. Among the most studied melatonin mediated aspects
in plants are the responses to abiotic stress (heat, cold, drought, salinity, alkalinity, heavy metals, and
other toxic agents such as herbicides, fungicides, diverse contaminants) and biotic stress (fungi, virus,
and bacteria). Furthermore, processes such as foliar senescence, growth and development, germination,
rooting induction, flowering, parthenocarpy, fruit set, and fruit ripening were studied. Others
aspects, such as photosynthesis and its regulation, primary and secondary metabolism, including
osmoregulation, and the regulation of plant hormones (auxin, gibberellins, cytokinins, abscisic acid,
ethylene, jasmonates, salicylic acid, polyamines, brassinosteroids, strigolactones) have been also
analyzed [41,43–49].

In general, melatonin induces several gene expression changes in plants that result in a
biostimulating response [41]. Due to the diversity of its actions, melatonin has been proposed
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as a plant master regulator, but also as a new plant hormone since its receptor (PMTR1) has been
identified in Arabidopsis [41,50]. Melatonin acts as a main regulator of the redox network in plants,
controlling directly and indirectly the ROS/RNS levels and the gene expression of many factors through
the nitric oxide signaling cascade, among other pathways [51]. As a result, melatonin regulates redox
network homeostasis, balancing several ROS and RNS and related key enzyme expressions (NOS-like,
NR, RbOHs, ASA-GSH cycle, antioxidant enzymes). It is also one of the main intermediates in many
cellular and physiological responses, as is depicted in the integrative model of Figure 1.

Figure 1. Model of the redox network regulated by melatonin and the effect of abiotic stressors.

3. Metals as a Severe Abiotic Stress and Effects Induced by Melatonin in Plants

The metal removal efficiency of plants is highly related to their growth rate, tolerance to high
levels of metals, and adaptability to different environments. Melatonin is widely distributed among
different plants, including hyperaccumulators such as water hyacinth, sunflower, mustard plants,
radish, etc. [43], which suggests a probable role in phytoremediation, especially due to its high levels.

Table 1 shows several studies with metals and the effects observed by exogenous melatonin
treatment. Furthermore, several studies with transgenic plants overexpressing melatonin biosynthesis
genes, which extra-accumulate endogenous melatonin, have been made [44].

Several metals and non-metal elements have been used to study the resistance, tolerance,
mobilization, accumulation, and diverse metabolic and physiological changes that occur in plants
treated with melatonin compared with control plants. The first report related to phytoremediation and
melatonin was published by Tan and co-workers (2007), who observed high contents of melatonin and
melatonin by-products in water hyacinth [52]. The capacity of these plants to tolerate high levels of
toxic pollutants was proposed. In a related study, the tolerance of pea plants to copper (Cu) significantly
improved after supplementation with melatonin [53].

Cadmium (Cd) has been the most widely assayed heavy metal in melatonin treated plants of
several different species (Table 1). In general, melatonin treatment increases Cd tolerance, plant growth,
and photosynthesis efficiency compared with non-treated plants. Furthermore, their water content and
ion homeostasis were improved. Antioxidant enzymes increased and the ASA-GSH cycle improved,
while ROS and MDA contents were reduced, optimizing the redox balance. Cd transport increased
with the phytochelatin content in alfalfa and tomato, where the Cd content tended to accumulate in
different locations (roots, stems, leaves, shoots). When the effects of melatonin on growth and Cd
uptake in Malachium aquaticum (Cd accumulator) and Galinsoga parviflora (hyperaccumulator) were
studied, melatonin application significantly increased the Cd content in both plants in a concentration
dependent form, suggesting melatonin could improve phytoremediation [54]. In Cyphomandra betacea,
a South American fruit tree, 50 µM melatonin increased the Cd contents in stems, leaves, and shoots in
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a soil cultivation experiment. Low levels of melatonin were seen to promote the growth of C. betacea
seedlings and their Cd accumulation capacity [55]. Melatonin treated plants, in a combination of
Cd with selenium (Se) or Zn, also showed increased plant growth and higher antioxidative defenses
than control plants. In an interesting experiment with tomato plants that over-produced melatonin,
pre-treatment with different forms of Se significantly induced the biosynthesis of melatonin and its
precursors (tryptophan, tryptamine, and serotonin) [56].
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Table 1. Studies of responses to melatonin treatments in the presence of several metals (or others) by different plant species.

Stress Type Plant Species Melatonin Treatment (µM) Effects Observed Reference

Cd Alfalfa 10–200 ↑ tolerance, growth, Cd transporters, ↓ Cd roots, ROS [57]
Cd Rice MOE * ↑ tolerance, growth, photosynthesis, redox balance, panicle number, grain yield [58,59]
Cd Tomato 25–500 ↑ Cd tolerance, phytochelatins, ATPase activity [60]
Cd Tomato MOE ↑ Cd tolerance, heat-shock factor A1a, induced by melatonin [61]
Cd Tomato 25 ↑ Cd tolerance, melatonin biosynthesis, ↓ Cd leaf [62]

Cd Tomato 100 ↑ Cd tolerance, melatonin biosynthesis, S uptake, S assimilation, antioxidant enzymes,
PCs, GSH [63]

Cd Wheat 100 ↑ tolerance, antioxidant enzymes, ASA, GSH, ↓ ROS [64]

Cd Wheat 50–100 ↑ tolerance, plant growth, Chls, PSII maximum efficiency, RWC, K+, Ca2+, ↓ ROS, Cd,
MDA, NO

[65]

Cd Malachium aquaticum and Galinsoga
parviflora 100–200 ↑ tolerance, biomass, Chls, antioxidant enzymes, Cd shoots concentration dependent [54]

Cd Cyphomandra betacea 50–150 ↑ plant growth, Cd leaves, shoots, stems, antioxidant enzymes [55]
Perilla frutescens 100–200 ↑ root and shoot biomass, Chls, antioxidant enzymes, soluble protein, Cd root and shoot [66]

Cd/Se Tomato MOE ↑ growth, photosynthesis, electrolyte leakage, phytochelatins, GSH, ↓ ROS, Cd leaf [56]
Cd/Zn Valerian and 1000 ↑ tolerance, plant growth, antioxidant enzymes [67]

Lemon balm
Cu Red cabbage 1–100 ↑ germination, growth, ↓membrane peroxidation [68]
Cu Cucumber 0.01 ↑ tolerance, growth, Cu-sequestration, TCA, ATP, GSH, ↓ ROS [69]
Cu Pea 5 ↑ plant survival [53]
Zn Wheat 1000 ↑ tolerance, Chls, photosynthesis, Rubisco, ATPase [70]
Al Soybean 0.1–1 ↑ tolerance, root growth, antioxidant enzymes, osmoregulation, ↓ ROS [71]
Al Arabidopsis 1–10 ↑ tolerance, root growth, cell division [72]
Pb Maize 50–100 ↑ tolerance, growth, photosynthesis, Chls, RWC, K, Ca levels, ↓ ROS, MDA [73]

Pb Bermudagrass 20–100 ↑ tolerance, biomass, Chls, RWC, ASA, GSH, antioxidant enzymes, ↓ ROS, lipid
peroxidation [74]

V Watermelon 0.1 ↑ tolerance, growth, photosynthesis, antioxidant enzymes, ↓ V level, V transport, ROS,
MDA [75]

Boron Pepper 1 ↑↑ tolerance, growth, photosynthesis, antioxidant enzymes, carotenoids, ↓ B in leaf and
fruit, toxicity, ROS, MDA [76]

Boron Spinach 100–300 ↑ tolerance, growth, photosynthesis, RWC, CO2 uptake, sugars, carotenoids, redox
balance, ↓ ROS, MDA [77]

Fluoride Pigeon pea 100
↑ tolerance, growth, antioxidant capacity, protein, proline, ASA, GSH, antioxidant
enzymes, genomic template stability, ↓ ROS, cell death, lipid peroxidation, lipase

activity, DNA polymorphism
[78]

Alkalinity Apple 5 ↑ tolerance, root system, redox balance, polyamines [79]

Alkalinity Tomato 0.25–1 ↑ seedling growth, photosynthesis, ion homeostasis, Na+ detoxification, dehydration
resistance, ROS homeostasis, DREB1α and IAA3 transcription factors [80,81]



Appl. Sci. 2019, 9, 5293 7 of 18

Table 1. Cont.

Stress Type Plant Species Melatonin Treatment (µM) Effects Observed Reference

Acid rain Tomato 100 ↑ tolerance, growth, chloroplast integrity, photosynthesis, antioxidant enzymes, ↓ ROS,
MDA [82]

Salinity, Fe-low Pepper 100 ↑ growth, Chls, photosynthesis, fruit yield, Fe, K uptake, antioxidant enzymes [83]

Fe-low Arabidopsis 5 ↑melatonin, Fe shoots and roots, Fe mobilization, NO, polyamines, ↓ chlorosis, Fe root
cell walls, ROS [84]

S-low Tomato 100 ↑ S uptake, assimilation, transport and metabolism, peroxiredoxins, redox homeostasis,
↓ ROS, DNA damage [85]

N-low Wheat 1 ↑ N and nitrate, N absorption, N metabolism, growth, yield, in shoots and roots [86]
N-excess Cucumber 100 ↑ tolerance, growth, NPK balance, Ca, ↓ damage, nitrate, ammonium [87]

Cinnamic acid Cucumber 100 ↑ tolerance, growth, water and nutrient balance, hormonal balance [88]
Butafenacil Rice MOE ↑ herbicide tolerance, Chls, antioxidant enzymes, ↓ ROS, MDA [89]

Fluopicolide Potato 1–10 ↑ fungicide tolerance, ↓ ROS, potato late blight, mycelial growth of P. infestans [90]
Paraquat Pea 50–200 ↑ Chls, porphyrin synthesis pathway, ↓ herbicide damage, Chl breakdown [91]

Carbendazim Tomato 0.5/MOE ↑ fungicide tolerance, antioxidant enzymes, ASA-GSH cycle, ↓ ROS, MDA [92]

↑, Increased content or increased action. ↓, Decreased content or decreased action. * MOE, melatonin biosynthesis enzymes overexpressed in plants.
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Selenocysteine had the most marked effect on melatonin biosynthesis. Se treatment increased the
levels of glutathione (GSH) and phytochelatins, as well as the expression of GSH and phytochelating
biosynthetic genes in non-silenced plants, but the effects of Se were lessened in TDC silenced plants
(low melatonin content) under Cd stress. Furthermore, Se and melatonin supplements significantly
increased plant Cd tolerance, optimizing plant growth parameters. Thus, exogenous selenocysteine
could ameliorate Cd phytotoxicity, but a basal level of endogenous melatonin is required for Se
conferred Cd tolerance, which might enhance the detoxification of Cd (Table 1) [56].

Copper (Cu) salts have also been used to study the protective and biostimulatory effect of
melatonin (Table 1). In addition to its known effect on the germination of seeds in the presence of
Cu, which was one of the first roles of melatonin discovered [68,93], low levels of melatonin provide
greater tolerance of the presence of Cu in cucumber plants. Melatonin induces metabolic activity,
especially glycolysis and the pentose phosphate pathway, to generate more ATP. Melatonin treatment
broadly altered gene expression under Cu stress, increasing the levels of GSH and phytochelatin to
chelate excess Cu and promoting cell wall trapping, retaining more Cu in the cell wall and vacuole [69].
Furthermore, some experiments have been made using zinc, aluminum, and lead in wheat, soybean,
Arabidopsis, and maize (Table 1).

Vanadium (V) adversely affects plant growth through drastic changes in cellular metabolism,
including gene expression and ROS production. Higher levels of V affect root growth and the formation
of lateral roots and provokes leaf chlorosis. Vanadium is a chemical analogue of phosphorus (P) and
alters the P absorption capacity of plants [94,95]. In a recent study, melatonin pretreatment lowered
leaf and stem V concentrations by reducing V transport from root to shoot in watermelon (Table 1).
In V treated plants, melatonin also renewed plant growth and increased photosynthesis efficiency; the
antioxidant enzyme pool was also improved. Taken together, this evidence underlines the protective
role of melatonin in increasing V tolerance [75].

Boron (B) is an essential micronutrient for normal plant growth, but high concentrations are
toxic for plants. Boron has also been assayed in the presence of melatonin (Table 1). In pepper plants
whose roots were exposed to a high B concentration (100 µM), melatonin treatment restored plant
growth and photosynthesis compared with control plants. Plants treated with melatonin displayed
no visible B toxicity symptoms, and leaves and fruits showed moderate B accumulation and high
carbohydrate, carotenoid, and flavonoid contents. The authors took this as a demonstration of the
clear protective activity of melatonin in reducing B absorption, suggesting its physiological relevance
in B homeostasis [76]. Similar results and conclusions have been obtained in spinach plants exposed to
high B concentrations (Table 1).

Higher concentrations of fluoride ions (F−) in the soil and irrigation water can disturb both the
physiological and biochemical processes of plants [96]. Melatonin acts as an ROS scavenger, improving
many biochemical parameters in pigeon pea (Cajanus cajan) (Table 1), helping in diminishing F−

toxicity [78].
Although soil alkalization is often associated with soil salinity, the former is considered much

more hazardous to plants. This condition is generally linked with high pH stress and sodium toxicity
caused by an excess of Na2CO3 and NaHCO3 in the soil, as well as osmotic stress. The comprehensive
stress caused by alkaline soils directly affects physiological homeostasis at the cellular and whole-plant
levels [97]. In this context, melatonin has been seen to protect apple and tomato plants against
alkalinization (Table 1). In the case of apple, exogenous melatonin enhanced tolerance to alkaline
stress by regulating the biosynthesis of polyamines, while in tomato plants, a strong resistance to
dehydration, ROS homeostasis, and Na+ detoxification has been described [80,81]. In tomato also,
melatonin treatment increased simulated acid rain (SAR) stress tolerance by repairing the grana lamella
of the chloroplast, improving photosynthesis and antioxidant enzyme activities compared with the
reactions recorded in SAR stressed plants without melatonin. Such positive effects of melatonin are
concentration dependent [82].
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The positive role of melatonin against soil mineral deficiency has been described in several works
(Table 1), resulting in an improvement in chemical element deficiency tolerance. For example, Fe
deficiency induced chlorosis in seedlings of Arabidopsis thaliana was alleviated by melatonin. Exogenous
melatonin significantly increased the soluble Fe content of shoots and roots and decreased the levels
of root cell wall Fe bound to pectin and hemicellulose, remobilizing cell wall Fe and alleviating Fe
deficiency induced chlorosis. Furthermore, Fe deficiency quickly induced melatonin biosynthesis
in Arabidopsis plants, acting synergistically with exogenous treatments. In mutant plants deficient
in polyamine and nitric oxide (NO) biosynthesis, the protective role of melatonin was not observed,
indicating that the process is dependent on the polyamine induced NO production under Fe deficient
conditions [84]. In a similar work, tomato seedlings grown in an S deficient medium suffered
serious growth inhibition as a result of a reduced chlorophyll content, photosynthesis, and biomass
accumulation; it also led to cell structural alterations and DNA damage. Melatonin supplementation
of S deprived plants resulted in a significant diminution in ROS content, alleviating all the described
symptoms. Melatonin promoted S uptake and assimilation by regulating the expression of genes
encoding enzymes involved in S transport and metabolism, supporting a role for melatonin as a
molecule that improves primary metabolism and redox homeostasis [85].

In winter wheat grown in an N deficient medium, the application of melatonin in hydroponic
solution significantly improved seedling growth under both N sufficient and deficient conditions,
but the effect of melatonin in promoting seedling growth was particularly evident in the N deficient
conditions. Higher N contents and nitrate levels in shoot under N deficient conditions appeared
and also maintained higher nitrate nitrogen levels in roots. Furthermore, nitrate reductase and
glutamine synthetase activities were higher in melatonin treated plants under N deficiency conditions.
In conclusion, melatonin is involved in promoting N uptake and assimilation through upregulating
the activities of N uptake and metabolic related enzymes and, ultimately, promotes plant growth and
yield, especially under N deficient conditions [86]. Melatonin also seems to play an important role in
situations contrary to those described above. Excess nitrogen is generally applied so that adequate
levels will be maintained in the rhizosphere. This abusive use, besides being a serious problem since
it results in the contamination of aquifers, provokes disruption in the balance of elements and alters
the assimilation of calcium and magnesium, affecting the susceptibility to disease. In general, nitrate
accumulation leads to increased proline concentrations, severe oxidative damage, nitrogen metabolic
disorders, the inhibition of photosynthesis, and a substantial decrease in biomass. The application
of melatonin significantly improved the growth of cucumber plants and reduced their susceptibility
to damage when grown in high nitrate levels. Although excess nitrate led to an increase in the
concentrations of N, K, and Ca, accompanied by a decrease in P and Mg levels, exogenous melatonin
generally had the opposite effect, except for a further rise in Ca concentrations (Table 1). Pretreatment
also significantly reduced the accumulations of nitrate (both N and ammonium) and enhanced the
activities of the enzymes involved in nitrogen metabolism, thereby alleviating the inhibitory effect on
growth normally associated with nitrate stress [87].

Another role of melatonin is as a biostimulator and alleviator of toxicity from herbicides and
other chemicals (Table 1). For example, melatonin significantly attenuated potato late blight by
inhibiting mycelial growth, changing the cell ultrastructure, and reducing the stress tolerance of
the high pathogenic fungus Phytophthora infestans. Of particular note are the synergistic anti-fungal
effects of melatonin and the fungicide Infinito (fluopicolide, Bayer®) on P. infestans, suggesting that
melatonin could reduce the dose levels and enhance the efficacy of the fungicide against potato late
blight [90]. The same synergistic action of melatonin and ethylicin (a bio-oomyceticide fungicide)
has been described [98]. A similar beneficial effect of melatonin treatments was observed with other
fungicides and herbicides (Table 1).
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4. Abiotic Stressors Induce a Melatonin Burst that Activates Anti-Stress Responses

Endogenous melatonin levels change with environmental conditions of plant growth. Melatonin
is accumulated as a protective molecule in response to different environmental abiotic stressors, such as
water deficit and waterlogging, cold and heat, UV radiation, soil heavy chemicals and related, among
others [41,48,99]. Table 2 shows some studies on the increase of endogenous melatonin levels by the
presence of different abiotic stressors. Thus, the expression of the biosynthesis enzyme transcripts
(TDC, SNAT, ASMT, and COMT genes) occurs in stress situations, producing a burst in the levels of
endogenous melatonin. The global influence of environmental factors on the melatonin levels of plant
organs was clearly demonstrated in barley, tomato, and lupin plants by Arnao and co-workers [99–101].
This effect was previously suggested in water hyacinth plants [52], and later corroborated in grape
berry skin [102] and cherry fruits [103]. Salinity, cold, drought, and heavy metals have been the
abiotic environmental agents most frequently studied as inducers of melatonin biosynthesis in plants,
although attack by pathogens also induces the biosynthesis of melatonin (Table 2). This interesting
response of stressed tissues clearly induces tolerance, fortifying the redox network against ROS and
RNS and upregulating the expression of stress specific response genes. All this relieves the inhibitory
processes due to stress and reinforces plant growth and critical processes such as photosynthesis,
water economy, metabolism, etc. [41,51,104,105]. The remediation efficiency is directly correlated to
higher biomass and an improved tolerance of plants to toxic pollutants. Studies made with melatonin
suggested that the stimulatory effects of melatonin on biomass and antioxidative defense machinery are
reinforced by a strong primary and secondary metabolism and also by plant hormone stress responses.
Melatonin acts as a biostimulator and/or protector of photosynthesis and the stomatal apparatus,
upregulating many elements of photosystems, thylakoid electron transporters, and ATP-ase genes.
Melatonin also optimizes stomata functionality (e.g., by causing increased stomata opening) in adverse
conditions through the regulation of guard cell anion channel proteins and dehydrins, all of which
increase CO2 availability. In the Calvin cycle, melatonin regulates the expression of RuBisCO elements,
glyceraldehyde-3-phosphate dehydrogenases, and interconversion carbohydrate enzymes. In addition,
elements of the ASC-GSH cycle, TCA cycle, and myo-inositol and fatty acid biosynthesis pathways
are also regulated by melatonin. As regards osmoregulation, higher levels of proline, carbohydrates
(glucose, maltose, fructose, sucrose, and trehalose), and a multitude of amino acids and organic acids in
melatonin treated plants had beneficial effects under abiotic stress conditions. Thus, relevant changes
in carbohydrate, lipid, amino acid, nitrogen, phosphorus, and sulfur metabolism indicate the beneficial
physiological processes that occur in melatonin treated plants during abiotic stress [86,87,106–109].
Melatonin is also involved in secondary metabolism, where it induces anthocyanin biosynthesis and
flavonoids [110,111] and also regulates steps in the carotenoid biosynthesis [76,112]. Finally, melatonin
regulates the expression of multiple elements (enzymes, receptors, and transcription factors) in the
biosynthesis, catabolism, and signaling of auxin, gibberellins, cytokinins, ABA, ethylene, jasmonic
acid, SA, brassinosteroid, strigolactones, and polyamines [41,46,48] (Figure 1).
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Table 2. Effects of abiotic stressors on the endogenous melatonin levels.

Plant Species Abiotic Stressor Increased Level of
Melatonin vs. Control Reference

Alfalfa Waterlogging 2–4.5-fold [113]
Arabidopsis Cold 2-fold [114]

Heat 2–5-fold [115]
NaCl, drought, cold 3–6-fold [116]

Fe deficiency 6-fold [84]
Drought 4-fold * [117]

Barley Zn, NaCl, H2O2 6-fold [100]
Barley Drought, cold 2-fold [118]

Bermudagrass NaCl, drought, cold 2–3-fold [106,119]
Cassava Bacterial blight 1.2–4-fold * [120]
Cherry Field growth conditions 10-fold [103]
Grape Field growth conditions 15-fold [102]

Lupin Zn, NaCl, H2O2
Cold, drought 1.5–12-fold [99]

Malus Drought 1.5–6-fold * [121]
Rice Cd 6-fold [122]

Cold, salt, drought, pathogen 1.5–4.5-fold * [123]
Ryegrass Darkness 2-fold [124]

Sunflower NaCl 2–6-fold [125]
Tomato Field growth conditions 10-fold [101]

Cd 1.6–4-fold [62]
Cd 2-fold [60]
Cd 2–15-fold * [63]

High temperature 2–15-fold * [126]

Vitis NaCl
Osmotic

5.5-fold
1.5-fold [127]

Water hyacinth Field growth conditions 2-fold [52]
Watermelon V 4-fold * [75]

* Number of increments of one or more transcripts of melatonin biosynthesis enzymes due to stressor presence.

5. Conclusions and Expectations

The application of melatonin on plants seems to be a useful option for cleaning toxic pollutants
from the environment by improving phytoremediation processes. In this capacity, three aspects should
be taken into account: (i) the inhibitory effect of metals or toxic agents on growth and other basic
functions such as metabolism and photosynthesis, (ii) the ability of cells to mobilize, absorb, and
sequester the said agents, and (iii) other adverse elements that usually accompany the presence of
contaminants such as drought, salinity, extreme temperatures, etc. The beneficial effects of melatonin
described above were seen to cover all three cases. The potential of melatonin to mobilize toxic metals,
through phytochelatins, their transport, and sequestration adds to the general biostimulatory effect of
melatonin on plants, resulting in a high degree of plant tolerance against toxic substances (Figure 2).
Furthermore, the improvement in the absorption and metabolism of elements such as N, P, and S
helps the process. Although data are still limited, it seems that the presence of several stressors
(e.g., metals and drought) synergistically induces the response of melatonin biosynthesis, which
reinforces the overall response of the system. Beyond the use of transgenic plants that overaccumulate
melatonin, the application of exogenous melatonin or the induction of its biosynthesis through
environmental elicitors can be excellent strategies for phytoremediation purposes. There are clear
benefits to be had from further studying the applicability of melatonin for phytoremediation purposes.
As regards plant species, more research into the biochemical and physiological aspects of melatonin
in hyperaccumulator plants is indispensable, furthering our knowledge of the synergistic effect of
abiotic stressors on endogenous melatonin levels and its phytoremediation capacity. Furthermore,
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the modes of application of exogenous melatonin through the roots and/or through the leaves should
be studied, although its amphipathic nature already means that we know that it is well absorbed at
both sites (rhizosphere and leaves) without the need for adjuvants and that it is easily transported
throughout the plant. Sufficient data are available to suggest the potential of melatonin to improve
phytoremediation, but the last decisive step needs to be taken: testing in real field situations.

Figure 2. Integrated model of melatonin, the redox network, and phytochelatin (PCs) action focused
on plant tolerance against heavy metal contaminants in plant cells.
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