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Abstract: This paper develops a three-step spatial data mining approach to directly identify road 
clusters with high-frequency crashes (RCHC). The first step, preprocessing, is to store the roads and 
crashes in a spatial database. The second step is to describe the conceptualization of road–road and 
crash–road spatial relationships. The spatial weight matrix of roads (SWMR) is constructed to 
describe the conceptualization of road–road spatial relationships. The conceptualization of crash–
road spatial relationships is established using crash spatial aggregation algorithm. The third step, 
spatial data mining, is to identify RCHC using the cluster and outlier analysis (local Moran’s I index). 
This approach was validated using spatial data set including roads and road-related crashes (2008–
2018) from Polk County, IOWA, U.S.A. The findings of this research show that the proposed 
approach is successful in identifying RCHC and road outliers. 

Keywords: data mining; road network; traffic crash; road clusters with high-frequency crashes 
(RCHC); spatial weight matrix (SWM); local Moran’s I index; cluster identifying 

 

1. Introduction 

According to the World Health Organization, ~1.25 million people die each year on the roads as 
a result of crashes (traffic accidents) [1]. The road traffic network is an integrated and complex system 
consisting of four elements: “people, vehicle, roads, and environment” [2,3]. As a carrier of traffic, 
roads with ancillary facilities have an important impact on the frequency of crashes. From the 
perspective of transportation authorities and safety specialists, strategies such as renovating road 
facilities, improving road traffic conditions, and using prompt signs of crash warning at road clusters 
with high-frequency crashes (RCHC) are effective in reducing crashes. Therefore, given the massive 
roads, how to identify RCHC is one of the most significant challenges faced by transportation 
authorities and safety specialists. 

A review of previous studies shows that data mining [4–6] has been widely used to traffic crash 
analysis. Kumar et al. [7] used the latent class clustering and k-modes clustering technique on road 
accident data from Haridwar, India. Castro and Kim [8] explored the role of different factors on injury 
risk using a Bayesian network, decision trees, and artificial neural networks to detect factors of the 
greatest influence on car accidents. Taamneh et al. [9] established a set of rules that can be used by 
the United Arab Emirates Traffic Agencies to identify the main factors that contribute to accident 
severity. Li et al. [10] applied statistics analysis and data mining algorithms on the fatal accident 
dataset as an attempt to discover variables that are closely related to fatal accidents.  

The above studies focus on using data mining approach to obtain the relationships between non-
spatial factors and traffic crashes, neglecting mining geospatial features associated with traffic 
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crashes. Unlike non-spatial data mining, few studies have been dedicated to the spatial 
autocorrelation measure [11], an important method of spatial data mining [12–14], to identify crash 
hotspot. Ouni and Belloumi [15] examined the stability of the performance of two spatial 
autocorrelation measures based on a road safety risk index through the comparison of the results in 
Tunisia. Xie and Yan [16] integrated network kernel density estimation with local Moran’s I for hot 
spot detection of traffic accidents. Blazquez and Celis [17] identified critical areas with high child 
pedestrian crash risk in the city of Santiago, Chile, using kernel density estimation and Moran’s I 
index in a GIS environment. 

In the above spatial autocorrelation measures, including Moran’s I [18], Geary’s ratio [19], and 
Getis-Ord Gi* [20], the Moran’s I was most favored by researchers, as its distributional characteristics 
are more desirable and the indicator has greater general stability and flexibility [18,21]. The Moran’s 
I, first known as a global single indicator of assessing spatial autocorrelation, can qualitatively detect 
whether the spatial distribution is dispersed, random, or clustered in the entire space with respect to 
their attribute values. In this context, it is important to note that the global Moran’s I cannot 
quantitatively describe traffic crashes that is mainly concentrated on those roads. 

Therefore, it is necessary to calculate the local Moran’s I index [22] of each road, and perform 
clustering and outlier analysis to reveal RCHC. The clustering and outlier analysis method examines 
the local Moran’s I index of individual road based on a comparison with the neighboring roads, which 
is as an effective method to identify RCHC. 

In addition, some studies have used network kernel density estimation [23–25] as a spatial data 
mining method to compute spatial concentrations of point-based crashes in a road network. The 
spatial weight between crashes is used as a distance or spatial closeness of crashes along the road 
network. These studies take point-based crashes as the research object and used point-based spatial 
clustering analysis method, which is effective to detect hazardous locations by clusters of crashes.  

The above studies provide a foundation for the research content of this paper. However, 
previous studies neglected some issues by using spatial data mining methods. First, these studies 
mainly focus on the point-based spatial clustering to find hotspots of crashes, and thus cannot directly 
identify RCHC. Second, some studies neglected the road–road or crash–road spatial relationships 
that affect accuracy of the result of spatial data mining. 

To solve the issues, first, this paper focuses on the line-based spatial clustering method and takes 
linear roads as the research object, which can directly identify RCHC. Second, in this study, road–
road and crash–road spatial relationships are applied in spatial data mining methods. Crashes are 
spatially aggregated as the attribute of the count of crashes of road (ACCR) by considering the road-
crash geometric and attribute relationships. Then, a spatial weight matrix of roads (SWMR) [26–28] 
is established based on the road–road topological and geometric relationships. The ACCRs and 
SWMR are used as the input parameters in the cluster and outlier analysis (local Moran’s I) to 
improve accuracy of the result of spatial data mining. 

The aim of this study is to (a) create the accurate SWMR of complex road network respect to 
overpass crossing or underpass crossings to support further spatial statistics analysis (e.g., high–low 
clustering, hotspots analysis) (b) identify the RCHC to help transportation authorities and safety 
specialists to identify and prioritize roads that require more safety attention to reduce crashes. 

The rest of the paper is organized as follows. Section 2 presents the methodology used in this 
study. Section 3 describes the spatial data, including the traffic crashes and roads of Polk County, 
Iowa used in this study. Section 4 illustrates and discusses the results by using the methodology 
within the study area. Section 5 recommends future work. Finally, Section 6 concludes the paper. 
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2. Methodology 

2.1. Process Map 

This paper presents a three-stepped spatial data mining approach to directly identifying RCHC 
by using: (1) preprocessing, (2) conceptualization, and (3) spatial data mining. The process map for 
the approach is shown in Figure 1. 

 
Figure 1. Process map for the approach of directly identifying road clusters with high-frequency 

crashes (RCHC). 

1) Preprocessing 

The first step (preprocessing) is storage of the road network, crashes, and region boundary in 
spatial database. In this paper, we use PostGreSQL database [29] and PostGIS spatial data engine [30] 
to store and query massive spatial roads and crashes. The attribute and geometry info of road and 
crash table inherited from the input road and crash shapefile. 

2) Conceptualization 

The second step (conceptualization) is to build the conceptualization of spatial relationships. 
There are two types of conceptualization of spatial relationships: (1) the conceptualization of linear 
road relationships and (2) the conceptualization of road–crash relationships. Spatial weight matrix of 
roads (SWMR) is constructed to describe the conceptualization of road spatial relationships. The road 
network topology is created using pgRouting [31], which extends the PostGIS/PostgreSQL geospatial 
database to provide road network geospatial routing ability functions (e.g., pgr_createTopology, 
pgr_createVertices, pgr_analyzegraph, pgr_nodeNetwork). The road network DBF table with count 
of crashes is calculated using crash spatial aggregation algorithm to describe the conceptualization 
of spatial relationships between roads and crashes. 
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3) Spatial data mining 

The third step (data mining) is to identify RCHC using the cluster and outlier analysis (local 
Moran’s I). According to studies of the point-based spatial clustering analysis method, this paper 
proposes a method of directly identifying RCHC by using line-based Moran’s I index. We can 
quantitatively identify RCHC (positive autocorrelation) and road outliers (negative autocorrelation) 
via map visualization of road clusters and outliers shapefile. 

2.2. File Types 

There are three types of file: (1) the input files, (2) the intermediate files, and (3) output results 
used in the approach, as shown in Table 1. 

Table 1. The overview of file types. 

Name File Type Format Type Feature Type Description 
Road Input Shapefile Line The feature file of road centerlines 
Crash Input Shapefile Point The feature file of crashes 

Boundary Input Shapefile Region The Boundary of study Area 
Traffic 

Database 
Intermediate 

PostGreSQL 
Database  

Line/Point/Region 
The spatial database converted 

from input shapefiles 
SWMR file Output GWT File / ASCII encoded SWM File of road  

Road clusters  
and outliers 

Output Shapefile Line The result of cluster and outlier analysis 

2.2.1. The Input Files 

Input files include point-based shapefile of crash, linear shapefile of road, and the regional 
shapefile of boundary. All the files contain the geometry and the important attributes (e.g., location, 
names, etc.). 

2.2.2. The Intermediate Files 

Intermediate files include PostGreSQL traffic database and SWMR file. We convert the input 
shapefiles to traffic database that contains the road, crash DBF table and boundary DBF table using 
the tool-“PostGIS 2.0 Shapefile and DBF”. The road DBF table contains the information: geometry, 
attribute, network topology, and road-relative crashes. 

2.2.3. Output Results 

Output results include the SWMR file and road clusters and outliers shapefile. The SWMR file 
is constructed based on geometric and topological adjacency of road network to describe the 
conceptualization of road spatial relationships as a foundation of spatial analysis. To improve the 
versatility of the approach, we use ASCII encoded gwt format file, which is compatible with spatial 
analysis software such as ArcGIS [32] and GeoDa [33], to store SWMR data. The first line of the file 
of the SWMR file in gwt format is the name of the unique identifier field (e.g., ID). After that, each 
row in the file is formatted into three columns: the ID of the road i (IDi), the ID of the road j (IDj), and 
the spatial weight (Wij). The road clusters and outliers shapefile contains the high–high and low-low 
road clusters, and the high–low and low–high outliers are the result of cluster and outlier analysis 
(local Moran’s I index). The high–high road clusters are RCHC we should identify in this research. 
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2.2.4. Remark on Availability of Input Files 

The availability of input data determines the practicability of the approach. The input data can 
be easily accessed from Geofabrik’s free download server and state Department of Transportation 
noted in Section 3. However, the traffic crash shapefile, not being core input data, may be difficult to 
obtain in few cities or regions. As a result of taking roads (line type) as the core research objects 
instead of crashes (points) in this approach, csv format plain code file or excel xls file of crash have 
the basic information (e.g., crash id and location) also can be used to statistic the crash count of each 
road applying the attribute matching method in the proposed approach if we do not have the detailed 
crash shapefile in few cities or regions. Thus, the practicability of the approach is improved. 

2.3. Methods  

2.3.1. Crash Spatial Aggregation Algorithm 

To find the RCHC, we should aggregate crashes in roads as the count of traffic crashes on the 
road. First, we add a fields (<crash_count>, <crashlist >) of the road DBF table. Second, we calculate 
the attributes (<crash_count>, <crashlist>) for each road. To determine whether the crash is on a road, 
the following two premises shall be considered. 

Premise 1 As the accuracy of crash global positioning system (GPS) coordinate has a positioning 
error of approximately 10 m [34]. A crash occurs on the road if its coordinates are within 
10 m of the buffer of the linear road considering the positioning error of crash. 

Premise 2 As the Interstate Highway standards for the U.S. Interstate Highway System use a 12 foot 
(3.7 m) standard lane width [35], a crash occurring on the road can be determined if its 
coordinates are within 3.7 m of the buffer of the road. 

Under above premises, we can determine the crash is on the road if the geometric and attribute 
relationships between crash and road meet both conditions 1 and 2 (means geometric and attribute 
integrated matching). If the crash cannot match any road by geometric and attribute integrated 
matching, the crash can be spatially aggregated to the road meet both conditions 3 and 4 (means 
spatial fuzzy matching). 

1. Condition 1: The shortest distance between traffic crash and road less than 47m (consider 10 lane 
roads and GPS positioning accuracy) order by the distance. 

2. Condition 2: Attribute matching between name of road and location of crash. 
3. Condition 3: The shortest distance between traffic crash and road is less than 10m (consider GPS 

positioning accuracy). 
4. Condition 4: The shortest distance between traffic crash and road is minimum in all datasets. 

We use qt platform to realize the crash spatial aggregation algorithm in PostGIS/PostGreSQL 
database following the conditions. Figure 2 shows the definition of main data types. Figure 3 shows 
the main structure of the algorithm. 
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Figure 2. Definition of main data types. 

 
Figure 3. Structure of crash spatial aggregation algorithm. 



Appl. Sci. 2019, 9, 5282 7 of 20 

2.3.2. SWMR Construction Algorithm 

A spatial weight matrix (SWM) is a representation of the spatial structure of the data, and it is 
designed to generate, store, reuse, and share the conceptualization of the relationships among a set 
of features [36]. A SWM is the key input parameters in cluster and outlier analysis. The input SWM 
directly determines the correctness of the calculation results of cluster and outlier analysis. 
Consequently, when using an inappropriate SWM, cluster and outlier analysis cannot be trusted in 
general. 

As taking linear roads as the research object in this paper, we need to build the SWMR that 
matches with spatial distribution characteristics of roads for identification of RCHC by using cluster 
and outlier analysis. Conceptually, the SWMR is an N×N matrix (as shown in Equation (1) [26,27]. 
There is one row for every road and one column for every road. 

 

(1) 

where N is the number of roads; i, j is the unique identifier of roads; and Wij is the weight of matrix 
(means the cell value for any given row i and column j combination) that quantifies the spatial 
relationship between roads. 

Typically, Wij in SWMR are defined using Euclidean distance measurements and contiguity, 
fixed, or inverse distance weighting schemes [37, 38]. However, road traffic system with crashes is 
based on road network which has complex topology and geometric relationships [39,40]. For 
identification of RCHC, defining spatial relationships in terms of road network is more appropriate.  

SWMR models road spatial relationships and should follow the topology between roads that are 
restricted to the adjacency of road network. At the most basic level, there is a binary strategy for 
creating Wij to quantify the spatial relationships among roads. If the road i is a 1st-order neighbor to 
road j in the road network, then Wij = 1, else then Wij = 0. 

In this paper, we consider topological or geometric adjacency roads, which share the same 
intersection or the same node, equal to 1st-order neighbors. That means there is a topological or 
geometric adjacency between road i and road j, then Wij = 1; otherwise, Wij = 0 using binary strategy. 
However, to find the geometric or topological adjacency roads is a difficult problem since the 
different road types (e.g., highway, local, bridge, and tunnel) in real road network have complex 
topological and geometric relationships. Note that roads with an overpass crossing or underpass 
crossing lack a true intersection. For instance, Hul Ave and I235 highway have two intersections in 
the 2D map; however, they do have two overpass crossings (nonintersecting) in the photo, as shown 
in Figure 4. 

  
(a) intersections in 2D map (b) overpass crossings in a photo 

Figure 4. Overpass crossing (nonintersecting) of the highway and local road. 
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In GIS, there are different ways to model the topological and geometric relationship of road 
network in real world. A total of 11 kinds of graphs were summarized in this paper, as shown in 
Figure 5, to demonstrate the typical topological and geometric relationships of road network. 
Considering the typical topological and geometric relationships of road network, we can find the 
geometric or topological adjacency roads to calculate spatial weights of SWMR: 

• The spatial weights of SWMR are 1 if the roads are topological adjacent for the following cases. 
(a) T-intersection with node, (c) T-intersection of highway bridge with node, (f) cross-
intersection with node, (j) topological adjacency, (k) topological adjacency with bridge, and (l) 
topological adjacency with tunnel. 

• The spatial weights of SWMR are 1 if the roads are geometric adjacent for the following cases. 
(b) T-intersection without node, (d) T-intersection of highway bridge without node, and (e) 
cross-intersection without node. 

• The spatial weights of SWMR are 0 if the roads are neither geometric adjacent nor non 
topological adjacent for the following cases; (g) overpass crossing and (h) underpass crossing. 

 
Figure 5. Typical topological and geometric relationships of road network. 
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Figure 6 shows the main structure of the SWMR construction algorithm. 

 
Figure 6. Structure of the spatial weight matrix of roads (SWMR) construction algorithm. 

2.3.3. Cluster and Outlier Analysis (Local Moran’s I) 

The First Law of Geography [41], according to Professor Waldo Tobler, is “everything is related 
to everything else, but near things are more related than distant things.” Based on the first law of 
geography, geographical phenomena or attributes are related to each other in spatial distribution, 
have spatially related characteristics; that is, the closer the distance is, the more similar the things 
are [41]. Therefore, there are three types of distributions of crashes: dispersed, random, or clustered. 

The global Moran’s I developed by Professor Moran in 1948, is one of the most preferred 
measure of spatial autocorrelation [42]. The global Moran’s I use a single index to detect the degree 
of autocorrelation of the same variable in the spatial region, and can verify the spatial distribution 
pattern in entire spatial extent. 

In this study, the local Moran’s I (suggested in Professor Anselin based on global Moran’s I) [19] 
is used as a local indicator of spatial autocorrelation to find RCHC. The local Moran’s I, one of the 
most widely used local indicators of spatial association statistics [16], is calculated for each road to 
reveal the degree of spatial autocorrelation and is used to analyze whether the same variable 
(<crash_count> in this research) has autocorrelation at a specific local location. The local Moran’s I 
index is expressed as [19,22,42] 

 (2) 2
1,

I ( )
n

i
i ij j

j j ii

XX XW X
S = ≠

−
= −
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where Ii is the calculated local Moran’s I index of Road i. Ii is a relative measure and can only be 
interpreted within the context of its computed z-score or p-value. The p-value is a probability, a type 
of statistics to express confidence level. The z-score is a standardized local Moran’s I index. Wij is the 
weight in SWMR (as discussed in Section 2.3.2) that quantifies the spatial relationship between road 
i and road j. xi, xj is the crash count (as discussed in Section 2.3.1) of road i and road j.  is the 
average crash count of all roads. n is the total number of roads, i = 1, 2; n and j = 1, 2, n. Si2 is the 
measure of sample variance, defined as 

 
(3) 

In the cluster and outlier analysis, it is necessary to make assumptions about the spatial 
distribution of crashes, which is randomization null hypothesis of spatial distribution. The test of 
randomization null hypothesis of spatial distribution can be performed based on the z-score and p-
value along with the local Moran’s I index. The equation to calculate the z-socre ( ) for Ii is shown 

as 

 (4) 

where , and V[Ii] = E[Ii2] − E[Ii]2. 

The Zi-score is a standardized local Moran’s I value of road i. The z-scores and p-values for roads 
are measures of statistical significance which tell us whether or not to reject the randomization null 
hypothesis, road by road [1]. In this study, p-value ≤ 0.05 (95% confidence level) is used to indicate 
significant clusters, which is applied to each road. For either road, if its p-value is smaller than 0.05 
and z-score is greater than 1.96 or less than −1.96, that road will be considered as one of the cluster or 
outlier. The road who z-score is positive and greater than 1.96 and p-value is smaller than 0.05, with 
the neighboring roads have similar z-score and p-value, form the high–high road clusters. The high–
high road clusters are the RCHC, which can be used to directly identify the dangerous roads. 

3. Data Description 

This study focuses on the Polk County, Iowa, United States. Based on the 2010 census, its 
population was 430,640, representing 14% of the state’s residents, making it the Iowa’s most populous 
county. The study considers all types of roads (e.g., local, highway, bridge, and tunnel) and crashes 
occur on road (not in intersection) within the Polk County boundary. The data can be downloaded 
from the website: https://geodata.iowa.gov/dataset/county-boundaries-iowa. 

3.1. The Spatial Data of Roads 

The spatial data of IOWA statewide roads that this study employ can be download form 
OpenStreetMap [43] website (http://download.geofabrik.de/north-america.html). We extract spatial 
data of roads from the Iowa statewide road using (a) select layer by location tool (roads intersect with 
the Polk County boundary) and (b) select layer by attribute (roads suitable for cars) from ArcGIS 
geoprocessing tool box. A total of 27,606 roads are successfully recorded in ArcGIS software, as 
shown in Figure 7. 
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Figure 7. Distribution of roads in Polk County. 

Note that the road shapefile of other cities or regions can be easily downloaded from Geofabrik’s 
free download server, which has the latest global spatial road data normally update every day from 
the OpenStreetMap project. 

3.2. The Spatial Data of Road-Related Crashes 

This study employs the spatial data of crashes provided by the Iowa Department of 
Transportation’s public platform (https://data.iowadot.gov/), which has the statewide data of general 
traffic crashes from the prior 10 years. 

The database of crashes contains 49 types of information (e.g., crash_key, casenumber, crash_day, 
crash_date, district, county_num, literal, locfsthrm, locfsthrm, light, weather, rdtype, xcoord, and 
ycoord). For this study, a dataset of road-related crashes that occurred in Polk County was selected 
and analyzed. 

We extract spatial data of crashes of the Polk County from the Iowa statewide traffic crash 
shapefile using (a) select layer by location tool (crashes intersect with the Polk County boundary) and 
(b) select layer by attribute tool (crashes are not intersection-related) from ArcGIS geo-processing tool 
box. A total of 41,734 road-related crashes that happened in Polk County from 01/01/2008–06/08/2018 
are successfully recorded in ArcGIS, as shown in Figure 8. 
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Figure 8. Distribution of crashes in Polk County. 

Note that we can also access other cities or regions crash shapefile published by state 
Department of Transportation in USA using the same extracting method. 

4. Results and Discussion 

4.1. The SWMR of Polk County 

As described earlier, SWMR is the critical input parameters for the local Moran’s I analysis. 
Therefore, it is necessary to establish the SWMR of the Polk County to accurately express the spatial 
relationship between roads. 

As discussed in Section 2.2.3, we use ASCII encoded gwt format file to store SWMR data. The 
first line of the file of the SWMR in gwt format is the name of the unique identifier field (we use the 
field ‘ID’ as the unique identifier field in this paper). The spatial weight (Wij) is calculated by 
considering topological and geometric relationships between roads. Due to space limitations, we take 
the typical highway–local link road graph shown in Figure 9 as an example to demonstrate the SWMR 
of Polk County. 
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Figure 9. Typical highway–local link road graph. 

Table 2 lists the content of the ASCII encoded gwt format file of roads, including motorway links 
(ID. 23970, 24103) and bridges (ID. 3833, 3950) created by the algorithm of constructing of SWMR 
(discussed in Section 2.3.2), to save the conceptualization data of road spatial relationships. It should 
be noted that the SWMR is a sparse matrix, and there is a large amount of zero Wij data. Therefore, in 
this paper, the rows with a spatial weight of 0 are omitted since the default setting for spatial weights 
is 0 in the spatial data mining approach, which can effectively reduce the file storage space. 

Table 2. The content of the ASCII encoded gwt format file. 

First Row: ID (Unique Identifier Field) 

Row No. IDSi IDSj Wij Row No. IDSi IDSj Wij 

1 23970 2125 1 2 23970 17352 1 
3 24103 3951 1 4 24103 23512 1 
5 24103 23817 1 6 24103 27191 1 
7 3833 2125 1 8 3833 26956 1 
9 3950 23817 1 10 3950 26957 1 

4.2. The Results of Road Cluster and Outlier Analysis of Polk County 

The study uses cluster and outlier analysis (the local Moran’s I, as discussed in Section 2.3.3) 
from geo-processing tools in ArcGIS [44,45], by taking the following input parameters, as shown in 
Table 3, to calculate local Moran’s I index, z-score, and p-value for each linear road to obtain road 
clusters and outliers across Polk County. 
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Table 3. Input Parameters of cluster and outlier analysis (Anselin local Moran’s I)  

Input Parameter Input Value 
Input Feature Class road_polk 

Input Field crash_count 
Output Feature Class c:\data\myproject.gdb\road_clustersoutliers 

Conceptualization of Spatial Relationships get_spatial_weights_from_file 
Standardization none 

Distance Band or Threshold Distance none 
Weights Matrix File c:\data\swmr.gwt 

Apply False Discovery Rate Correction no_fdr 

All roads should have at least one neighbor [32] according to the best practice guidelines of 
cluster and outlier analysis. In this research, a total of 27,491 roads were selected in the input feature 
class since we find 115 roads in OpenStreetMap roads of Polk County have no neighbor when we 
construct the SWMR of Polk County. 

In general, there are four types of road cluster and outlier in the road cluster and outlier 
shapefile, as discussed in Section 2.2.3: high–high cluster (cotype is HH), low-low cluster (cotype is 
LL), high–low outlier (cotype is HL), and low–high outlier (cotype is HL). The high–high cluster, 
high–low outlier, and low–high outlier are colored in red, black, and blue, respectively. The results, 
as shown in Figure 10 using map visualization, clearly demonstrate the road clusters and outliers. 

 
Figure 10. Distribution of road clusters and outliers of Polk County. 

High–high road cluster indicates that there is a positive autocorrelation. The roads in this cluster 
all have high crashes and the neighbor roads also have high-frequency crashes. That means, High–
high road cluster is the RCHC that we should identify from the 27,606 roads of Polk County. 

The RCHC of Polk County, as shown in Figure 10, centered along with I 35, I235, US69, I80, and 
US 6, can be discovered is relevant to hazardous roads detection. There are 738 roads in the RCHC of 
Polk County, which account for 2.67% of all roads and 24, 652 crashes occurred in RCHC, accounting 
for 59.07% of all crashes. That means 59.07% crashes occurred in 2.67% roads in Polk County. In 
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addition, we can discovery that 85.60% crashes in RCHC occurred on major roads, including 
motorway, trunk, primary, secondary, and tertiary, as shown in Figure 11. We can quantitatively 
identify that 59.07% crashes of Polk County have strong positive spatial autocorrelation with 
topological or geometric adjacency of roads. 

 
Figure 11. Statistics of crash counts in different road classes in RCHC. 

Portion of calculated local Moran’s I, Z-score, and p-value for each road in RCHC are shown in 
Table 4, based on which, transportation authorities can develop targeted mitigation strategies for the 
roads in RCHC to effectively reduce the number of crashes. 

Table 4. Local Moran’s I, z-score, and p-value of roads in high–high cluster (RCHC). 

Id Fclass Name Ref 
Crash_Coun

t Local Moran I 
Z-

Score 
p-

Value 
Coty

pe 

24305 motorway  I 35 492 209.13 94.51 0.00 HH 
17387 motorway  I 235 343 141.99 54.23 0.00 HH 
24483 secondary Fleur Drive  295 422.79 70.28 0.00 HH 
26939 motorway  I 235 290 8.57 3.06 0.00 HH 
26629 motorway  I 80;I 35 267 10.70 4.41 0.00 HH 
27435 motorway  I 80;US 6 262 141.85 58.53 0.00 HH 

26612 primary 
South Ankeny 

Boulevard 
US 69 252 242.99 59.57 0.00 HH 

26533 motorway  I 80;I 35 250 141.82 82.74 0.00 HH 

26381 primary 
Douglas 
Avenue 

US 6 246 751.06 90.18 0.00 HH 

24779 secondary 
University 

Avenue 
 241 1570.78 229.30 0.00 HH 

26953 motorway  I 35 230 130.27 49.76 0.00 HH 
26621 motorway  I 235 209 107.74 62.86 0.00 HH 

26230 primary 
Southeast 14th 

Street US 69 200 455.77 88.67 0.00 HH 

26884 motorway  I 80 199 91.34 46.15 0.00 HH 

27436 tertiary 
Ingersoll 
Avenue 

 199 39.29 4.36 0.00 HH 

26954 motorway  I 35 198 39.23 14.99 0.00 HH 
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24841 motorway  I 35;I 80 193 7.77 3.93 0.00 HH 
24971 motorway  I 80;I 35 188 160.12 72.36 0.00 HH 

24800 primary Southeast 14th 
Street 

US 69 181 438.95 87.03 0.00 HH 

24845 motorway  I 80 180 14.64 10.46 0.00 HH 

26781 secondary 
University 

Avenue 
 179 133.61 27.01 0.00 HH 

24918 primary 
Southeast 14th 

Street 
US 69 177 132.56 50.64 0.00 HH 

26558 motorway  I 80;I 35 172 7.82 4.56 0.00 HH 

24782 primary 
Northeast 14th 

Street US 69 167 78.74 18.26 0.00 HH 

25995 secondary 
Martin Luther 

King Jr. 
Parkway 

 161 378.83 102.33 0.00 HH 

24849 motorway  I 80;I 35 155 72.62 51.89 0.00 HH 

The high–low and low–high outlier shows that there is a negative autocorrelation. The roads in 
high–low outlier have high-frequency crashes; however, their neighboring roads have low-frequency 
crashes. Contrarily, the roads in low–high outlier have low-frequency crashes; however, their 
neighboring roads have high-frequency crashes. A portion of the calculated local Moran’s I, z-score, 
and p-value of each road in low–high and high–low outlier are shown in Table 5. Transportation 
authorities should also pay attention to roads in high–low and low–high outliers to find why there is 
a negative autocorrelation. 

Table 5. Local Moran’s I, z-score, and p-value of roads in high–low and high–low outliers. 

Id Fclass Name Crash_Count Local Moran i Z-score p-value Cotype 

1970 residential Willowmere Drive 0 −4.91 −2.48 0.01 LH 
23513 tertiary Watrous Avenue 0 −5.11 −2.58 0.01 LH 
24306 residential Wakonda Drive 0 −4.89 −2.02 0.04 LH 
2749 secondary University Avenue 0 −4.60 −3.28 0.00 LH 
15523 residential Southwest 16th Street 0 −3.86 −2.25 0.02 LH 
1670 residential Southlawn Drive 0 −4.95 −2.89 0.00 LH 
911 tertiary Porter Avenue 0 −4.99 −2.52 0.01 LH 

13993 residential Northeast 69th Place 0 −2.58 −2.61 0.01 LH 
14706 tertiary Maury Street 0 −4.46 −2.02 0.04 LH 
23514 secondary Indianola Avenue 0 −8.43 −3.48 0.00 LH 
12238 residential Hart Avenue 0 −5.87 −3.42 0.00 LH 
10097 residential Hackley Avenue 0 −4.86 −2.01 0.04 LH 
23676 tertiary East Watrous Avenue 0 −6.39 −3.23 0.00 LH 
4286 tertiary Cowles Drive 0 −4.49 −2.03 0.04 LH 
4770 secondary Bell Avenue 0 −4.63 −2.09 0.04 LH 
8815 tertiary Aurora Avenue 0 −5.08 −2.10 0.04 LH 
14734 residential 41st Street 0 −3.98 −2.32 0.02 LH 
1970 residential Willowmere Drive 0 −4.91 −2.48 0.01 LH 
23513 tertiary Watrous Avenue 0 −5.11 −2.58 0.01 LH 
24789 motorway I 35 100 −3.59 −2.09 0.04 HL 
27604 secondary University Avenue 119 −19.65 −4.68 0.00 HL 

5. Recommendation of Future Work 

In this paper, we have developed a spatial data mining approach to directly identify road 
clusters with high-frequency crashes (RCHC) by using spatial weight matrix of roads (SWMR) and 
the local Moran’s I for cluster and outlier analysis. We believe that the proposed approach can be 
extended to the following fields, which can be considered as future work. 

5.1. Spatiotemporal Data Mining Approach. 

In this study, the ten-year crashes were equally applied in spatial data mining approach. 
However, different temporal crash factors, such as light, season, weather, may be varied. It is 
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necessary to differentiate the treatment of crashes according to different temporal factors. As such, 
we will develop the spatiotemporal data mining approach considering the several spatiotemporal 
correlations between the crashes and main factors to discover the spatial and temporal patterns of 
traffic crashes according to different factors. 

5.2. Identify Traffic Bottleneck. 

In recent years, identify traffic patterns, including traffic bottlenecks, has received much 
attention [46–48]. The proposed approach in this paper has the potential to identify the traffic 
bottleneck. The spatial relationship between the bottleneck and broad network can be established by 
a fuzzy spatial aggregation algorithm, and the spatial weight matrix of road network are then used 
to study the degree of autocorrelation of the traffic congestion and discover the spatial distribution 
pattern of the traffic bottleneck under the constraints of the road network. 

5.3. Identify Certain Roadway Damages. 

Due to various adverse factors, such as pounding and impact [49], chloride diffusion [50] and 
corrosion [51,52], and freeze and thaw [53,54], roadways are subject damages, such as potholes and 
cracks, which will negatively impact traffic flow [55], generating abnormal traffic patterns, such as 
sudden slow down and lane changes, which will worsen over time. Therefore, a spatiotemporal data 
mining approach by using the historical data will be developed. Cluster and outlier analysis can be 
used to discover roadway damages by checking the degree of autocorrelation of traffic flow and the 
outliers represent with abnormal traffic flow. 

5.4. Cloud-Based RCHC Identification 

The proposed approach was developed and validated using a personal computer that has the 
capacity to identify RCHC in large cities or regions with populations of ~430,000 people, such as Polk 
County; however, it is difficult to process the big data of crashes and roads in megacities. As a future 
work, we will deploy, test, and amend the proposed approach in the cloud computing environment 
[56] to provide high performance computing solutions for identify RCHC in megacities, to further 
improve the data processing capability of this approach. 

6. Conclusions 

As important carriers of traffic, roads and their ancillary facilities have important impacts on the 
frequency of crashes [57,58]. This paper successfully demonstrates a spatial data mining approach to 
directly identify road clusters with high-frequency crashes (RCHC). The application of methodology 
was illustrated by using the spatial data set (stored in SHP file format) including traffic crashes (2008–
2018) and roads of Polk County, Iowa, U.S.A. The proposed crash spatial aggregation algorithm uses 
geometric and attribute integrated matching and spatial fuzzy matching to build the crash–road 
spatial relationships considering GPS location accuracy. The developed spatial weight matrix of 
roads (SWMR) algorithm has the ability to detect and accommodate overpass crossing and underpass 
crossing with the consideration of the 11 typical topological and geometric relationships of roads. 
The algorithm, creates accurate SWMR of complex road network, have the added value that can 
support further spatial statistics (e.g., high–low clustering and Getis-Ord Gi* analysis) of road 
network crashes. As a major contribution, the research adopts a new idea and focuses on line-based 
local Moran’s I analysis by taking line-based roads as the core research objects instead of point-based 
crashes. As a result, the proposed method can directly identify RCHC. 
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