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Abstract: This paper develops a three-step spatial data mining approach to directly identify road
clusters with high-frequency crashes (RCHC). The first step, preprocessing, is to store the roads and
crashes in a spatial database. The second step is to describe the conceptualization of road–road
and crash–road spatial relationships. The spatial weight matrix of roads (SWMR) is constructed
to describe the conceptualization of road–road spatial relationships. The conceptualization of
crash–road spatial relationships is established using crash spatial aggregation algorithm. The third
step, spatial data mining, is to identify RCHC using the cluster and outlier analysis (local Moran’s I
index). This approach was validated using spatial data set including roads and road-related crashes
(2008–2018) from Polk County, IOWA, U.S.A. The findings of this research show that the proposed
approach is successful in identifying RCHC and road outliers.

Keywords: data mining; road network; traffic crash; road clusters with high-frequency crashes
(RCHC); spatial weight matrix (SWM); local Moran’s I index; cluster identifying

1. Introduction

According to the World Health Organization, ~1.25 million people die each year on the roads as a
result of crashes (traffic accidents) [1]. The road traffic network is an integrated and complex system
consisting of four elements: “people, vehicle, roads, and environment” [2,3]. As a carrier of traffic, roads
with ancillary facilities have an important impact on the frequency of crashes. From the perspective of
transportation authorities and safety specialists, strategies such as renovating road facilities, improving
road traffic conditions, and using prompt signs of crash warning at road clusters with high-frequency
crashes (RCHC) are effective in reducing crashes. Therefore, given the massive roads, how to identify
RCHC is one of the most significant challenges faced by transportation authorities and safety specialists.

A review of previous studies shows that data mining [4–6] has been widely used to traffic crash
analysis. Kumar et al. [7] used the latent class clustering and k-modes clustering technique on road
accident data from Haridwar, India. Castro and Kim [8] explored the role of different factors on injury
risk using a Bayesian network, decision trees, and artificial neural networks to detect factors of the
greatest influence on car accidents. Taamneh et al. [9] established a set of rules that can be used by the
United Arab Emirates Traffic Agencies to identify the main factors that contribute to accident severity.
Li et al. [10] applied statistics analysis and data mining algorithms on the fatal accident dataset as an
attempt to discover variables that are closely related to fatal accidents.

The above studies focus on using data mining approach to obtain the relationships between
non-spatial factors and traffic crashes, neglecting mining geospatial features associated with traffic
crashes. Unlike non-spatial data mining, few studies have been dedicated to the spatial autocorrelation
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measure [11], an important method of spatial data mining [12–14], to identify crash hotspot. Ouni
and Belloumi [15] examined the stability of the performance of two spatial autocorrelation measures
based on a road safety risk index through the comparison of the results in Tunisia. Xie and Yan [16]
integrated network kernel density estimation with local Moran’s I for hot spot detection of traffic
accidents. Blazquez and Celis [17] identified critical areas with high child pedestrian crash risk in the
city of Santiago, Chile, using kernel density estimation and Moran’s I index in a GIS environment.

In the above spatial autocorrelation measures, including Moran’s I [18], Geary’s ratio [19],
and Getis-Ord Gi* [20], the Moran’s I was most favored by researchers, as its distributional characteristics
are more desirable and the indicator has greater general stability and flexibility [18,21]. The Moran’s I,
first known as a global single indicator of assessing spatial autocorrelation, can qualitatively detect
whether the spatial distribution is dispersed, random, or clustered in the entire space with respect
to their attribute values. In this context, it is important to note that the global Moran’s I cannot
quantitatively describe traffic crashes that is mainly concentrated on those roads.

Therefore, it is necessary to calculate the local Moran’s I index [22] of each road, and perform
clustering and outlier analysis to reveal RCHC. The clustering and outlier analysis method examines
the local Moran’s I index of individual road based on a comparison with the neighboring roads, which
is as an effective method to identify RCHC.

In addition, some studies have used network kernel density estimation [23–25] as a spatial data
mining method to compute spatial concentrations of point-based crashes in a road network. The spatial
weight between crashes is used as a distance or spatial closeness of crashes along the road network.
These studies take point-based crashes as the research object and used point-based spatial clustering
analysis method, which is effective to detect hazardous locations by clusters of crashes.

The above studies provide a foundation for the research content of this paper. However, previous
studies neglected some issues by using spatial data mining methods. First, these studies mainly focus
on the point-based spatial clustering to find hotspots of crashes, and thus cannot directly identify
RCHC. Second, some studies neglected the road–road or crash–road spatial relationships that affect
accuracy of the result of spatial data mining.

To solve the issues, first, this paper focuses on the line-based spatial clustering method and takes
linear roads as the research object, which can directly identify RCHC. Second, in this study, road–road
and crash–road spatial relationships are applied in spatial data mining methods. Crashes are spatially
aggregated as the attribute of the count of crashes of road (ACCR) by considering the road-crash
geometric and attribute relationships. Then, a spatial weight matrix of roads (SWMR) [26–28] is
established based on the road–road topological and geometric relationships. The ACCRs and SWMR
are used as the input parameters in the cluster and outlier analysis (local Moran’s I) to improve accuracy
of the result of spatial data mining.

The aim of this study is to (a) create the accurate SWMR of complex road network respect to
overpass crossing or underpass crossings to support further spatial statistics analysis (e.g., high–low
clustering, hotspots analysis) (b) identify the RCHC to help transportation authorities and safety
specialists to identify and prioritize roads that require more safety attention to reduce crashes.

The rest of the paper is organized as follows. Section 2 presents the methodology used in this
study. Section 3 describes the spatial data, including the traffic crashes and roads of Polk County, Iowa
used in this study. Section 4 illustrates and discusses the results by using the methodology within the
study area. Section 5 recommends future work. Finally, Section 6 concludes the paper.

2. Methodology

2.1. Process Map

This paper presents a three-stepped spatial data mining approach to directly identifying RCHC
by using: (1) preprocessing, (2) conceptualization, and (3) spatial data mining. The process map for the
approach is shown in Figure 1.
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Figure 1. Process map for the approach of directly identifying road clusters with high-frequency
crashes (RCHC).

(1) Preprocessing

The first step (preprocessing) is storage of the road network, crashes, and region boundary in
spatial database. In this paper, we use PostGreSQL database [29] and PostGIS spatial data engine [30]
to store and query massive spatial roads and crashes. The attribute and geometry info of road and
crash table inherited from the input road and crash shapefile.

(2) Conceptualization

The second step (conceptualization) is to build the conceptualization of spatial relationships.
There are two types of conceptualization of spatial relationships: (1) the conceptualization of linear
road relationships and (2) the conceptualization of road–crash relationships. Spatial weight matrix of
roads (SWMR) is constructed to describe the conceptualization of road spatial relationships. The road
network topology is created using pgRouting [31], which extends the PostGIS/PostgreSQL geospatial
database to provide road network geospatial routing ability functions (e.g., pgr_createTopology,
pgr_createVertices, pgr_analyzegraph, pgr_nodeNetwork). The road network DBF table with count of
crashes is calculated using crash spatial aggregation algorithm to describe the conceptualization of
spatial relationships between roads and crashes.

(3) Spatial data mining

The third step (data mining) is to identify RCHC using the cluster and outlier analysis (local
Moran’s I). According to studies of the point-based spatial clustering analysis method, this paper
proposes a method of directly identifying RCHC by using line-based Moran’s I index. We can
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quantitatively identify RCHC (positive autocorrelation) and road outliers (negative autocorrelation)
via map visualization of road clusters and outliers shapefile.

2.2. File Types

There are three types of file: (1) the input files, (2) the intermediate files, and (3) output results
used in the approach, as shown in Table 1.

Table 1. The overview of file types.

Name File Type Format Type Feature Type Description

Road Input Shapefile Line The feature file of road centerlines
Crash Input Shapefile Point The feature file of crashes

Boundary Input Shapefile Region The Boundary of study Area
Traffic Database Intermediate PostGreSQL Database Line/Point/Region The spatial database converted from input shapefiles

SWMR file Output GWT File / ASCII encoded SWM File of road
Road clusters and outliers Output Shapefile Line The result of cluster and outlier analysis

2.2.1. The Input Files

Input files include point-based shapefile of crash, linear shapefile of road, and the regional
shapefile of boundary. All the files contain the geometry and the important attributes (e.g., location,
names, etc.).

2.2.2. The Intermediate Files

Intermediate files include PostGreSQL traffic database and SWMR file. We convert the input
shapefiles to traffic database that contains the road, crash DBF table and boundary DBF table using
the tool-“PostGIS 2.0 Shapefile and DBF”. The road DBF table contains the information: geometry,
attribute, network topology, and road-relative crashes.

2.2.3. Output Results

Output results include the SWMR file and road clusters and outliers shapefile. The SWMR
file is constructed based on geometric and topological adjacency of road network to describe the
conceptualization of road spatial relationships as a foundation of spatial analysis. To improve the
versatility of the approach, we use ASCII encoded gwt format file, which is compatible with spatial
analysis software such as ArcGIS [32] and GeoDa [33], to store SWMR data. The first line of the file of
the SWMR file in gwt format is the name of the unique identifier field (e.g., ID). After that, each row in
the file is formatted into three columns: the ID of the road i (IDi), the ID of the road j (IDj), and the
spatial weight (Wij). The road clusters and outliers shapefile contains the high–high and low-low road
clusters, and the high–low and low–high outliers are the result of cluster and outlier analysis (local
Moran’s I index). The high–high road clusters are RCHC we should identify in this research.

2.2.4. Remark on Availability of Input Files

The availability of input data determines the practicability of the approach. The input data can
be easily accessed from Geofabrik’s free download server and state Department of Transportation
noted in Section 3. However, the traffic crash shapefile, not being core input data, may be difficult
to obtain in few cities or regions. As a result of taking roads (line type) as the core research objects
instead of crashes (points) in this approach, csv format plain code file or excel xls file of crash have the
basic information (e.g., crash id and location) also can be used to statistic the crash count of each road
applying the attribute matching method in the proposed approach if we do not have the detailed crash
shapefile in few cities or regions. Thus, the practicability of the approach is improved.
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2.3. Methods

2.3.1. Crash Spatial Aggregation Algorithm

To find the RCHC, we should aggregate crashes in roads as the count of traffic crashes on the
road. First, we add a fields (<crash_count>, <crashlist >) of the road DBF table. Second, we calculate
the attributes (<crash_count>, <crashlist>) for each road. To determine whether the crash is on a road,
the following two premises shall be considered.

Premise 1 As the accuracy of crash global positioning system (GPS) coordinate has a positioning error
of approximately 10 m [34]. A crash occurs on the road if its coordinates are within 10 m of
the buffer of the linear road considering the positioning error of crash.

Premise 2 As the Interstate Highway standards for the U.S. Interstate Highway System use a 12 foot
(3.7 m) standard lane width [35], a crash occurring on the road can be determined if its
coordinates are within 3.7 m of the buffer of the road.

Under above premises, we can determine the crash is on the road if the geometric and attribute
relationships between crash and road meet both conditions 1 and 2 (means geometric and attribute
integrated matching). If the crash cannot match any road by geometric and attribute integrated
matching, the crash can be spatially aggregated to the road meet both conditions 3 and 4 (means spatial
fuzzy matching).

1. Condition 1: The shortest distance between traffic crash and road less than 47 m (consider 10 lane
roads and GPS positioning accuracy) order by the distance.

2. Condition 2: Attribute matching between name of road and location of crash.
3. Condition 3: The shortest distance between traffic crash and road is less than 10 m (consider GPS

positioning accuracy).
4. Condition 4: The shortest distance between traffic crash and road is minimum in all datasets.

We use qt platform to realize the crash spatial aggregation algorithm in PostGIS/PostGreSQL
database following the conditions. Figure 2 shows the definition of main data types. Figure 3 shows
the main structure of the algorithm.
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2.3.2. SWMR Construction Algorithm

A spatial weight matrix (SWM) is a representation of the spatial structure of the data, and it
is designed to generate, store, reuse, and share the conceptualization of the relationships among a
set of features [36]. A SWM is the key input parameters in cluster and outlier analysis. The input
SWM directly determines the correctness of the calculation results of cluster and outlier analysis.
Consequently, when using an inappropriate SWM, cluster and outlier analysis cannot be trusted
in general.

As taking linear roads as the research object in this paper, we need to build the SWMR that
matches with spatial distribution characteristics of roads for identification of RCHC by using cluster
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and outlier analysis. Conceptually, the SWMR is an N×N matrix (as shown in Equation (1) [26,27].
There is one row for every road and one column for every road.

SWMR =

1 2 j n
1 W11 W12 W1 j W1n
2 W21 W22 W2 j W2n

i Wi1 Wi1 Wi j Win
n Wn1 Wn2 Wnj Wnn

(1)

where N is the number of roads; i, j is the unique identifier of roads; and Wij is the weight of matrix
(means the cell value for any given row i and column j combination) that quantifies the spatial
relationship between roads.

Typically, Wij in SWMR are defined using Euclidean distance measurements and contiguity, fixed,
or inverse distance weighting schemes [37,38]. However, road traffic system with crashes is based on
road network which has complex topology and geometric relationships [39,40]. For identification of
RCHC, defining spatial relationships in terms of road network is more appropriate.

SWMR models road spatial relationships and should follow the topology between roads that
are restricted to the adjacency of road network. At the most basic level, there is a binary strategy for
creating Wij to quantify the spatial relationships among roads. If the road i is a 1st-order neighbor to
road j in the road network, then Wij = 1, else then Wij = 0.

In this paper, we consider topological or geometric adjacency roads, which share the same
intersection or the same node, equal to 1st-order neighbors. That means there is a topological or
geometric adjacency between road i and road j, then Wij = 1; otherwise, Wij = 0 using binary strategy.
However, to find the geometric or topological adjacency roads is a difficult problem since the different
road types (e.g., highway, local, bridge, and tunnel) in real road network have complex topological and
geometric relationships. Note that roads with an overpass crossing or underpass crossing lack a true
intersection. For instance, Hul Ave and I235 highway have two intersections in the 2D map; however,
they do have two overpass crossings (nonintersecting) in the photo, as shown in Figure 4.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 20 

2.3.2. SWMR Construction Algorithm 

A spatial weight matrix (SWM) is a representation of the spatial structure of the data, and it is 

designed to generate, store, reuse, and share the conceptualization of the relationships among a set 

of features [36]. A SWM is the key input parameters in cluster and outlier analysis. The input SWM 

directly determines the correctness of the calculation results of cluster and outlier analysis. 

Consequently, when using an inappropriate SWM, cluster and outlier analysis cannot be trusted in 

general. 

As taking linear roads as the research object in this paper, we need to build the SWMR that 

matches with spatial distribution characteristics of roads for identification of RCHC by using cluster 

and outlier analysis. Conceptually, the SWMR is an N×N matrix (as shown in Equation (1) [26,27]. 

There is one row for every road and one column for every road. 

11 12 1j 1n

21 22 2j 2n

i1 i1 ij in

n1 n2 nj nn

1 2

1

2

w w w w

w w w w

w w w w

w w w w

j n

SWMR

i

n



 

(1) 

where N is the number of roads; i, j is the unique identifier of roads; and Wij is the weight of matrix 

(means the cell value for any given row i and column j combination) that quantifies the spatial 

relationship between roads. 

Typically, Wij in SWMR are defined using Euclidean distance measurements and contiguity, 

fixed, or inverse distance weighting schemes [37, 38]. However, road traffic system with crashes is 

based on road network which has complex topology and geometric relationships [39,40]. For 

identification of RCHC, defining spatial relationships in terms of road network is more appropriate.  

SWMR models road spatial relationships and should follow the topology between roads that are 

restricted to the adjacency of road network. At the most basic level, there is a binary strategy for 

creating Wij to quantify the spatial relationships among roads. If the road i is a 1st-order neighbor to 

road j in the road network, then Wij = 1, else then Wij = 0. 

In this paper, we consider topological or geometric adjacency roads, which share the same 

intersection or the same node, equal to 1st-order neighbors. That means there is a topological or 

geometric adjacency between road i and road j, then Wij = 1; otherwise, Wij = 0 using binary strategy. 

However, to find the geometric or topological adjacency roads is a difficult problem since the 

different road types (e.g., highway, local, bridge, and tunnel) in real road network have complex 

topological and geometric relationships. Note that roads with an overpass crossing or underpass 

crossing lack a true intersection. For instance, Hul Ave and I235 highway have two intersections in 

the 2D map; however, they do have two overpass crossings (nonintersecting) in the photo, as shown 

in Figure 4. 

  
(a) intersections in 2D map (b) overpass crossings in a photo 

Figure 4. Overpass crossing (nonintersecting) of the highway and local road. Figure 4. Overpass crossing (nonintersecting) of the highway and local road.

In GIS, there are different ways to model the topological and geometric relationship of road
network in real world. A total of 11 kinds of graphs were summarized in this paper, as shown
in Figure 5, to demonstrate the typical topological and geometric relationships of road network.
Considering the typical topological and geometric relationships of road network, we can find the
geometric or topological adjacency roads to calculate spatial weights of SWMR:

• The spatial weights of SWMR are 1 if the roads are topological adjacent for the following cases.
(a) T-intersection with node, (c) T-intersection of highway bridge with node, (f) cross-intersection
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with node, (j) topological adjacency, (k) topological adjacency with bridge, and (l) topological
adjacency with tunnel.

• The spatial weights of SWMR are 1 if the roads are geometric adjacent for the following cases.
(b) T-intersection without node, (d) T-intersection of highway bridge without node, and (e)
cross-intersection without node.

• The spatial weights of SWMR are 0 if the roads are neither geometric adjacent nor non topological
adjacent for the following cases; (g) overpass crossing and (h) underpass crossing.
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Figure 6 shows the main structure of the SWMR construction algorithm.

2.3.3. Cluster and Outlier Analysis (Local Moran’s I)

The First Law of Geography [41], according to Professor Waldo Tobler, is “everything is related
to everything else, but near things are more related than distant things.” Based on the first law of
geography, geographical phenomena or attributes are related to each other in spatial distribution, have
spatially related characteristics; that is, the closer the distance is, the more similar the things are [41].
Therefore, there are three types of distributions of crashes: dispersed, random, or clustered.

The global Moran’s I developed by Professor Moran in 1948, is one of the most preferred measure
of spatial autocorrelation [42]. The global Moran’s I use a single index to detect the degree of
autocorrelation of the same variable in the spatial region, and can verify the spatial distribution pattern
in entire spatial extent.

In this study, the local Moran’s I (suggested in Professor Anselin based on global Moran’s I) [19] is
used as a local indicator of spatial autocorrelation to find RCHC. The local Moran’s I, one of the most
widely used local indicators of spatial association statistics [16], is calculated for each road to reveal the
degree of spatial autocorrelation and is used to analyze whether the same variable (<crash_count> in
this research) has autocorrelation at a specific local location. The local Moran’s I index is expressed
as [19,22,42]

Ii =
Xi −X

Si2

n∑
j=1, j,i

Wi j(X j −X) (2)
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where Ii is the calculated local Moran’s I index of Road i. Ii is a relative measure and can only be
interpreted within the context of its computed z-score or p-value. The p-value is a probability, a type of
statistics to express confidence level. The z-score is a standardized local Moran’s I index. Wij is the
weight in SWMR (as discussed in Section 2.3.2) that quantifies the spatial relationship between road i
and road j. xi, xj is the crash count (as discussed in Section 2.3.1) of road i and road j. X is the average
crash count of all roads. n is the total number of roads, i = 1, 2; n and j = 1, 2, n. Si

2 is the measure of
sample variance, defined as

Si
2 =

n∑
j=1, j,i

X2
i (X j −X)

2

n− 1
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In the cluster and outlier analysis, it is necessary to make assumptions about the spatial distribution
of crashes, which is randomization null hypothesis of spatial distribution. The test of randomization
null hypothesis of spatial distribution can be performed based on the z-score and p-value along with
the local Moran’s I index. The equation to calculate the z-score (ZIi ) for Ii is shown as

ZIi =
Ii − E[Ii]√

V[Ii]
(4)

where E[Ii] = −

n∑
j=1, j,i

Wi j

n−1 , and V[Ii] = E[Ii
2] − E[Ii]2.
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The Zi-score is a standardized local Moran’s I value of road i. The z-scores and p-values for roads
are measures of statistical significance which tell us whether or not to reject the randomization null
hypothesis, road by road [1]. In this study, p-value ≤ 0.05 (95% confidence level) is used to indicate
significant clusters, which is applied to each road. For either road, if its p-value is smaller than 0.05
and z-score is greater than 1.96 or less than −1.96, that road will be considered as one of the cluster or
outlier. The road who z-score is positive and greater than 1.96 and p-value is smaller than 0.05, with the
neighboring roads have similar z-score and p-value, form the high–high road clusters. The high–high
road clusters are the RCHC, which can be used to directly identify the dangerous roads.

3. Data Description

This study focuses on the Polk County, Iowa, United States. Based on the 2010 census, its population
was 430,640, representing 14% of the state’s residents, making it the Iowa’s most populous county.
The study considers all types of roads (e.g., local, highway, bridge, and tunnel) and crashes occur on
road (not in intersection) within the Polk County boundary. The data can be downloaded from the
website: https://geodata.iowa.gov/dataset/county-boundaries-iowa.

3.1. The Spatial Data of Roads

The spatial data of IOWA statewide roads that this study employ can be download form
OpenStreetMap [43] website (http://download.geofabrik.de/north-america.html). We extract spatial
data of roads from the Iowa statewide road using (a) select layer by location tool (roads intersect with
the Polk County boundary) and (b) select layer by attribute (roads suitable for cars) from ArcGIS
geoprocessing tool box. A total of 27,606 roads are successfully recorded in ArcGIS software, as shown
in Figure 7.
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Note that the road shapefile of other cities or regions can be easily downloaded from Geofabrik’s
free download server, which has the latest global spatial road data normally update every day from
the OpenStreetMap project.

3.2. The Spatial Data of Road-Related Crashes

This study employs the spatial data of crashes provided by the Iowa Department of Transportation’s
public platform (https://data.iowadot.gov/), which has the statewide data of general traffic crashes
from the prior 10 years.

The database of crashes contains 49 types of information (e.g., crash_key, casenumber, crash_day,
crash_date, district, county_num, literal, locfsthrm, locfsthrm, light, weather, rdtype, xcoord, and
ycoord). For this study, a dataset of road-related crashes that occurred in Polk County was selected
and analyzed.

We extract spatial data of crashes of the Polk County from the Iowa statewide traffic crash shapefile
using (a) select layer by location tool (crashes intersect with the Polk County boundary) and (b) select
layer by attribute tool (crashes are not intersection-related) from ArcGIS geo-processing tool box.
A total of 41,734 road-related crashes that happened in Polk County from 1 January 2008–6 August
2018 are successfully recorded in ArcGIS, as shown in Figure 8.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 20 

 

Figure 8. Distribution of crashes in Polk County. 

Note that we can also access other cities or regions crash shapefile published by state 

Department of Transportation in USA using the same extracting method. 

4. Results and Discussion 

4.1. The SWMR of Polk County 

As described earlier, SWMR is the critical input parameters for the local Moran’s I analysis. 

Therefore, it is necessary to establish the SWMR of the Polk County to accurately express the spatial 

relationship between roads. 

As discussed in Section 2.2.3, we use ASCII encoded gwt format file to store SWMR data. The 

first line of the file of the SWMR in gwt format is the name of the unique identifier field (we use the 

field ‘ID’ as the unique identifier field in this paper). The spatial weight (Wij) is calculated by 

considering topological and geometric relationships between roads. Due to space limitations, we take 

the typical highway–local link road graph shown in Figure 9 as an example to demonstrate the SWMR 

of Polk County. 

Figure 8. Distribution of crashes in Polk County.

Note that we can also access other cities or regions crash shapefile published by state Department
of Transportation in USA using the same extracting method.

https://data.iowadot.gov/


Appl. Sci. 2019, 9, 5282 12 of 19

4. Results and Discussion

4.1. The SWMR of Polk County

As described earlier, SWMR is the critical input parameters for the local Moran’s I analysis.
Therefore, it is necessary to establish the SWMR of the Polk County to accurately express the spatial
relationship between roads.

As discussed in Section 2.2.3, we use ASCII encoded gwt format file to store SWMR data. The first
line of the file of the SWMR in gwt format is the name of the unique identifier field (we use the field
‘ID’ as the unique identifier field in this paper). The spatial weight (Wij) is calculated by considering
topological and geometric relationships between roads. Due to space limitations, we take the typical
highway–local link road graph shown in Figure 9 as an example to demonstrate the SWMR of
Polk County.
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Table 2 lists the content of the ASCII encoded gwt format file of roads, including motorway links
(ID. 23970, 24103) and bridges (ID. 3833, 3950) created by the algorithm of constructing of SWMR
(discussed in Section 2.3.2), to save the conceptualization data of road spatial relationships. It should
be noted that the SWMR is a sparse matrix, and there is a large amount of zero Wij data. Therefore,
in this paper, the rows with a spatial weight of 0 are omitted since the default setting for spatial weights
is 0 in the spatial data mining approach, which can effectively reduce the file storage space.

Table 2. The content of the ASCII encoded gwt format file.

First Row: ID (Unique Identifier Field)

Row No. IDSi IDSj Wij Row No. IDSi IDSj Wij

1 23970 2125 1 2 23970 17352 1
3 24103 3951 1 4 24103 23512 1
5 24103 23817 1 6 24103 27191 1
7 3833 2125 1 8 3833 26956 1
9 3950 23817 1 10 3950 26957 1
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4.2. The Results of Road Cluster and Outlier Analysis of Polk County

The study uses cluster and outlier analysis (the local Moran’s I, as discussed in Section 2.3.3) from
geo-processing tools in ArcGIS [44,45], by taking the following input parameters, as shown in Table 3,
to calculate local Moran’s I index, z-score, and p-value for each linear road to obtain road clusters and
outliers across Polk County.

Table 3. Input Parameters of cluster and outlier analysis (Anselin local Moran’s I).

Input Parameter Input Value

Input Feature Class road_polk
Input Field crash_count

Output Feature Class c:\data\myproject.gdb\road_clustersoutliers
Conceptualization of Spatial Relationships get_spatial_weights_from_file

Standardization none
Distance Band or Threshold Distance none

Weights Matrix File c:\data\swmr.gwt
Apply False Discovery Rate Correction no_fdr

All roads should have at least one neighbor [32] according to the best practice guidelines of cluster
and outlier analysis. In this research, a total of 27,491 roads were selected in the input feature class
since we find 115 roads in OpenStreetMap roads of Polk County have no neighbor when we construct
the SWMR of Polk County.

In general, there are four types of road cluster and outlier in the road cluster and outlier shapefile,
as discussed in Section 2.2.3: high–high cluster (cotype is HH), low-low cluster (cotype is LL), high–low
outlier (cotype is HL), and low–high outlier (cotype is HL). The high–high cluster, high–low outlier,
and low–high outlier are colored in red, black, and blue, respectively. The results, as shown in Figure 10
using map visualization, clearly demonstrate the road clusters and outliers.
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High–high road cluster indicates that there is a positive autocorrelation. The roads in this cluster
all have high crashes and the neighbor roads also have high-frequency crashes. That means, High–high
road cluster is the RCHC that we should identify from the 27,606 roads of Polk County.

The RCHC of Polk County, as shown in Figure 10, centered along with I 35, I235, US69, I80, and US
6, can be discovered is relevant to hazardous roads detection. There are 738 roads in the RCHC of Polk
County, which account for 2.67% of all roads and 24, 652 crashes occurred in RCHC, accounting for
59.07% of all crashes. That means 59.07% crashes occurred in 2.67% roads in Polk County. In addition,
we can discovery that 85.60% crashes in RCHC occurred on major roads, including motorway, trunk,
primary, secondary, and tertiary, as shown in Figure 11. We can quantitatively identify that 59.07%
crashes of Polk County have strong positive spatial autocorrelation with topological or geometric
adjacency of roads.
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Figure 11. Statistics of crash counts in different road classes in RCHC.

Portion of calculated local Moran’s I, z-score, and p-value for each road in RCHC are shown in
Table 4, based on which, transportation authorities can develop targeted mitigation strategies for the
roads in RCHC to effectively reduce the number of crashes.

The high–low and low–high outlier shows that there is a negative autocorrelation. The roads in
high–low outlier have high-frequency crashes; however, their neighboring roads have low-frequency
crashes. Contrarily, the roads in low–high outlier have low-frequency crashes; however, their
neighboring roads have high-frequency crashes. A portion of the calculated local Moran’s I, z-score,
and p-value of each road in low–high and high–low outlier are shown in Table 5. Transportation
authorities should also pay attention to roads in high–low and low–high outliers to find why there is a
negative autocorrelation.
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Table 4. Local Moran’s I, z-score, and p-value of roads in high–high cluster (RCHC).

Id Fclass Name Ref Crash_Count Local
Moran I z-Score p-Value Cotype

24305 motorway I 35 492 209.13 94.51 0.00 HH
17387 motorway I 235 343 141.99 54.23 0.00 HH
24483 secondary Fleur Drive 295 422.79 70.28 0.00 HH
26939 motorway I 235 290 8.57 3.06 0.00 HH
26629 motorway I 80; I 35 267 10.70 4.41 0.00 HH
27435 motorway I 80; US 6 262 141.85 58.53 0.00 HH
26612 primary South Ankeny Boulevard US 69 252 242.99 59.57 0.00 HH
26533 motorway I 80; I 35 250 141.82 82.74 0.00 HH
26381 primary Douglas Avenue US 6 246 751.06 90.18 0.00 HH
24779 secondary University Avenue 241 1570.78 229.30 0.00 HH
26953 motorway I 35 230 130.27 49.76 0.00 HH
26621 motorway I 235 209 107.74 62.86 0.00 HH
26230 primary Southeast 14th Street US 69 200 455.77 88.67 0.00 HH
26884 motorway I 80 199 91.34 46.15 0.00 HH
27436 tertiary Ingersoll Avenue 199 39.29 4.36 0.00 HH
26954 motorway I 35 198 39.23 14.99 0.00 HH
24841 motorway I 35; I 80 193 7.77 3.93 0.00 HH
24971 motorway I 80; I 35 188 160.12 72.36 0.00 HH
24800 primary Southeast 14th Street US 69 181 438.95 87.03 0.00 HH
24845 motorway I 80 180 14.64 10.46 0.00 HH
26781 secondary University Avenue 179 133.61 27.01 0.00 HH
24918 primary Southeast 14th Street US 69 177 132.56 50.64 0.00 HH
26558 motorway I 80; I 35 172 7.82 4.56 0.00 HH
24782 primary Northeast 14th Street US 69 167 78.74 18.26 0.00 HH
25995 secondary Martin Luther King Jr. Parkway 161 378.83 102.33 0.00 HH
24849 motorway I 80; I 35 155 72.62 51.89 0.00 HH

Table 5. Local Moran’s I, z-score, and p-value of roads in high–low and high–low outliers.

Id Fclass Name Crash_Count Local
Moran i z-Score p-Value Cotype

1970 residential Willowmere Drive 0 −4.91 −2.48 0.01 LH
23513 tertiary Watrous Avenue 0 −5.11 −2.58 0.01 LH
24306 residential Wakonda Drive 0 −4.89 −2.02 0.04 LH
2749 secondary University Avenue 0 −4.60 −3.28 0.00 LH

15523 residential Southwest 16th Street 0 −3.86 −2.25 0.02 LH
1670 residential Southlawn Drive 0 −4.95 −2.89 0.00 LH
911 tertiary Porter Avenue 0 −4.99 −2.52 0.01 LH

13993 residential Northeast 69th Place 0 −2.58 −2.61 0.01 LH
14706 tertiary Maury Street 0 −4.46 −2.02 0.04 LH
23514 secondary Indianola Avenue 0 −8.43 −3.48 0.00 LH
12238 residential Hart Avenue 0 −5.87 −3.42 0.00 LH
10097 residential Hackley Avenue 0 −4.86 −2.01 0.04 LH
23676 tertiary East Watrous Avenue 0 −6.39 −3.23 0.00 LH
4286 tertiary Cowles Drive 0 −4.49 −2.03 0.04 LH
4770 secondary Bell Avenue 0 −4.63 −2.09 0.04 LH
8815 tertiary Aurora Avenue 0 −5.08 −2.10 0.04 LH

14734 residential 41st Street 0 −3.98 −2.32 0.02 LH
1970 residential Willowmere Drive 0 −4.91 −2.48 0.01 LH

23513 tertiary Watrous Avenue 0 −5.11 −2.58 0.01 LH
24789 motorway I 35 100 −3.59 −2.09 0.04 HL
27604 secondary University Avenue 119 −19.65 −4.68 0.00 HL

5. Recommendation of Future Work

In this paper, we have developed a spatial data mining approach to directly identify road clusters
with high-frequency crashes (RCHC) by using spatial weight matrix of roads (SWMR) and the local
Moran’s I for cluster and outlier analysis. We believe that the proposed approach can be extended to
the following fields, which can be considered as future work.
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5.1. Spatiotemporal Data Mining Approach.

In this study, the ten-year crashes were equally applied in spatial data mining approach. However,
different temporal crash factors, such as light, season, weather, may be varied. It is necessary to
differentiate the treatment of crashes according to different temporal factors. As such, we will develop
the spatiotemporal data mining approach considering the several spatiotemporal correlations between
the crashes and main factors to discover the spatial and temporal patterns of traffic crashes according
to different factors.

5.2. Identify Traffic Bottleneck.

In recent years, identify traffic patterns, including traffic bottlenecks, has received much
attention [46–48]. The proposed approach in this paper has the potential to identify the traffic
bottleneck. The spatial relationship between the bottleneck and broad network can be established by
a fuzzy spatial aggregation algorithm, and the spatial weight matrix of road network are then used
to study the degree of autocorrelation of the traffic congestion and discover the spatial distribution
pattern of the traffic bottleneck under the constraints of the road network.

5.3. Identify Certain Roadway Damages.

Due to various adverse factors, such as pounding and impact [49], chloride diffusion [50] and
corrosion [51,52], and freeze and thaw [53,54], roadways are subject damages, such as potholes and
cracks, which will negatively impact traffic flow [55], generating abnormal traffic patterns, such as
sudden slow down and lane changes, which will worsen over time. Therefore, a spatiotemporal data
mining approach by using the historical data will be developed. Cluster and outlier analysis can be
used to discover roadway damages by checking the degree of autocorrelation of traffic flow and the
outliers represent with abnormal traffic flow.

5.4. Cloud-Based RCHC Identification

The proposed approach was developed and validated using a personal computer that has the
capacity to identify RCHC in large cities or regions with populations of ~430,000 people, such as Polk
County; however, it is difficult to process the big data of crashes and roads in megacities. As a future
work, we will deploy, test, and amend the proposed approach in the cloud computing environment [56]
to provide high performance computing solutions for identify RCHC in megacities, to further improve
the data processing capability of this approach.

6. Conclusions

As important carriers of traffic, roads and their ancillary facilities have important impacts on the
frequency of crashes [57,58]. This paper successfully demonstrates a spatial data mining approach to
directly identify road clusters with high-frequency crashes (RCHC). The application of methodology
was illustrated by using the spatial data set (stored in SHP file format) including traffic crashes
(2008–2018) and roads of Polk County, Iowa, U.S.A. The proposed crash spatial aggregation algorithm
uses geometric and attribute integrated matching and spatial fuzzy matching to build the crash–road
spatial relationships considering GPS location accuracy. The developed spatial weight matrix of
roads (SWMR) algorithm has the ability to detect and accommodate overpass crossing and underpass
crossing with the consideration of the 11 typical topological and geometric relationships of roads.
The algorithm, creates accurate SWMR of complex road network, have the added value that can
support further spatial statistics (e.g., high–low clustering and Getis-Ord Gi

* analysis) of road network
crashes. As a major contribution, the research adopts a new idea and focuses on line-based local
Moran’s I analysis by taking line-based roads as the core research objects instead of point-based crashes.
As a result, the proposed method can directly identify RCHC.
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