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Abstract: In the realm of intelligent vehicles, gestures can be characterized for promoting automotive
interfaces to control in-vehicle functions without diverting the driver’s visual attention from the road.
Driver gesture recognition has gained more attention in advanced vehicular technology because of its
substantial safety benefits. This research work demonstrates a novel WiFi-based device-free approach
for driver gestures recognition for automotive interface to control secondary systems in a vehicle.
Our proposed wireless model can recognize human gestures very accurately for the application of
in-vehicle infotainment systems, leveraging Channel State Information (CSI). This computationally
efficient framework is based on the properties of K Nearest Neighbors (KNN), induced in sparse
representation coefficients for significant improvement in gestures classification. In this typical
approach, we explore the mean of nearest neighbors to address the problem of computational
complexity of Sparse Representation based Classification (SRC). The presented scheme leads to
designing an efficient integrated classification model with reduced execution time. Both KNN and
SRC algorithms are complimentary candidates for integration in the sense that KNN is simple yet
optimized, whereas SRC is computationally complex but efficient. More specifically, we are exploiting
the mean-based nearest neighbor rule to further improve the efficiency of SRC. The ultimate goal of
this framework is to propose a better feature extraction and classification model as compared to the
traditional algorithms that have already been used for WiFi-based device-free gesture recognition.
Our proposed method improves the gesture recognition significantly for diverse scale of applications
with an average accuracy of 91.4%.

Keywords: driver distraction; human gesture recognition; device-free localization; wireless sensor;
Channel State Information; integrated classification; computational complexity; sparse representation

1. Introduction

Distracted driving is one of the main concerns that compromise road safety. A large number of
road accidents are reported because of driver’s engagement in performing conventional secondary
tasks using visual-manual interfaces. With the advancements in vehicular technology and the
introduction of human computer interaction (HCI), gesture-based touchless automotive interfaces are
being incorporated in vehicle designs to reduce driver visual distraction. Therefore, driver gesture
recognition has become the most interesting research topic in recent years. Human gestures recognition
has been widely explored in the literature for a variety of applications to reduce the complexity of
human interaction with computers and other digital interfaces [1–4].

Existing research on in-vehicle gesture recognition is mainly focused on sensors, radars,
or cameras [5–7], which have their own limitations in practical scenarios [8,9]. Subjectively, haptified
gestures with ultrasound are being incorporated in the automotive domain [10]. During the last
decades, WiFi-based human gesture recognition systems have gained more attention, exploiting
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Channel State Information (CSI). Because of its simplicity and easy deployment, these systems are
numerously used in various human-centric applications including emergency surveillance, health
monitoring and assisted living [11–15]. WiFi-based device-free approach opened a new window
for the researchers to further integrate wireless human gestures recognition in vehicular technology.
We are motivated to investigate WiFi-based in-vehicle human gestures to control automotive secondary
functions, which is device-free and non-intrusive to driver.

This research is relevant to the ability of an intelligent vehicle to better characterize driver gestures
for automotive infotainment (information and entertainment) system such as adjusting radio volume,
fan speed and so on. We utilize device-free human-gestures based on the motion of the driver’s
hand, finger and head, as shown in Table 1. In this novel research, we particularly identify sixteen
common gestures, of which ten are hand gestures (swipe left, swipe right, hand going up, hand
going down, flick, grab, push hand forward, pull hand backward, rotate hand clock-wise, rotate hand
anti-clock-wise), while four are finger gestures (swipe V, swipe X, swipe +, swipe −) and the remaining
two are head gestures (head tilting down, head tilting right). The key challenge is how to extend
the robust gesture recognition rate for the application of an in-vehicle infotainment system using
WiFi signals. In order to address the problem, we are inspired to fill in this research gap using an
integrated classification approach leveraging CSI measurements. In this paper, we present a device-free
wireless innovative framework to address the problem of driver gesture recognition by integrating
Sparse Representation based Classification (SRC) and a modified variant of the K Nearest Neighbors
(KNN) algorithm for classification. To achieve this goal, we have to face several challenges because
an uncontrolled in-vehicle environment is quite different from indoor environments. We perform
extensive experiments and design our prototype to combat these challenges.

Table 1. Proposed gestures utilized for different secondary tasks.

Gesture Type Gesture Performed Associated Task Gesture Label

Hand Gesture

Swipe left (+) Change channel SL

Swipe right (−) Change channel SR

Hand going up (+) Volume HU

Hand going down (−) Volume HD

Flick Zoom in FK

Grab Zoom out GB

Push hand forward (+) Temperature setting PF

Pull hand backward (−) Temperature setting PB

Rotate hand clock-wise (+) Fan speed RC

Rotate hand anti-clock-wise (−) Fan speed RA

Finger Gesture

Swipe V Open function SV

Swipe X Close function SX

Swipe + Play next track SP

Swipe − Play previous track SN

Head Gesture
Head tilting down Pick phone call HM

Head tilting right Do not pick call HR

The classification algorithm plays a vital role in the gesture recognition framework. Most of
the existing CSI-based gesture recognition systems rely on a single classification algorithm, which
cannot be guaranteed for maximum performance in vehicular technology. Carefully integrating two or
more classification algorithms may enhance the recognition performance of a classifier for automotive
interfaces. In this context, both KNN and SRC classifiers have been efficiently used as stand-alone,
to solve various classification problems in WiFi-based device-free localization and activity or gesture
recognition [13,16–18].
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In our proposed scheme, the superiority of SRC is applied on a nearest neighbor rule, to further
improve the performance of SRC with reduced computational cost. Therefore, the advanced
classification is based on the integrated properties of SRC and modified-KNN to produce efficient
results. We utilize the Mean of Nearest Neighbors (MNN); a variant of KNN. The concept of the
mean-based algorithm was originally proposed by Mitani and Hamamoto [19] to classify query
patterns, using a local mean-based non-parametric classifier. The idea of local mean-based KNN has
been successfully applied in various pattern recognition systems [20,21]. Our prototype is based on
multiple variants of KNN and SRC algorithms in the literature [22–26]. Different from others, we
incorporate MNN with SRC for significant improvement in device-free gesture recognition for the
application of automotive infotainment system, exploiting CSI. The combination of MNN and SRC
has a computational advantage over using only SRC. We integrate MNN and SRC to overcome the
computational complexity of SRC.

Our proposed system leverages off-the-shelf WiFi devices to collect channel information, which
are readily available in the form of CSI measurements on commercial WiFi devices. Our algorithm
utilizes the change in WiFi channel information caused by driver gestures. The driver needs to perform
specific gestures in the WiFi coverage area. As far as we know, this is the first attempt towards
CSI-based device-free driver gesture recognition using nearest neighbor induced sparse representation
for the application of automotive interface.

Our contributions can be summarized as follows:

• We present a WiFi-based device-free innovative framework to address the problem of
driver gesture recognition for the application of vehicle infotainment systems leveraging CSI
measurements.

• We demonstrate a novel classification model by integrating SRC and a variant of the KNN
algorithm to overcome the problem of expensive computational cost.

• To evaluate the performance of our proposed framework, we perform comprehensive experiments
in promising application scenarios.

• To validate the results, we compare our system performance with state-of-the-art methods.

The rest of the paper is organized as follows; Section 2, demonstrates the traditional techniques
that are relevant to our work. In Section 3, we provide an overview of our proposed system. Section 4
presents the detailed system flow with the methodology of our proposed solution. Section 5 highlights
the experimental settings and validates our results by way of performance evaluation. In Section 6, we
discuss important aspects and limitations of the proposed framework. Finally, we conclude our work
with some future suggestions in Section 7.

2. Related Work

In this section, we will briefly review the CSI-based activity and gesture recognition systems that
exploit different classification methods including KNN and SRC algorithms. Fine-grained physical
layer CSI holds pervasive indoor localization and has attracted many researchers because of its
potential for accurate indoor localization. With the advancement in wireless technology and the
ubiquitous deployment of indoor wireless systems, indoor localization has been permeated into a new
era of modern life [27]. Recently, a WiFi-based training-free localization system has been presented
with good performance [28].

WiSee [29] is a WiFi based system that can recognize nine different gestures in line-of-sight
(LOS), non line-of-sight (NLOS) and through-the-wall scenarios via Doppler shifts. Through-wall
motion detection was investigated by WiVi [30] using multi antenna techniques. However, traditional
solutions have been prototyped with special software or hardware to capture OFDM (Orthogonal
Frequency Division Multiplexing) signals. As compared to these conventional methods, our proposed
solution leverages off-the-shelf WiFi devices without any change in infrastructure.

The emerging device-free localization and activity recognition relies on CSI for better
characterization of WiFi signals influenced by the human activities [31–34]. In recent years, CSI



Appl. Sci. 2019, 9, 5268 4 of 27

based micro-activity recognition [35] and intrusion detection [36–38] systems have emerged with good
recognition results.

WiG [11] focused on WiFi-based gesture recognition for both LOS and NLOS scenarios. CSI-based
gesture detection was presented in Reference [12] leveraging packet transmission and the recognition
of gestures was performed by distinguishing their strengths. WiGer [39] demonstrated a WiFi-based
gesture recognition system by designing a fast dynamic time warping algorithm to classify hand
gestures. Recently, Reference [40] presented the writing in air with WiFi signals for virtual reality
devices with more complexity and increased diversity as compared to simple gestures.

Most of existing CSI-based systems rely on single classification algorithms. During the previous
decade, KNN and SRC algorithms have been numerously used in various CSI-based device-free
activity recognition models, as a stand-alone classifier. WiCatch [41] proposed WiFi-based hand
gesture recognition system utilizing weak signals reflected from hands and the recognition is based on
support vector machines (SVMs). Wi-Key [16] recognized keystrokes via CSI-waveform using the KNN
classifier. WiFinger [13] leverages WiFi signals for finger gesture recognition by examining the unique
patterns of CSI using the KNN classifier. The effect of Doppler shifts on CSI for health-care applications
using the SRC classification algorithm was described in Reference [17]. Human activity recognition
using the SRC classifier has been successfully demonstrated in Reference [18] with high accuracy
for both LOS and NLOS scenarios leveraging CSI. Different from previous work, our classification
algorithm is based on the integration of modified-KNN and SRC for automotive infotainment interface.

A limited work is reported in the literature on WiFi-based driver’s in-vehicle activity or gestures
recognition. In recent years, WiFi-based driver fatigue detection and driver activity recognition systems
have been investigated with some constraints. In this context, WiFind [42] is suitable only for fatigue
detection, while WiDriver [43] leverages a driver’s hand movements for better characterization of
driver action recognition using WiFi signals. SafeDrive-Fi [44] demonstrated CSI-based dangerous
driving recognition through body movements and gestures, using variance of CSI amplitude and
phase measurements. Different from them, we have specifically focused on driver hand, finger and
head gesture recognition for the application of in-vehicular infotainment system.

3. System Overview

In this section, we will present the overview of our proposed classification algorithm and system
architecture, along with the important facts about CSI relevant to our work.

3.1. Background of SRC and MNN Algorithms

Both KNN and SRC classifiers have been efficiently used in various wireless device-free
localization and recognition systems [13,16–18]. Conventional SRC is time consuming in the sense
that a testing sample is usually represented by all training samples. The decision rule of SRC follows
that if the testing sample has a great similarity with any training sample, the sparse coefficients of
that specific training sample will be larger to represent the certain testing sample. SRC is efficient in a
sense that all coefficients participate well in decision making. However, the computational cost of SRC
increases with the increase in size of training data.

KNN is simple yet effective classifier with optimal performance. However, KNN has the issue of
neighborhood size and simple majority voting for the classification, which can degrade its performance.
The traditional KNN classifier chooses the K nearest neighbors from training data and majority voting
is used to decide the class. Mean Nearest Neighbor (MNN) is the variant of KNN using the mean as a
prototype of associated class.

3.2. Integration of SRC and MNN Algorithms

We start with traditional KNN, estimate the K nearest neighbors from all training samples of each
class. Thus, we calculate the mean of K nearest neighbors within each class. We use the decision rule
of SRC to supervise MNN, and sparse representation coefficients are computed from the mean vector
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of nearest neighbors. Finally, the class of testing sample is decided on the residual between testing
sample and the mean of nearest neighbors within each class. The more details about this integrated
classification algorithm are given in Section 4.3.

3.3. CSI Overview

Our prototype leverages WiFi ambient signal as information source to analyze the influence of a
driver’s gesture on a wireless channel. Existing WiFi devices that exploit IEEE 802.11n/ac protocols
typically consist of multiple transmitting (Tx) and receiving (Rx) antennas and thus support the widely
used Multiple-Input Multiple-Output (MIMO) technology. CSI refers to fine-grained signal containing
physical layer information based on Orthogonal Frequency-Division Multiplexing (OFDM).

In our experiment, an IEEE 802.11n enabled Access Point (AP) was used as a transmitter and
Intel 5300 NIC was used as a receiver to collect CSI data from the physical layer of the WiFi system,
which supports 30 subcarriers for each CSI Tx-Rx antenna pair. It records the channel properties of
each Tx-Rx antenna pair in OFDM subcarriers. The channel variations are readily available in the form
of CSI measurements on commercial WiFi devices [45]. A typical narrowband flat-fading channel for
packet index i, exploiting MIMO and OFDM technology can be modeled as:

Yi = HiXi +Ni i ∈ [1, N], (1)

where Hi is the CSI channel matrix for packet index i, Ni denotes the Gaussian noise vector, Yi and Xi
are the received and transmitted signals respectively, N refers to the total number of received packets.

Let NTx and NRx be the number of transmitting and receiving antennas respectively, then the CSI
matrix consists of NTx ×NRx × 30 complex values for each CSI stream. CSI matrix H for each Tx-Rx
antenna pair can be written as:

Hi = [h1, h2, . . . , h30] i ∈ [1, N]. (2)

Each h is a complex value, which carries the information for both amplitude and phase response;
estimated as:

h = |h|ejsin{6 h}, (3)

where |h| denotes the amplitude and 6 h indicates the phase information. CSI information on multiple
channels is correlated, whereas all streams behave independently. We utilize both the amplitude and
phase information to unleash the full potential of CSI measurements.

3.4. System Architecture

Our device-free driver gesture recognition system is comprised of following three basic
modules—(1) CSI pre-processing module, (2) feature extraction module and (3) classification module,
as illustrated in Figure 1. CSI pre-processing module; collects and pre-processes CSI measurements
using basic filtering techniques. The feature extraction module is responsible for gesture detection,
dimension reduction and feature extraction. Recognition is performed in the classification module,
which relies on the integrated classification method. In Section 4, we will explain the function of each
module in detail.
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Figure 1. System architecture.

4. Methodology

In this section, we will explain complete flow of our system methodology.

4.1. CSI Pre-Processing

The CSI received signal is a combination of useful information as well as undesirable noises
embedded in the signal. It is essential to filter and calibrate CSI amplitude and phase measurements,
respectively. The human gestures have a relatively low frequency as compared to noise frequency.
To remove high frequency noise, we apply a second order low pass Butterworth filter. We adjusted
packets sampling rate (Fs) at 80 packets/s, the same as the normalized cutoff frequency wn =

2π f /Fs = 0.025π rad/s. CSI raw phase measurements behave extremely randomly because of
the unsynchronized time clock of transmitter and receiver. In order to extract the actual phase and
eliminate channel frequency offset; phase calibration and linear transformation are performed by
following [46].

4.1.1. Phase Calibration

CSI raw phase measurements behave extremely randomly because of the unsynchronized time
clock of transmitter and receiver. The relation between measured phase and true phase can be
written as:

6 ĥj = 6 hj + 2π
nj

N
∆t + β + z, (4)

where 6 ĥj indicates the measured phase of jth subcarrier and 6 hj denotes the actual phase, ∆t
represents the time lag, nj denotes the subcarrier index, N stands for the size of FFT, β indicates
the unknown phase offset and z is random noise. We cannot measure the exact value of β and ∆t
for each packet. However, we can get the same value of β and ∆t each time by using a simple
transformation. Phase error 2π

nj
N ∆t + β is linear function of subcarrier index nj. We can define two

parameters a and b for calibration of phase error such that:

a =
6 ĥjN − 6 ĥj1

jN − j1
(5)

b =
1
N

N

∑
k=1

6 ĥjk , (6)
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subtracting ajk + b from raw phase 6 ĥjk to get the sanitized phase 6 h̃jk as:

6 h̃jk =
6 ĥjk − ajk − b. (7)

The phase sanitization is performed on all the subcarriers and re-assembled according to the
corresponding amplitudes.

4.1.2. Amplitude Information Processing

CSI amplitude measurements are very noisy for gesture extraction because of environmental
noise and signal interference. We propose applying the weighted moving average (WMA) over CSI
amplitude streams to eliminate the outliers and avoid false anomaly by the following procedure [47].

Let |ht| denotes the amplitude information at time interval t, then the expression for WMA can be
written as:

|h′t| =
[m× |hm|+ (m− 1)× |h(m−1)|+ . . . + 1× |h1|]

m + (m− 1) + . . . + 1
, (8)

where |h′t| is the averaged amplitude at time t. New amplitude |h′t| has the weight value of m, which
decides to what degree the current value relates to historical data. The value of m can be empirically
selected based on the experiments.

Figure 2, shows the comparison of the original signal and the signal processed after WMA
implementation. It is clear that WMA can make the subcarrier waveform much smoother by reducing
noise level.

Figure 2. Implementation of weighted moving average (WMA) on single subcarrier.

4.2. Gesture Detection

In the CSI data, both amplitude and phase information have the capability to be used for gesture
detection [48]. Our gesture detection algorithm is based on the variance of amplitude and phase to
characterize gestures from CSI filtered data. In this scheme, all subcarriers are aggregated to evaluate
the variance. We normalized the variance and estimated the corresponding energy of CSI amplitude
and phase over a specific time window.

Let νi indicate the variance of a single link for all the subcarriers belonging to packet index i.
For N number of received packets, variance ν = {ν1, ν2, . . . , νN} obeys Gaussian distribution with ν ∼
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N(µ, σ2). We normalized ν to represent normalized amplitude and phase as VA and VP, respectively.
Let EA and EP are the corresponding energy of normalized amplitude (VA) and phase (VP), respectively.
We can estimate the energy over a length of time window τ and compare it with the threshold ηth as:

EA =
length(τ)

∑
k=1

(VA(k))2 (9)

and

EP =
length(τ)

∑
k=1

(VP(k))2. (10)

We set a threshold (ηth = 100) for gesture detection based on our preliminary measurements
depending on different conditions and scenarios. Corresponding to this threshold, the gesture is
detected as:

φ =

{
max(V), E ≥ ηth

0, otherwise.
(11)

If the energy E is greater than or equal to the threshold ηth, the system takes it as a gesture and
records the maximum value of normalized variance over this window, and when it goes lower than
the threshold it is considered as a non-gesture.

4.2.1. Dimensionality Reduction

In CSI data, some subcarriers are very sensitive to noise but non-significant for gesture sensitivity.
From Figure 3, it is clear that the sensitivity of different subcarriers varies for the same gesture.
Therefore, we suggest Principal Component Analysis (PCA) to reduce the dimensionality and eliminate
such types of unpredictable subcarriers.

Figure 3. Variance of different subcarriers for the same gesture.

PCA is commonly used to extract most representative components and removes background
noise [49]. In the PCA scheme, new variables are being generated by the linear combination of the
original data, called principal components. These principal components organize the original variables
in orthogonal form in order to eliminate redundant information.
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In our experiment, PCA is applied to each packet received to extract p principal components.
Based on our observations, we particularly select the second, third and fourth principal components
that is, p = 3 for both the amplitude and phase of the CSI signal. Finally, we obtain a matrix with
p× Na dimensions, where Na denotes the number of anomalous packets.

First, we normalized CSI matrix H and static components were removed. Let Hn represent the
normalized matrix after the subtraction of the average CSI value from each column of CSI matrix H.
We then calculated the corresponding correlation matrix as Hn × HT

n . After eigen decomposition of the
correlation matrix, we compute eigen vectors q = q1, q2, . . . , qi and simultaneously p = p1, p2, . . . , pi
principal components are structured. For ith packet, it can be expressed as:

pi = Hn × qi, (12)

where qi and pi stand for ith eigen vector and ith principal component, respectively.

4.2.2. Feature Extraction

Let Hc(s) be the first CSI packet detected by our algorithm and Sc stands for the number of
subcarriers between a single link of antenna pair Tx− Rx. We can extract Nc successive CSI packets
for any activity profile.

Based on our preliminary experimental investigations and detailed analysis of extracted CSI,
we particularly selected six statistical features that is, mean, standard deviation, median absolute
deviation, maximum value, 25th percentile and 75th percentile. Mathematically, these features are
defined as [50]:

(1) Mean: The mean µ(j) is defined as the average CSI of all packets Hc belonging to jth subcarrier
written as:

µ(j) =
[Hcj(s) + Hcj(s + 1) + . . . + Hcj(s + Nc)]

Nc
(13)

where Nc is the total number of successive CSI packets for activity profile and j ∈ [1, Sc].
(2) Standard Deviation: The standard deviation σ(j) of jth subcarrier is basically the square root

of variance. Assume j ∈ [1, Sc], then σ(j) can be expressed as:

σ(j) =

√√√√ 1
Nc

k=s+Nc

∑
k=s

(Hcj(k)− µ(j))2. (14)

(3) Median Absolute Deviation: A robust way to quantify CSI variations for any activity segment
is Median Absolute Deviation (MAD). Mathematically, median absolute deviation MAD(j) for jth
subcarrier is defined as: {

MAD(j) = median(|Hcj(k)− H̃cj|)
s.t. j ∈ [1, Sc] and k ∈ [1, Nc]

(15)

where H̃cj is the median of Hcj.
(4) Maximum Value: The maximum value is a unique number, that is the highest value of all other

values in the CSI data set. Maximum value MAX(j) of jth subcarrier with j ∈ [1, Sc] is mathematically
calculated as:

MAX(j) = max([Hcj(s)|Hcj(s + 1)| . . . |Hcj(s + Nc)]). (16)

(5) 25th Percentile: If 25 is the ordinal rank, the 25th percentile of a data set is defined as the value
at which 25 percent of distribution is below it. Mathematically, 25th percentile P25th(j) for j ∈ [1, Sc] is
explained as:

P25th(j) = Hcj(d
25

100
∗ Nce). (17)
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(6) 75th Percentile: Similarly, 75th percentile P75th(j) can be formulated as:

P75th(j) = Hcj(d
75

100
∗ Nce). (18)

In order to differentiate between multiple gesture profiles, we integrate all features into a feature
vector. We propose constituting a tuple F of integrated features utilizing both magnitude and phase,
defined as:

F = { f1, f2, . . . , fn} ⊂ F, (19)

where fi is a feature and F stands for the dataset consisting of all gesture features. We get twelve
features in total (6-amplitude features and 6-phase features).

4.3. Classification Module

In the classification module, MNN and SRC algorithms were integrated. We started with
traditional KNN, estimated the K nearest neighbors from all training samples of each class [26].
Thus, we calculated the mean of K nearest neighbors within each class.

4.3.1. K Nearest Neighbor

Assume our classification problem has t number of classes. Let Fi be a set comprising of training
samples for class index i represented as:

Fi = { fij|j = 1, . . . , Ni}, ∀ i = 1, . . . , t, (20)

where Ni is the total number of training samples for class index i. Assume fir is the prototype for
ith class. For any testing sample y, let us find its nearest neighbor fir from training samples in each
class. We adopt squared Euclidean distance to measure the similarity between nearest neighbor fir
and testing sample y, defined as:

di(y) = ‖y− fir‖2. (21)

The Nearest Neighbor (NN) algorithm estimates the nearest training sample based on the distance
measure and designate that class to testing sample y which has the minimal distance. Mathematically,

class(y) = min
i

di(y). (22)

The KNN algorithm is the extension of 1-NN by taking K nearest neighbors from all the training
data. In KNN, the class assignment to y is based on the rule of majority voting. Assuming ith class
has ki samples, the testing sample y belongs to the class which has a maximum number of nearest
neighbors as:

class(y) = max
i

ki. (23)

Such that, y is designated to the class based on maximum number of nearest neighbors. In general,
the class of the testing sample is normally decided on the basis of majority voting of K nearest neighbors
that are specifically chosen from training samples with a certain minimum distance.

4.3.2. Mean of Nearest Neighbor (MNN)

We implemented the mean of the nearest neighbor rule in our proposed algorithm because it may
be a meaningful compromise between the nearest neighbor and minimum distance. Assume K nearest
neighbors of testing sample y for class index i are represented as Fi = { fi1, fi2, . . . , fiKi}. The mean
vector of nearest neighbors for testing sample y in class i is defined as:

µyi =
1
K

K

∑
r=1

fir (24)
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After estimating the mean vector per class, we can determine the class of y. For this purpose, we
find the distance from the mean vector as:

di(y) = ‖y− µyi‖
2. (25)

Thus, the class is estimated as follows:

class(y) = min
i

di(y). (26)

4.3.3. Sparse Representation Based Classification (SRC)

In SRC, a testing sample is expressed as a linear sparse combination of all the training
samples [22]. The sparse representation coefficients can be obtained by solving L1 optimization
problem. We characterise the training samples for ith class as Fi = { fi1, fi2, . . . , fiNi}, such that
N = ∑t

i=1 Ni. Now assume a matrix F = {F1, F2, . . . , Ft} in which all training samples of entire activity
classes are being concatenated.

The testing sample y is defined as y = Fv for the sparsest solution. The coefficient vector v has
nonzero values only for the entries that are associated to class i. The sparse solution for coefficient
vector v may be optimized with L0 norm constraint as:{

v̂0 = arg min‖v‖0

s.t. Fv = y.
(27)

Assuming the solution of L0 norm constraint is equivalent to L1 norm constraint, we obtain{
v̂1 = arg min‖v‖1

s.t. Fv = y.
(28)

After getting the optimal v̂1 solution for sparsity, SRC can be designed for class specific
reconstruction residual.

Let δi(v) is the vector associated with ith class that selects non-zero entries corresponding to v.
Based on the coefficients of ith class, we can reconstruct the test sample y as:

ŷi = Fδi(v), (29)

where ŷi indicates the reconstructed testing sample. The residual of reconstructed class can be
obtained as:

ri(y) = ‖y− ŷi‖2 = ‖y− Fδi(v)‖2. (30)

The decision of class is based on the following principle:

class(y) = min
i

ri(y). (31)

In our proposed framework, we used the decision rule of SRC to supervise MNN and sparse
representation coefficients were computed from the mean vector of nearest neighbors.

4.3.4. MNN Induced SRC (MNN-SRC)

Our proposed MNN-SRC method is much faster as compared to conventional SRC. The mean
of K nearest neighbors is much smaller in comparison to the total number of training samples.
In our proposed framework, the mean of K nearest neighbors is computed from all training samples.
The testing sample is represented according to the mean vector of K nearest neighbors. Sparse
representation based classification is applied on the mean vector of nearest neighbors instead of all
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the training samples. The residuals are estimated between the testing sample and the mean vector of
nearest neighbors for each class. The class of the testing sample is decided on the residual between
testing sample and the mean of nearest neighbors within each class.

Suppose we have Ki nearest neighbors for F̂i = { f̂i1, f̂i2, . . . , f̂iKi} belonging to ith class with
K = ∑t

i=1 Ki. We find K nearest neighbors for each class corresponding to testing sample and estimate
its mean. The mean vector of nearest neighbors for testing sample y in class i is defined as:

m =
1
K

K

∑
r=1

f̂ir. (32)

Assume M̂ is a matrix comprising of mean vectors of each class. The sparse representation
coefficients were calculated using M̂ to estimate y. Mathematically,

min‖v‖1 s.t. y = M̂v. (33)

In some situations, y cannot be exactly equal to M̂v for any coefficient. To overcome this constraint,
a Lagrange factor λ is imposed by the following:

min‖v‖1 + λ‖y− M̂v‖2. (34)

Let δ̂i(v) be the vector associated with ith class that selects non-zero entries corresponding to v.
Based on the coefficients of ith class, we can reconstruct the test sample y as:

ŷi = M̂δ̂i(v), (35)

where ŷi indicates the reconstructed testing sample. The residual of the reconstructed class is
obtained as:

ri(y) = ‖y− ŷi‖2 = ‖y− M̂δ̂i(v)‖2. (36)

The class i has residual ri, which can determine the class of the testing sample. The decision for
class designation is based on the following principle:

class(y) = min
i

ri(y). (37)

5. Experimentation and Evaluation

In this section, we will describe the experimental settings and evaluate the performance of our
proposed framework.

5.1. Experimentation Settings

We conducted experiments using 802.11n enabled off-the-shelf WiFi devices. Specifically, we
used a Lenovo laptop as a receiver equipped with an Intel 5300 network interface card and an Ubuntu
11.04 LTS operating system to collect CSI data. The laptop connects to a commercial WiFi Access
Point (AP); TP-Link router as transmitter operating at 2.4 GHz. The receiver can ping the AP at rate
of 80 packets/s. The transmitter has single antenna, whereas the receiver has three antennas, that is,
NTx = 1 and NRx = 3 (1× 3 MIMO system) generating 3 CSI streams of 30 subcarriers each. We run
802.11n CSI Tool [45] on the receiver to acquire and record CSI measurements on 30 subcarriers of
20 MHz channel. The required signal processing is performed using MATLAB R2016a.

To evaluate the robustness of our proposed scheme, we choose following three scenarios:

• Scenario-I (Indoor environment)—In this scenario, all prescribed gestures are performed in an
empty room of size 11× 12 feet, while sitting on a chair between Tx and Rx, separated by a
distance of 2 m.
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• Scenario-II (Vehicle standing in a garage)—In this scenario, all gestures are performed in a vehicle
standing in a garage of size 14× 16 feet.

• Scenario-III (Actual driving)—In this scenario, all prescribed gestures are performed while driving
a vehicle on a straight road of 30 km inside university campus, with average speed of 20 km/h.
During gesture performance, no other activity is performed to avoid interference.

For in-vehicle scenarios, we set up our testbed in a local manufactured vehicle which was not
equipped with pre-installed WiFi devices. Due to the unavailability of the WiFi access point in our test
vehicle, we configured the commercial TP-Link router as AP, placed on the dashboard in front of the
driver. The receiver was placed at the co-pilot’s seat to collect CSI data.

In each experiment, 16 possible human gestures, as shown in Table 1, were performed by
five volunteers (2-females and 3-males university students). Each volunteer repeated all gestures
20 times for each experiment, and a single gesture was performed within a window of 5 s. In total,
the data set comprised of 1600 samples (5-volunteers × 16-gestures × 20-times repeated) for each
experiment; of which 50% were used for training and 50% for testing. In our experiments, the training
data do not contain the samples from the testing data, and we keep the testing samples out for
cross validation. Furthermore, we also tested the generalization of our model using an unbiased
Leave-One-Participant-Out Cross-Validation (LOPO-CV) scheme.

5.2. Performance Evaluation

First, we tested the usefulness of our extracted features, that is, mean (µ), standard deviation (σ),
median absolute deviation (MAD), maximum value (MAX), 25th percentile (P25th) and 75th percentile
(P75th). Table 2 represents some prominent values of each calculated feature extracted for different
gestures. One can notice that all features are distinctively different, indicating that these features can
achieve high recognition accuracy.

Table 2. Features test result.

Feature Type
Gesture Class

SL SR HU HD FK GB PF PB RC RA SV SX SP SN HM HR

µ 1.54 1.33 0.81 0.74 1.42 2.16 2.25 3.52 0.96 0.91 1.63 1.49 2.28 1.71 2.13 2.66

σ 0.73 0.96 0.68 0.66 1.89 1.97 1.20 1.14 0.62 0.76 1.27 1.35 1.73 1.16 1.81 1.46

MAD 0.48 0.64 0.45 0.43 1.37 1.31 0.83 0.76 0.41 0.50 0.84 0.90 1.15 0.73 1.21 0.97

MAX 3.58 3.97 5.88 6.31 8.24 6.04 7.73 9.02 8.85 6.57 4.96 7.22 5.94 6.39 7.63 5.99

P25th 0.69 0.60 0.27 0.37 0.58 0.82 0.98 1.22 0.35 0.44 0.64 0.51 0.77 0.65 0.95 0.91

P75th 2.11 1.83 0.86 0.92 1.76 2.57 2.93 3.71 1.01 1.34 1.95 1.55 2.35 1.98 2.88 2.73

The recognition performance of the proposed method was observed by conducting extensive
experiments. For simplicity, we use abbreviated terms for our proposed prototype, that is, MNN
integrated with SRC as MNN-SRC, similarly KNN with SRC as KNN-SRC.

We particularly selected a confusion matrix and recognition accuracy as metrics for performance
evaluation. The occurrence of the actual gesture performed is represented by the column of the
confusion matrix, whereas the occurrence of the gesture classified was represented by the rows.
The confusion matrix in Figure 4 reveals the fact that our proposed method can recognize sixteen
different gestures very accurately with an average accuracy of 91.4%, 90.6% and 88.7% for scenarios I,
II and III respectively.
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(a)

(b)

(c)

Figure 4. Confusion matrix of activity recognition using our proposed algorithm. (a) Scenario-I.
(b) Scenario-II. (c) Scenario-III.

To ensure the reliability and efficacy of proposed framework, we analyzed the results by adopting
different evaluation metrics including precision, recall and F1-score. These evaluation metrics are
presented as:
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1. Precision is defined as positive predictive value, mathematically described as:

Precision =
TP

TP + FP
(38)

where TP and FP are true positive and false positive respectively. True Positive (TP) is the probability
that a model correctly predicts the positive class. Whereas, False Positive (FP) is the probability of that
a model incorrectly predicts the positive class.

2. Recall is defined as the True Positive Rate (TPR) and measures the sensitivity of system
as follows:

Recall =
TP

TP + FN
, (39)

where FN is a false negative and is defined as the probability that the model incorrectly predicts the
negative class. We will also evaluate our proposed method with False Negative Rate (FNR), defined as:

FNR =
FN

TP + FN
. (40)

3. F-measure or F1-score is defined as the weighted average of precision and recall, calculated as:

F1 = 2× Precision× Recall
Precision + Recall

. (41)

Figure 5 shows the results related to precision, recall and F1-score for all three scenarios, using
our proposed scheme. Table 3 summarizes the performance of our MNN-SRC algorithm using TPR
and FNR, for each gesture. In general, the MNN-SRC algorithm has an average TPR of over 88.9%,
with average FNR less than 11.1% for all three scenarios.

Table 3. Performance evaluation for each gesture.

Experiment Gesture SL SR HU HD FK GB PF PB RC RA SV SX SP SN HM HR

Scenario-I TPR (%) 92.7 91.0 95.9 96.9 89.0 89.1 87.4 85.6 89.3 90.1 93.8 88.2 87.6 96.8 95.0 96.0

FNR (%) 7.3 9.0 4.1 3.1 11.0 10.9 12.6 14.4 10.7 9.9 6.2 11.8 12.4 3.2 5.0 4.0

Scenario-II TPR (%) 94.6 95.8 96.7 93.0 89.7 89.1 85.0 86.4 86.9 87.6 88.2 90.0 87.5 93.7 93.1 93.9

FNR (%) 5.4 4.2 3.3 7.0 10.3 10.9 15.0 13.6 13.1 12.4 11.8 10.0 12.5 6.3 6.9 6.1

Scenario-III TPR (%) 92.5 92.7 93.6 92.8 86.7 86.5 86.7 82.9 85.1 84.6 89.9 88.0 80.4 91.6 94.8 93.0

FNR (%) 7.5 7.3 6.4 7.2 13.3 13.5 13.3 17.1 14.9 15.4 10.1 12.0 19.6 8.4 5.2 7.0

In order to determine the efficacy of the integrated classification algorithm, some experiments
were performed with each classifier separately and the results are presented in Figure 6. As can be
seen, the average recognition accuracy of stand-alone MNN (Mean Nearest Neighbor) or SRC (Sparse
Representation based Classification) method is less as compared to the integrated MNN-SRC algorithm.

We have compared the performance of MNN-SRC with KNN-SRC as shown in Figure 7.
It is obvious that the average recognition accuracy of MNN-SRC algorithm is higher as compared
to KNN-SRC.

Figure 8 ensures the reliability of our feature extraction method. The model was evaluated using
state-of-the-art classifiers including SVM, NB, KNN, MNN and SRC algorithms. One can notice that
all classifiers show a satisfactory recognition results. However, our proposed MNN-SRC classification
model outperforms other classification algorithms.
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(a)

(b)

(c)

Figure 5. Precision, recall and F-1 score. (a) Scenario-I. (b) Scenario-II. (c) Scenario-III.
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(a)

(b)

(c)

Figure 6. Comparison of accuracy using SRC and MNN separately. (a) Scenario-I. (b) Scenario-II.
(c) Scenario-III.
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(a)

(b)

(c)

Figure 7. Comparison of accuracy using KNN-SRC and MNN-SRC. (a) Scenario-I. (b) Scenario-II.
(c) Scenario-III.
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(a)

(b)

(c)

Figure 8. Comparison of accuracy using state-of-the-art classifiers. (a) Scenario-I. (b) Scenario-II.
(c) Scenario-III.



Appl. Sci. 2019, 9, 5268 20 of 27

The overall performance comparison of particular state-of-the-art classifiers is illustrated in
Table 4. From the experimental results, it can be concluded that our proposed MNN-SRC method is
much better as compared to KNN-SRC or stand-alone conventional classification methods including
MNN, KNN, SRC, SVM and NB.

Table 4. Comparison of accuracy with state-of-the-art classification methods.

Experiment
Average Recognition Accuracy (%)

NB SVM KNN MNN SRC KNN-SRC MNN-SRC

Scenario-I 85.9 88.5 87.1 87.5 89.5 90.7 91.4

Scenario-II 84.1 86.6 85.4 86.2 88 90.1 90.6

Scenario-III 82.5 85.1 84.3 84.5 86.6 88.1 88.7

From Figure 9, we can observe that the proposed system could achieve reasonable performance
even using only the amplitude or phase information. However, the recognition accuracy will be
significantly better when we are combining both the amplitude and phase information.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. Average accuracy using amplitude and phase information. (a) Scenario-I. (b) Scenario-II.
(c) Scenario-III.

To study the impact of nearest neighbors, we performed experiments with varying K values.
From Figure 10, it is clear that MNN-SRC outperforms KNN-SRC for almost all K values. However,
optimal values K = 20 and K = 5 were used for MNN and KNN, respectively, throughout our
experiments. The detailed results with different K values of MNN-SRC are illustrated in Table 5.

We have proven our results by calculating the execution time as illustrated in Figure 11. It is
clear that the computational cost of our proposed algorithm MNN-SRC is much less with an execution
time of 141.5 ms as compared to the SRC alone with an execution time of 761.8 ms. Furthermore,
the execution time of MNN-SRC is less as compared to KNN-SRC. This is due to the fact that we are
using the mean of nearest neighbors, which takes much less time to calculate its sparse coefficients as
compared to traditional KNN. Although the execution time of MNN-SRC is a little higher as compared
to MNN alone; however, as a compromise the recognition accuracy of MNN-SRC is comparatively
better. The execution time of KNN is 130.7 ms, which is again higher as compared to MNN.

Figure 10. Effect of nearest neighbors.



Appl. Sci. 2019, 9, 5268 22 of 27

Table 5. Classification accuracy (%) of MNN-SRC with varying K.

K Value
Gesture Class

SL SR HU HD FK GB PF PB RC RA SV SX SP SN HM HR

K = 1 88.3 90.5 90.4 89.3 87.1 87.7 88.3 87.9 91.4 89.3 90.6 90.1 92.3 90.3 96.0 94.5

1 < K < 5 <88.8 <90.8 <91.8 <90.5 <87.7 <88.6 <89.2 <88.2 <91.8 <90.4 <89.5 <90.3 <91.9 <90.1 <95.8 <94.7

K = 5 89.2 91.0 93.1 91.7 88.3 89.4 90.1 88.5 92.1 91.5 90.1 90.2 92.1 90.2 95.9 94.6

5 < K < 10 <89.2 <90.8 <92.8 <91.7 <88.7 <89.1 <89.8 <88.2 <92.0 <90.9 <90.4 <89.7 <92.0 <89.5 <94.7 <94.1

K = 10 89.1 90.6 92.4 91.6 89.1 88.8 89.5 87.9 91.8 90.2 89.3 89.5 91.2 89.1 95.3 94.0

10 < K < 15 <88.7 <90.9 <92.7 <92.0 <89.0 <89.3 <89.8 <87.7 <92.1 <90.4 <90.0 <90.0 <91.9 <89.8 <95.5 <94.4

K = 15 88.2 91.1 93.0 92.3 88.9 89.8 90.1 87.5 92.3 90.5 90.2 90.1 92.0 89.8 95.7 95.1

15 < K < 20 <88.6 <91.3 <93.4 <92.7 <89.1 <89.8 <90.2 <88.1 <92.4 <90.6 <90.7 <89.8 <92.2 <89.5 <95.6 <95.2

K = 20 88.9 91.4 93.7 93.1 89.2 89.7 90.3 88.6 92.4 90.7 91.1 89.6 92.3 89.6 95.9 95.2

20 < K < 25 <89.4 <91.3 <93.4 <93.0 <89.4 <89.4 <90.5 <87.9 <92.2 <90.5 <90.2 <89.9 <92.6 <90.1 <96.0 <94.6

K = 25 89.8 91.1 93.1 92.8 89.6 89.1 90.6 87.2 92.0 90.4 90.2 89.7 92.0 89.8 95.6 94.6

25 < K < 30 <89.0 <91.1 <93.0 <92.4 <89.7 <88.8 <89.9 <87.5 <92.1 <90.3 <90.1 <89.9 <92.2 <89.7 <95.0 <94.8

K = 30 88.2 91.0 92.8 91.9 89.7 88.5 89.1 87.7 92.2 90.3 90.2 89.9 92.1 89.8 95.4 94.7

30 < K < 40 <88.5 <90.9 <92.7 <91.8 <89.4 <88.3 <88.8 <87.5 <92.4 <90.3 <89.9 <89.6 <91.8 <89.8 <95.6 <94.3

K = 40 88.7 90.8 92.6 91.7 89.1 88.1 88.5 87.3 92.5 90.3 88.3 89.1 91.6 89.5 95.3 93.9

40 < K < 50 <88.5 <90.5 <91.5 <91.0 <88.3 <87.6 <88.1 <87.2 <91.5 <89.7 <88.1 <89.0 <91.3 <88.7 <94.9 <94.6

K = 50 88.3 90.1 90.3 90.2 87.4 87.1 87.7 87.0 90.4 89.1 88.2 88.7 91.1 88.3 94.5 93.7

Figure 11. Comparison of execution time.

In order to present the practical performance of our proposed framework, we perform a user
independence test. We particularly adopt the Leave-One-Participant-Out Cross-Validation (LOPO-CV)
scheme, in which the training data do not know about the test user. LOPO-CV is an effective technique
for evaluating the generalization of results for unseen data [51]. In this experiment, all data are treated
as the training data set, except a particular personś data that is selected as the test data. This process
is repeated for each person. Figure 12, reveals the fact that our proposed method has acceptable
performance even using LOPO-CV scheme with a recognition accuracy of 84.7%, 82.8% and 82.1%
for scenarios I, II and III respectively. It can be concluded that our presented model is capable for the
generalization of new users. The unbiased LOPO-CV estimator is difficult to implement due to its
large amount of computation. However, it is suggested to acquire a large amount of training data from
a variety of entities to get more better results.
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(a)

(b)

(c)

Figure 12. Accuracy test using leave-one-participant-out cross-validation (LOPO-CV) scheme.
(a) Scenario-I. (b) Scenario-II. (c) Scenario-III.
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6. Discussion

In this section, we discuss the limitations and potential results obtained from the experiments. We
observe that all gestures are classified with a very good recognition performance using our MNN-SRC
classification algorithm, however several factors may influence the accuracy. In this context, some
gestures have a great resemblance to each other, such as flick, which has great resemblance with
grab and push hand forward. Similarly, push hand backward has great resemblance with grab and
push hand forward which degrades the recognition accuracy. Although, all these types of limitations
degrade the system performance; however, the overall performance of MNN-SRC is still better as
compared to other algorithms.

Although CSI-based systems can achieve a reasonable performance, but there are still some
limitations. Firstly, the CSI measurements are much more sensitive to moving objects. As a result,
the recognition accuracy may suffer a degradation in performance when there is any other vehicle’s
motion in the testing area. Moreover, the system is designed by considering only a single person, that
is, the driver. However, in real vehicle scenarios there may exist more than one person which can
degrade system performance accordingly by making the recognition much more complex. In general,
other vehicles on the road and people outside the vehicle may have a very slight influence [42]. Thus,
additional signal processing may overcome these issues which we will consider in future.

Despite these limitations, our CSI-based device-free driver gesture recognition system is more
scalable and easy to deploy as compared to other models. It should be noted that our proposed
classification method is a general solution to solve any device-free localization and activity or
gesture recognition problem. In this paper, we have utilized this method for in-vehicle driver
gesture recognition.

7. Conclusions

In this paper, we have presented a novel framework for device-free robust driver gesture
recognition. It can be concluded that the recognition rate is significantly improved by leveraging an
integrated classification algorithm. Experimental results show that the mean of nearest neighbors
based sparse representation coefficients framework can achieve remarkable performance in terms of
gestures recognition and execution time. Our proposed integrated classifier is a promising algorithm
for driver gesture recognition in the field of automotive vehicle infotainment systems.

This integrated classification approach opens a new direction for a diverse scale of potential
applications. There are still several aspects that need be considered. In the future, we are interested in
more complex driving scenarios based on the findings presented in this paper.
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