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Abstract: In order to enable robots to be more intelligent and flexible, one way is to let robots learn
human control strategy from demonstrations. It is a useful methodology, in contrast to traditional
preprograming methods, in which robots are required to show generalizing capacity in similar
scenarios. In this study, we apply learning from demonstrations on a wheeled, inverted pendulum,
which realizes the balance controlling and trajectory following simultaneously. The learning model is
able to map the robot position and pose to the wheel speeds, such that the robot regulated by the
learned model can move in a desired trajectory and finally stop at a target position. Experiments
were undertaken to validate the proposed method by testing its capacity of path following and
balance guaranteeing.

Keywords: learning from demonstration; robot control; wheeled inverted pendulum; stability
analysis; path following; external perturbations

1. Introduction

After decades of development, robots have become the partners of human beings not only in the
workplace, but also at home. Many efforts have been made to bring robots closer to humans. Making
robots more human-like means more than making them look like humans; more importantly, it means
granting them human-like behaviors. The humanoid robot seems naturally friendly because of its
anthropomorphic appearance. However, the two legs of a humanoid robot might encounter many
difficulties in motion because of unprecedented disturbances in complex environments. In contrast,
the wheeled inverted pendulum (WIP) robot is much easier to control with fewer actuators, and would
be more stable and flexible than biped robots, which makes it promising for working with humans [1,2].
Balance control and motion planning are two important issues for WIP robots. Nevertheless, to
systematically solve them both is not trivial [3,4].

In various tasks undertaken by WIP robots (including mobile robot motion planning, keeping
balance, and even manipulation, grasping, and human-machine cooperation with loaded robotic
hands, etc.), a pre-designed controller is usually a prerequisite for robots to execute designated motions
in a structured environment [5–7]. However, coding for simply one task is a heavy workload, not to
mention that all the tasks should be addressed simultaneously by designing controllers. Furthermore,
due to the fixed pattern of a manually designed controller, it is difficult for a robot to generalize to
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slight changes of workspace or sudden external perturbations. In this context, a methodology is
desirable if it enables the robot to extract the features of the human control strategy such that it can
generalize to similar tasks under the same kinds of working configurations [8].

Learning from demonstration (LfD) is one such a methodology that satisfies the above-mentioned
requirements [9,10]. Specifically, LfD consists of three procedures [11], which are orderly collecting
human demonstrations for the task, learning model parameters from the demonstration examples,
and reproducing with the learned control model. By straightforwardly feeding the robot with
demonstrations related to specific tasks, a controller implicating the human control strategy can
be automatically learned, which benefits the amateur users without professional knowledge of how to
design a controller. Additionally, the learned model has generalization capacity to guarantee that the
robot can adapt to similar tasks, therefore avoiding the trouble of controller redesigning [12,13].

In this study, we focus on applying LfD on a wheeled inverted pendulum (Figure 1). A controller
is automatically learned from demonstrations, which should be able to regulate the two-wheeled
robot to move along a path similar to the demonstrated counterpart and to converge to a desired
position. Additionally, the control process should be effective under both the nonholonomic constraints
of two-wheeled mobile robots and the underactuated constraints that guarantee the balance of the
wheeled inverted pendulum.

(a) (b)

Figure 1. The applications of a wheeled inverted pendulum. (a) shows a manned balanced vehicle;
(b) shows a serving robot on a two-wheeled self-balancing platform.

In order to achieve the above-mentioned control requirements, we provide a learning framework
based on our previous work of learning stable and accurate dynamic system for manipulators. Different
from the previous work, the proposed learning framework can handle the nonholonomic control
problem of mobile robots. Meanwhile, we propose an online, state-variable estimating method that
is applied during the reproduction process. The method is necessary because the nonholonomic
constraints of the mobile robot and the unactuated constraints possibly deviate the robot from the
expected direction. In this situation, the proposed estimating method can adjust the extra-dimensional
component in the previous work appropriately according to the real robot positions, such that the
trajectory accuracy can still be kept on a nonholonomic mobile robot. The contributions in this paper
can be, therefore, listed as follows:

1. We provide a multi-objective learning framework to model an accurate and stable controller for
a wheeled inverted pendulum, which has to take into consideration both the nonholonomic constraints
of mobile robots and the underactuated constraints for balance.

2. A real-time estimating method for the extra-dimensional component (used in the reproduction
process) is proposed based on a proposed constrained optimization problem, which changes the
situation that the extra-dimensional component in the previous work cannot be influenced by the
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change of the robot positions (which is important for nonholonomic mobile robots to maintain
trajectory accuracy).

The remainder of this paper is structured as follows. Section 2 introduces the related work.
Section 3 formulates the problem investigated in this paper. Specific descriptions of the proposed
approach are given in Section 4. Simulations and experiments are provided to validate the proposed
method in Section 5. Finally, Section 6 concludes the contribution of this paper.

2. Related Work

By conventional control methodologies, the robot task is usually encoded by manually designing
a controller [14–16]. In order to acquire more complicated control strategy from humans automatically,
learning approaches are applied to yield a controller in the data-driven fashion. Spline decomposition
methods [17,18] are presented to construct the robot regulators by computing the point-wise averages
of the demonstrated trajectories. These methods are efficient and simple to execute, but they depend
mainly on the human heuristics for trajectory synthesis.

Statistical approaches [19,20] are also prevailing for modeling robot motions. These approaches
usually need a reasonable heuristic for controller programming, therefore, being possibly influenced
by external perturbations. These approaches are close but still unable to generalize to similar task
cases in that the choice of heuristic is decided based on specific task parameters.

The dynamic movement primitives (DMP) were proposed in [21] to effectively address the
instability problem. Its main idea is to approximate a nonlinear system by several linear counterparts.
In contrast to its effect on the aspect of stabilization, DMP did not emphasize on the accuracy factor
when modeling complicated tasks or handling complex scenarios.

Dynamic systems (DS) based methods [22,23] were developed as a promising alternative to
traditional control approaches due to its convenience, which can extract human control strategies
accurately and automatically from given demonstrations. Several methods choose to model dynamic
systems without considering stability constraints, which makes them possibly unstable at a target
position [24–26]. A stable estimator of a dynamic system (SEDS) was proposed in [27] with Gaussian
mixture models (GMMs) to incorporate both accuracy and stability factors. SEDS uses the Lyapunov
stability condition as a constraint to optimize the parameters in the control model. It effectively
captures the dynamics features from human demonstrations whilst stabilizing the robot motions. Fast
and stable learning of dynamic system method (FSM-DM) in [28] handles three factors for learning
a dynamic system, which includes one more factor of learning speed in addition to accuracy and
stability. FSM-DM is able to teach a system fast, which is advantageous in practice when efficiency is a
important requirement.

In order to reduce the influence of the accuracy against the stability dilemma, the algorithm of
control-Lyapunov-function-based dynamic movements (CLF-DM) was proposed in [29]. This method
is divided into three steps. First, A parameterized Lyapunov function candidate is roughly taught to
be consistent with the data. Second, the control features reflected by the demonstrations are learned
to guarantee the accuracy factor. Third, an online correction technique is developed to stabilize the
reproduced trajectory on the fly. The neurally imprinted stable vector fields (NIVF) technique was
presented as a learning framework to incorporate stable vector fields into the extreme learning machine
(ELM) [30], which reproduces more accurate motions and is finally stable at the target position. The
approach proposed in [31] considered using ELM network to train a Lyapunov candidate based on a
specific task. The learned Lyapunov candidate is consistent with the motion trajectories related to the
task; therefore, making the stability constraint based on it more slack. Accordingly, the accuracy of the
learned model is also less influenced by the stability factor. τ-SEDS was presented in [32] to handle
the trade-off of stability and accuracy by means of diffeomorphism. It transforms the original robot
motions into those in a new space, where the transformed motions are consistent with a quadratic
Lyapunov candidate. The method (MIMS) in [33] presented extended the SEDS scheme under the
manifold immersion and submersion. Though this method can further improve the situation of stability



Appl. Sci. 2019, 9, 5279 4 of 14

against the accuracy dilemma, the extra-dimensional component produced by the manifold immersion
is time variant. Therefore, it possibly causes performance degeneration under external perturbations.

The main feature of this paper in contrast to the previous work, is to apply learning from
demonstrations on a wheeled inverted pendulum, where more robot constraints including the
nonholonomic and underactuated constraints need to be taken into consideration.

3. Problem Formulation

This section formulates the problem mathematically. The path planning of a wheeled inverted
pendulum can be reduced to a control problem of a wheeled robot (Figure 2), which is given as

ẋ = cos (θ) v
ẏ = sin (θ) v

θ̇ = ω

(1)

where x and y describe the Cartesian position of the wheeled robot on its motion plane, and θ represents
the included angle between the robot orientation and the x-axis. v represents the forward speed of the
robot and ω represents the angular speed. The relationship between v, ω and vl , and vr (the speed of
two wheels (Figure 2)) is as follows: {

vl = v− L
2 ω

vr = v + L
2 ω

, (2)

where L represents the axis width between two wheels. Meanwhile, the wheeled inverted pendulum
is controlled under the underactuated constraints given as

ϕ̈ =
3g
4H

ϕ +
3

4H
a =

3g
4H

ϕ +
3

4H
v̇, (3)

where ϕ is the tilt angle, H is the distance between the wheel centroid and the mass, and g denotes the
acceleration of gravity.

The control diagram of a robot system scheme can be seen in Figure 3. In the phase of collecting
demonstrations, a motion capturer is used to collect the position and pose of the wheeled inverted
pendulum at a sampling interval of ∆T. The sequence of robot positions and poses as well as the tilt
angle are recorded as

{
xt,n, yt,n, θt,n, ϕt,n}Tn ,N

t=0,n=1. In the demonstration set, n indexes the demonstrated
trajectories whose total number is N. t represents the tth sampling instant and Tn represents the
total sampling number in the nth demonstration. The first-order derivatives ẋt,n, ẏt,n, θ̇t,n, and ϕ̇t,n

corresponding to xt,n, yt,n, θt,n, and ϕt,n can be further computed as
ẋt,n = 1

∆t
(
xt+1,n − xt,n) , t < Tn

ẏt,n = 1
∆t
(
yt+1,n − yt,n) , t < Tn

θ̇t,n = 1
∆t
(
θt+1,n − θt,n) , t < Tn

ϕ̇t,n = 1
∆t
(

ϕt+1,n − ϕt,n) , t < Tn

(4)

Specially, ẋTn ,n = ẏTn ,n = θ̇Tn ,n = 0 and the demonstration have a common target position and
pose; i.e., ∀i, j = 1...N, xTi ,i = xT j ,j = x∗, yTi ,i = yT j ,j = y∗ and θTi ,i = θT j ,j = θ∗. The tilt angle does
not have to be zeros at last, but has to be a small number.

The demonstration generating process can be thought to result from a dynamic system as follows:
ẋ = f1 (x, y, z, θ, ϕ |β )
ẏ = f2 (x, y, z, θ, ϕ |β )
θ̇ = f4 (x, y, z, θ, ϕ |β )
ϕ̇ = f5 (x, y, z, θ, ϕ |β )

(5)
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Figure 2. The control constraints of a wheeled inverted pendulum.
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Figure 3. The control scheme of learning from demonstrations for a wheeled inverted pendulum.

The purpose of this study was to teach a model to approximate the counterpart in Equation (5).
Subsequently, we used the learned model to construct a mapping to actuate vl and vr for the nonholonomic
mobile robot, which satisfies both the balance controlling and the path following requirements.

4. Learning Path Following and Balance Controlling Simultaneously

In this section, we introduce the proposed learning framework for a wheeled inverted pendulum,
along with an online state-variable estimating method applied during the reproduction process.

4.1. Teaching the Control Model with the Nonholonomic and Underactuated Constraints

Instead of directly learning the controller of the wheeled inverted pendulum in the form of
Equation (5), we chose to first teach the dynamic system and to subsequently transfer the learned
dynamic system into a controller.

In order to let the dynamic system sufficiently capture the control features implicated in the
demonstrated trajectories (i.e., the sequences of x and y), we added an extra-dimensional component z
for the demonstrated trajectories based on our previous work [33], and therefore, acquired transformed
trajectories denoted as

{
xt,n, yt,n, zt,n, θt,n, ϕt,n}Tn ,N

t=0,n=1. Therefore, we taught a dynamic system
denoted as
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

ˆ̇x = f̂1 (x, y, z, θ, ϕ |β )
ˆ̇y = f̂2 (x, y, z, θ, ϕ |β )
ˆ̇z = f̂3 (x, y, z, θ, ϕ |β )
ˆ̇θ = f̂4 (x, y, z, θ, ϕ |β )
ˆ̇ϕ = f̂5 (x, y, z, θ, ϕ |β )

, (6)

where β are the parameters to be learned during the learning process.
The first loss term for learning is given as Equation (7) to fit the dynamic system that generate the

transformed demonstration examples
{

xt,n, yt,n, zt,n, θt,n, ϕt,n}Tn ,N
t=0,n=1.

J1 =
N
∑

n=1

Tn

∑
t=0

(∥∥∥ẋt,n − f̂1
(

xt,n, yt,n, zt,n, θt,n, ϕt,n |β
)∥∥∥2

+
∥∥∥ẏt,n − f̂2

(
xt,n, yt,n, zt,n, θt,n, ϕt,n |β

)∥∥∥2

+
∥∥∥żt,n − f̂3

(
xt,n, yt,n, zt,n, θt,n, ϕt,n |β

)∥∥∥2
+
∥∥∥θ̇t,n − f̂4

(
xt,n, yt,n, θt,n, ϕt,n |β

)∥∥∥2

+
∥∥∥ϕ̇t,n − f̂5

(
xt,n, yt,n, zt,n, θt,n, ϕt,n |β

)∥∥∥2
)

.

(7)

Due to the existence of the nonholonomic constraints, we add a loss term

J2 =
N

∑
n=1

Tn

∑
t=0

∥∥∥tan
(
θt,n) · f̂1

(
xt,n, yt,n, zt,n, θt,n, ϕt,n |β

)
− f̂2

(
xt,n, yt,n, zt,n, θt,n, ϕt,n |β

)∥∥∥2
, (8)

which is equivalent to adding mobile robot motion constraints to the learned model.
Similarly, we consider the balance control constraints by adding another loss term to be

J3 =
N
∑

n=1

Tn

∑
t=0

(∣∣sgn(θt,n + π
2 )
∣∣ · ∣∣sgn(θt,n − π

2 )
∣∣ · ∥∥∥ ˙̂f 5 (∗)−

3g
4H ϕt,n − 1

cos(θt,n)
˙̂f 1 (∗)

∥∥∥2

+
∣∣sgn(θt,n)

∣∣ · ∣∣sgn(θt,n − π)
∣∣ · ∥∥∥ ˙̂f 5 (∗)−

3g
4H ϕt,n − 1

sin(θt,n)
˙̂f 2 (∗)

∥∥∥2
) , (9)

where ∗ denotes
(

xt,n, yt,n, zt,n, θt,n, ϕt,n)T. Taking ˙̂f 5 (∗) at an instance, ˙̂f 5 (∗) is given as

˙̂f 5 (∗) =
∂

∂x
f̂5 (∗) · ẋt,n +

∂

∂y
f̂5 (∗) · ẏt,n +

∂

∂z
f̂5 (∗) · żt,n +

∂

∂θ
f̂5 (∗) · θ̇t,n +

∂

∂ϕ
f̂5 (∗) · ϕ̇t,n. (10)

The learning process is meant to decrease the weighted sum of the loss:

β∗ = min
β

λ1 J1 + λ2 J2 + λ3 J3

s.t. V̇ < 0,
(11)

where V̇ are the stability constraints similar to those in [28]; and λ1, λ2, and λ3 denote the weighting
coefficients. In this way, the learned dynamic system is hopefully accurate and stable under the
nonholonomic constraints and underactuated constraints like those shown in Figure 2.

When reproducing the learned dynamic system, we acquire the prediction of the forward velocity
v̂ and the angular velocity ω by

v̂ = sgn
(

cos (θ) f̂1 (x, y, z, θ, ϕ |β∗ ) + sin (θ) f̂2 (x, y, z, θ, ϕ |β∗ )
)

×
√

f̂1(x, y, z, θ, ϕ |β∗ )2 + f̂2(x, y, z, θ, ϕ |β∗ )2
(12)

ω̂ = f̂4 (x, y, z, θ, ϕ |β∗ ) . (13)



Appl. Sci. 2019, 9, 5279 7 of 14

Based on Equation (2), we can acquire the predicted wheel velocities v̂l and v̂r.

4.2. Estimating the Extra-Dimensional Component by a Constrained Optimization Related to the Learned
Dynamic System

In spite of the fact that we have incorporated the loss terms J1 and J2 for the learning process to
handle the nonholonomic constraints and the underactuated constraints, the controller (Equations (12)
and (13)) yielded by the learned dynamic system still possibly fails to regulate to expected x and y at
some instances due to these two constraints. The extra-dimensional component z cannot be influenced
by the deviations of x and y; therefore, the accumulation effect might reduce the accuracy. This section
introduces an online state variable estimating method to overcome this situation.

When reproducing the learned dynamic system, the extra-dimensional component z0 of the initial
input for the learned dynamic system is computed by a constant ratio µ as in the following

z0,n =

√
‖x0,n‖2 + ‖y0,n‖2 · µ, (14)

where µ is determined by

µ =

N
∑

n=1
z0,n

N
∑

n=1

√
‖x0,n‖2 + ‖y0,n‖2

. (15)

The rule in Equation (15) to decide the constant ratio µ comes from a natural thought shown in
Figure 4.
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Figure 4. An intuitive thought to decide the extra-dimensional component z0 for the initial input. In (a),
if the start points are equally distant from the target point, their corresponding extra-dimensional
components are supposed to be closed to equal as well; i.e., z0,1 ≈ z0,2 ≈ z0,3 provided that∥∥∥(x0,1, y0,1)T

∥∥∥ =
∥∥∥(x0,2, y0,2)T

∥∥∥ =
∥∥∥(x0,3, y0,3)T

∥∥∥; in (b), if the distances of two start points from
the target point are not equal, we suppose that the ratio of their extra-dimensional components

approximates that of their distances to the target points; i.e., z0,1

z0,2 ≈
∥∥∥(x0,1,y0,1)

T
∥∥∥∥∥∥(x0,2,y0,2)T
∥∥∥ .

The proposed estimating approach is mainly based on a constrained optimization problem related
to the learned dynamic system. The general idea can be seen in Figure 5. Specifically, the learned
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dynamic system predicts the k + 1th state variable
(

x̂k+1, ŷk+1, ẑk+1, θ̂k+1, ϕ̂k+1
)T

with the kth state

variable
(

xk, yk, zk, θk, ϕk
)T

as model input.

Suppose that the robot’s actual state variable is actually
(

xk+1, yk+1, ẑk+1, θk+1, ϕk+1
)T

under the
robot constraints and the external perturbations (with only predicted ẑ unchanged because it is a
virtual component and cannot be influenced by any external factors).
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Desired 
component value
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passing through 
the actual position

The corresponding 1-higher-dimensional 
counterpart of the similar trajectory
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acquired by the learned sub-system in Eq. (14) 

z

y
x

Figure 5. Adjusting the extra-dimensional component by a constructed constrained optimization
problem. In (a), the learned dynamic system outputs the predicted robot position and the corresponding
extra-dimensional component at k + 1th instant (with the state variable at the kth instant as system
input). The external factors, including the nonholonomic constraints and underactuated constraints,
influence the robot’s movement, and the robot moves to an actual position deviating from the predicted
one. In order to adjust the extra-dimensional component which cannot be influenced by the external
factors, we suppose there is a similar robot motion trajectory (red curve on the x-y plane in (b)) passing
near the current robot trajectory (blue curve on the x-y plane in (b)). The robot motion trajectory passes
through actual robot position at the k + 1th instant, which is also yielded by the learned dynamic
system while it starts from another start point. In (c), considering the two trajectories (red and blue
curves in the x-y-z Cartesian space) are alike, the derivative directions at the reproduced points on
them at the kth instant should be also similar. Using those as constraints and combining the learned
dynamic system function, the previous point on the red marked trajectory at kth instant can be acquired
by solving the constrained optimization in Equation (19). Inputting it to the learned dynamic system,
the next state variable can be predicted, the extra-dimensional component of which is the value to be
used for adjusting the current component at k + 1th instant.

In order to find an appropriate value to adjust the extra-dimensional component ẑk+1, we suppose

the actual state variable
(

xk+1, yk+1, ẑk+1
)T

is a direct output of the learned dynamic sub-system,
ˆ̇x = f̂1

(
x, y, z, θ, ϕ|β ∗

)
ˆ̇y = f̂2

(
x, y, z, θ, ϕ|β ∗

)
ˆ̇z = f̂3

(
x, y, z, θ, ϕ|β ∗

) , (16)

without the influences of the external factors (Figure 5). Additionally, we fixed the values of θk and ϕk;
i.e., considering them as constants at that instant. Therefore, the corresponding input of the sub-system(

xk
I , yk

I , zk
I

)T
satisfying that

xk+1 − xk
I = f̂1

(
xk

I , yk
I , zk

I , θk, ϕk|β ∗
)
· ∆t

yk+1 − yk
I = f̂2

(
xk

I , yk
I , zk

I , θk, ϕk|β ∗
)
· ∆t

zk+1 − zk
I = f̂3

(
xk

I , yk
I , zk

I , θk, ϕk|β ∗
)
· ∆t

(17)

where ∆t is the sampling instant during the reproduction process.
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Meanwhile,
(

xk
I , yk

I , zk
I

)T
is supposed to be near

(
xk, yk, zk

)T
; accordingly, the derivative directions

at these two points are expected to be close as well, which constitutes an optimization constraint as

cos
〈(

f̂1

(
xk

I , yk
I , zk

I , θk, ϕk |β∗
)

, f̂2

(
xk

I , yk
I , zk

I , θk, ϕk |β∗
)

, f̂3

(
xk

I , yk
I , zk

I , θk, ϕk |β∗
))T

,(
f̂1

(
xk, yk, zk, θk, ϕk |β∗

)
, f̂2

(
xk, yk, zk, θk, ϕk |β∗

)
, f̂3

(
xk, yk, zk, θk, ϕk |β∗

))T
〉

< ω
, (18)

where ω is a small positive number.

The assumed sub-system input
(

xk
I , yk

I , zk
I

)T
in the kth instant is subsequently acquired by solving

the following constrained optimization problem with
(

xk, yk, zk
)T

as the initial guess.

arg min
(xk

I ,yk
I ,zk

I)
T

∥∥∥∥(xk, yk
)T
−
(

xk
I , yk

I

)T
−
(

f̂1

(
xk

I , yk
I , zk

I , θk, ϕk |β∗
)

, f̂2

(
xk

I , yk
I , zk

I , θk, ϕk |β∗
))T
· ∆t
∥∥∥∥

s.t. cos

〈(
f̂1, f̂2, f̂3

)T
∣∣∣∣
(xk

I ,yk
I ,zk

I ,θk ,ϕk)
T
,
(

f̂1, f̂2, f̂3

)T
∣∣∣∣
(xk ,yk ,zk ,θk ,ϕk)

T

〉
< ω

. (19)

Finally, we use the optimized
(

xk
I , yk

I , zk
I

)T
as input to the learned sub-system ż =

f̂3 (x, y, z, θ, ϕ |β∗ ), outputting

ˆ̇zk
I = f̂3

(
xk

I , yk
I , zk

I , θk, ϕk |β∗
)

. (20)

Replacing ẑk+1 by zk+1 = zk + ˆ̇zk
I · ∆t, we can acquire the adjusted extra-dimensional component

zk+1 at the k + 1th instant.

5. Experiment

In this section, we validate the proposed method on a real wheeled inverted pendulum with a
motion capturer to observe the position and pose information (as shown in Figure 6). The wheeled
inverted pendulum uses STM32 single chip computer as the processor to control the velocities of its
two wheels. The Bluetooth interface was provided for communications between the STM32 single chip
computer and the upper computer. We used the Vicon Tracker 3.4 motion capturer to observe the state
of the wheeled inverted pendulum in real-time. The motion capturer can send the observed state to the
local network that it is connected to. We, therefore, built software to receive the state observed from
the motion capturer. After handling the date received through the algorithm in the upper computer,
we subsequently send orders to the STM32 computer to actuate the wheeled inverted pendulum at an
interval of 0.005 s.
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(a) (b)

(c) (d)

Figure 6. The configuration of the experiment. (a) A wheeled inverted pendulum with markers
attached on it; (b) a laptop as the upper computer sends orders to the wheeled inverted pendulum
through Bluetooth; (c) the hardware of the motion capturer. There are four cameras to observe the
position and pose information of the wheeled robot in total; (d) shows the software interface of the
motion capturer. It can send the position and pose information through UDP protocol such that the
upper computer can receive the information in real-time.

The effectiveness of the proposed algorithm was verified by applying it to the path following task.
We collected three kinds of trajectories with three groups of demonstrations for each kind (Figure 7).
The recorded demonstrated trajectories were used to train the dynamic system in Equation (6). The
sampling interval was also set as 0.005 s.

 -shapeFish-shapeS-shape

Demonstrations Target position Start position

Figure 7. The demonstrations given by humans to teach a model that can regulate a wheeled inverted
pendulum to undertake path following task.
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Subsequently, we picked a demonstration from each kind of trajectory as the reference trajectory.
We let the robot start from a different position to follow the reference trajectory.

The results by the proposed method and two traditional control methods [34,35] are shown in
Figure 8. It can be seen that the proposed learning method can smoothly follow the reference trajectory
and finally converge to the target position.

Reference trajectory Target point Start point

Proposed method Method in [34] Method in [35]

 -shapeFish-shapeS-shape 

Figure 8. The results by the proposed method and the methods in [34,35]. The upper row shows
the general trajectory shape of the path following. The lower row records the path following results
through MATLAB.

We also used the swept error area standard (SEA) [29] to evaluate the proposed method and the
traditional methods [34,35] quantitatively. The SEA standard measures the difference between the
generated and the reference trajectories by their included area (Figure 9). The meaning of the SEA
standard can be simply thought as a fact that the generated trajectory should be enough close to the
reference counterpart, if the evaluated controller is effective in path following. The computing formula
is given by

E=
T−1

∑
k=1

A
〈(

x̂k, ŷk
)T

,
(

x̂k+1, ŷk+1
)T

,
(

xk, yk
)T

,
(

xk+1, yk+1
)T
〉

, (21)

where
(

x̂k,n, ŷk,n
)T

and
(

xk,n, yk,n
)T

are sampling points, respectively, from the nth generated and
reference trajectories. A 〈·〉 is the area of the tetragon enclosed by the four adjacent points along
the trajectories.

The SEA results by the proposed method and the approaches in [34,35] can be seen in Table 1.
From the results, we can see that the proposed method can better achieve the capacity of path following;
i.e., the error between the generated trajectory by the learned controller and the reference trajectory
is smaller.
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Reference trajectory

Generated trajectory

Target point

Start point

Swept error area

( )
T

1 1ˆ ˆ,k kx y+ +

( )
T

ˆ ˆ,k kx y

( )
T

,k kx y
( )

T
1 1,k kx y+ +

Figure 9. Illustrative example of swept error area standard (SEA) computing functional. The tetragon

area enclosed by points
(

x̂k, ŷk
)T

and
(

x̂k+1, ŷk+1
)T

in the generated trajectory, and points
(

xk, yk
)T

and
(

xk+1, yk+1
)T

in the reference trajectory represent the error between the two sampling points of
the generated trajectory and the counterparts of the reference trajectory. The sum of all such tetragon
areas are, therefore, used to measure the error between the generated and reference trajectories.

Table 1. Mean swept error area results.

Approaches Mean Swept Error Area (m2)

S-Shape Fish-Shape ε-Shape

method in [34] 0.16762 0.2436 0.25104
method in [35] 0.18896 0.2318 0.27

proposed method 0.16377 0.16512 0.22851

6. Conclusions

This study investigated applying learning from demonstrations on a wheeled inverted pendulum.
We took into consideration four aspects: the control under nonholonomic constraints, keeping the
pendulum balanced, stability, and accuracy. We incorporated the nonholonomic and underactuated
constraints into the learned dynamic system by adding corresponding loss terms for optimizing.
Additionally, we proposed an online, state variable estimating method to adjust the extra-dimensional
component in the reproduction period such that the accuracy can be further improved even under the
robot constraints, including the nonholonomic and underactuated constraints. In future work, we plan
to exploit deeper control features in demonstrations, and improve the controller more intelligently by
adding more human-like constraints during the learning process.
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