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Abstract: In this paper, a new formulation of fractional order proportional integral (PI)/ proportional
integral derivative (PID) controller is proposed. The proposed controller will be justified for some
well-known two-input-two-output (TITO) processes. In order to deal with interactions between
process variables in a multivariable system, as well as multiple delay times in process transfer
functions, the simplified decoupling Smith predictor (SDSP) structure is also used. The issue of
decoupling realizability is solved by the PSO algorithm and fractional order processes are also
suggested for model reduction. The tuning rules of the controller are derived in analytical terms
based on the internal model control (IMC) structure. The effectiveness and robust stability of the
proposed approach are illustrated by comparing it with other methods. To have a fair comparison,
the robustness criterion using the M-∆ structure with µ-synthesis is adopted and the µ value of the
proposed method is always kept smaller than the value of the others.

Keywords: fractional order processes; fractional order PID controllers; simplified decoupling; PSO
algorithm; Smith predictor; IMC-PID controller; TITO processes

1. Introduction

In recent years, the fractional-order proportional-integral-derivative (FOPID) controller, which is
first proposed by Podlubny [1], has attracted more attention of many researchers in the field of control
systems. The FOPID has five tuning parameters including proportional, integral, derivative gain and
fractional orders of the integral and derivative terms. In the special case, when the fractional orders are
equal to unity, the controller becomes a conventional proportional-integral-derivative (PID). Therefore,
it is considered as a generalization of the PID controller to non-integer orders, and it provides more
flexibility in controller design as well as better dynamic performances and robustness compared with
the conventional one [1–4]. Due to more tuning parameters, it is harder to derive analytical tuning rules
for the controller. Different tuning methods have been suggested to solve this kind of problem [5–14].
However, most of them are used to deal with single-input single-output (SISO) systems. In this paper,
a novel structure of FOPID is proposed to apply for two-input two-output (TITO) processes.

In this work, the simplified decoupling Smith predictor structure (SDSP) for multivariable
processes proposed by Chuong et al. [15] is adopted to deal with interactions between process variables
as well as multiple time delays of the processes. The realizability problem plays a crucial role in
implementing a decoupler because of the requirements of being stable and proper of all its internal
transfer functions. To overcome this issue, therefore, many researchers proposed the approximation
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approaches such as prediction error method (PEM), linear least square in frequency domain [16],
and coefficient matching (CM) [17,18]. However, these mentioned methods are only suitable for
reducing to integer-order transfer functions. In this paper, to enhance dynamic behaviors of decoupled
systems, fractional order processes are addressed to be the equivalent transfer functions of the
decoupled elements. Therefore, the whole controller structure used in this work is called fractional
simplified decoupling Smith predictor (F-SDSP). The particle swarm optimization (PSO) algorithm for
approximation procedure proposed in [15] is employed to find out the parameters of approximated
fractional functions. Bouyedda et al. [14] performed a similar work by using the Genetic Algorithm
(GA) to reduce a high integer-order transfer function of a SISO system to a lower fractional-order
one. Besides, to improve the performances of a system, a generalized PI/PID controller, known as
fractional-order PI/PID (FOPI/FOPID) controller, is suggested for decoupled systems.

In the last two decades, various methods for FOPI/FOPID design were proposed in the field
of process control. Among those, there are two prominent approaches: The internal model control
(IMC)-based procedure and the gain and phase margin-based frequency domain design. The first
one uses IMC scheme to reduce the number of tuning parameters; and normally, there is only one
parameter left needs to be tuned based on some criteria of robust performances such as maximum
peak (Mp) or maximum sensitivity (Ms) [11–14]. The second one uses constraints on phase margin,
gain crossover frequency and the flat phase around the gain crossover frequency to ensure robustness
performance [5–10]. The most disadvantage of the latter is that those constraints are only enough to
solve three tuning parameters which means merely to be appropriate to a FOPI controller (a FOPID
has five tuning parameters). Furthermore, most of the previous works only deal with SISO processes.
Therefore, expanding some existing design methods to multivariable processes is necessary and
deserves to attract more attention from researchers.

In this paper, the IMC-based FOPI/FOPID design is adopted to find out analytical tuning rules
of both FOPI and FOPID controllers for TITO processes. Moreover, as mentioned in the previous
work [15], one of the advantages of the proposed structure (SDSP) is to remove dead time out of the
diagonal elements of the decoupled transfer function matrix. Therefore, only the delay-free parts of it
are addressed to design the controllers. Note that, in this work, the fractional order transfer function
(FOTF) is used instead of the integer order one. In addition, to evaluate the robustness stability of the
proposed method, the M-∆ structure normally used for integer order systems [15–22] is also applied
for fractional order ones. Then, the µ-synthesis, known as structured singular value (SSV), is employed
to measure the robustness of the fractional controllers for multivariable processes with multiplicative
output uncertainty.

This paper is organized as follows. Section 2 is briefly introduced fractional order calculus
with the Oustaloup recursive algorithm to approximate the fractional operator. Furthermore, the
general structure of the controller is presented with reduced models based fractional order. A new
fractional order PID controller is also proposed and then analytical tuning rules are derived based on
the internal model control structure. Some criteria to evaluate the system performances are mentioned
in Section 2 as well. Section 3 presents the simulations of some well-known TITO processes to justify
the effectiveness and robustness of the proposed method. Finally, conclusions are given in Section 4.

2. Materials and Methods

2.1. Fractional Order Calculus

Fractional calculus is a generalization of ordinary calculus by extending the integration and
differentiation order to the non-integer order. It has been developed for a long time as a field of
mathematics and only applied for control engineering in the last two decades. It presented a fractional
operator aDv

t where a and t are the limits and v is the fractional order (v ∈ R). There are several
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definitions for fractional operator but the most commonly used one was proposed by Riemann and
Liouville [3]. It is defined as follow:

aDv
t f (t) =

1
Γ(n− v)

d
dtn

t∫
a

f (τ)

(t− τ)v−n+1
dt, n− 1 < v < n (1)

where Γ(•) represents the Euler’s gamma function; with a positive v, the fractional operator denotes
fractional derivative, and a negative v represents fractional integral.

The Laplace transformation is used for Equation (1) under the assumption that all initial conditions
are zero. Its result has the form given in (2):

L
{
aDv

t f (t)
}
= svF(s) (2)

Consider a SISO, linear time invariant fractional order system described by a typical fractional
order differential equation (FODE) as follow:

n∑
i=0

aiD
vi
0 y(t) =

m∑
i=0

biD
λi
0 u(t) (3)

where y(t) and u(t) are the output and input respectively; ai, bi are constant coefficients of the system;
vi,λi are the orders of fractional operator.

In order to obtain the transfer function of the system, the Laplace transform for Equation (3) is
applied and combined with the result from Equation (2). As a result, the SISO system can be described
in Laplace domain by the following transfer function:

G(s) =
Y(s)
U(s)

=
bmsλm + bm−1sλm−1 + . . .+ bosλo

ansνn + an−1sνn−1 + . . .+ aosνo
(4)

It is obvious that the fractional order of s in Equation (4) makes it difficult to simulate or implement
a fractional order system. Therefore, it should be approximated to integer order transfer function
with a similar response. The Oustaloup recursive algorithm with finite numbers of poles and zeros
is employed for most applications [3,8–10,12]. Within the specific range of frequency [ωb, ωh], the
approximation of the FO operator,sv, can be obtained by the following equation:

sv � sv
[ωb,ωh]

≈ K
N∑

k=−N

s +ω′k
s +ωk

(5)

where the zero, pole and gain can be calculated respectively from:

K = ωv
h (6)

ω′k = ωb

(
ωh
ωb

)(k+N+0.5−0.5v)/(2N+1)

(7)

ωk = ωb

(
ωh
ωb

)(k+N+0.5+0.5v)/(2N+1)

(8)

2.2. Simplified Decoupling Smith Predictor Structure based on FO (F-SDSP) for TITO Processes

In this work, the controller structure called simplified decoupling Smith predictor (SDSP) [15] is
used to deal with the main issues of multivariable processes including interactions between process
variables and multiple delay times. The whole structure of the controller is shown in Figure 1.
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order processes (F-SDSP).

In the Figure 1, G(s), D(s), Q(s) are the transfer function matrix, the decoupling matrix and the
decoupled matrix of a TITO process, respectively. Due to the properties of the simplified decoupling,
they have the forms as following:

G(s) =
[

g11(s) g12(s)
g21(s) g22(s)

]
; D(s) =

[
1 d12(s)

d21(s) 1

]
; Q(s) =

[
q11(s) 0

0 q22(s)

]
(9)

where the elements of D(s) and Q(s) can be calculated as shown in (10)–(12) [15]:

d12(s) = −
g12(s)
g11(s)

; d21(s) = −
g21(s)
g22(s)

(10)

q11(s) = g11(s) −
g12(s)g21(s)

g22(s)
(11)

q22(s) = g22(s) −
g12(s)g21(s)

g11(s)
(12)

Various methods were proposed to approximate the diagonal elements of the decoupled matrix
(q11, q22) to some standard forms [15,16,18,20,21]. However, all of them only deal with integer order
transfer functions. In this work, a fractional order transfer function (FOTF) is employed to be the
equivalent transfer function of Equations (11) and (12). The general form of the FOTF is as follows:

gm(s) =
Ke−θs

τ2sα2 + τ1sα1 + 1
(0 < α1 ≤ 1 < α2 < 2) (13)

where τ1, τ2 are time constants; K is a gain; α2,α1 are fractional orders, assuming 0 < α1 ≤ 1 < α2 < 2;
θ is a delay time.

In special case, when τ2 = 0, Equation (13) will become a simpler form:

gm(s) =
Ke−θs

τsα + 1
(0 < α < 1) (14)

In order to facilitate the approximation procedure, the parameter θ is a priori value that could
be determined by the unit step response of the original model. Therefore, the number of tuning
parameters will be written in the vector form as follow:

x =
[

K τ2 τ1 α2 α1
]

(15)
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The different constraints of these parameters are given in (16):

Kmin < K < Kmax

0 < τ1 < τmax

0 ≤ τ2 < τmax

0 < α1 ≤ 1
1 < α2 < 2

(16)

where Kmin, Kmax, τmax are determined based on the open-loop unit step responses of the original model.
The approximation technique using the PSO algorithm proposed by Chuong et al. [15] is addressed

to find out the parameters in (15). Note that, from the condition (16), only τ2 can be equal to zero;
and if happened, the reduced model becomes the simpler form as (14). Therefore, the approximated
transfer function normally has one of the following forms:

qi(s) =
Kie−θis

τ2isα2i + τ1isα1i + 1
(0 < α1i ≤ 1 < α2i < 2, i = 1÷ 2) (17)

qi(s) =
Kie−θis

τisαi + 1
(0 < αi < 1, i = 1÷ 2) (18)

where qi(s) is the equivalent transfer function of qii in Equations (11) and (12).
It is obvious that the delays still exist in the diagonal elements of the decoupled matrix and

that make sluggish responses in the outputs [15,22]. However, because of the effect of the Smith
predictors in the controller structure, the delay terms are eliminated from the closed loop functions.
Consequently, θi is removed from Equations (17)–(18) and the following equations should be used to
design controllers:

qio(s) =
Ki

τ2isα2i + τ1isα1i + 1
(0 < α1i ≤ 1 < α2i < 2, i = 1÷ 2) (19)

qio(s) =
Ki

τisαi + 1
(0 < αi < 1, i = 1÷ 2) (20)

where qio(s) is the delay-free part of qi(s).

2.3. IMC-Fractional PI/PID Controller Design

By using the controller structure as mentioned above, the multivariable processes become
multi-loop systems. For each loop, a corresponding controller needs to be designed to meet the
requirements of its closed loop responses. In this study, a new structure of a fractional PID controller is
proposed for each loop, called IσPIλDµ. In the case of the higher order process, Equation (19), a first
order filter is also employed to improve its performances. Let the primary controller of each loop be as
Equation (21):

gci(s) = Kci
1

sσi

(
1 +

1
τIisλi

+ τDisµi

)
Fi(s) (21)

where Kci, τIi and τDi are proportional gain, integral time and derivative time respectively; λi,µi are
fractional order of the integral and derivative terms; σi is the fractional order of the ideal integral and
σi = 1− λi, in special case, when λi = 1 (integral term with integer order) then σi equals to zero; Fi(s)
is the first order filter, Fi(s) = 1

τFis+1 where τFi is a time constant.
The IMC based PID procedure normally used for integer order processes is also addressed to

design the proposed controller, IσPIλDµ, for fractional order processes. Figure 2a,b show block
diagrams of feedback control strategies including the classical feedback control and the internal model
control as well [10–13,23]. Note that, in this case, the controlled process is a fractional order transfer
function without delay time.
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According to the IMC theory, the process model is divided into two parts:

qio(s) = pM(s)pA(s) (22)

where pA(s) contains delay time terms and/or RHP zeros and pA(0) = 1. According to Equations (19)
and (20), pA(s) = 1.

Generally, the IMC controller is designed as

g̃ci(s) = pM
−1(s) fi (23)

The term f is called the IMC filter and normally has the form as follow:

fi =
1

(τcis + 1)ri
(24)

where τci is an adjustable parameter which controls the tradeoff between the performance and
robustness; ri is relative order and to be selected large enough to make the IMC controller (semi-)
proper. Substituting Equation (24) into Equation (23):

g̃ci(s) = pM
−1(s)

1
(τcis + 1)ri

(25)

Therefore, the ideal feedback controller for achieving the desired loop responses can be easily
obtained by:

gci(s) =
g̃ci(s)

1− qio(s)g̃ci(s)
=

pM
−1(s)

(τcis + 1)ri − pA(s)
=

pM
−1(s)

(τcis + 1)ri − 1
(26)

In this work, there are two cases of a process model to be considered:
Case 1: The fractional first order system:

qio(s) =
Ki

τisαi + 1
(0 < αi < 1) (27)

The proposed IMC filter structure

fi =
1

τcis + 1
(28)

The ideal feedback controller is derived by:

gci(s) =
τisαi + 1

Kiτcis
=

τi
Kiτci

1
s1−αi

(
1 +

1
τisαi

)
(29)
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Therefore, in this case, the proposed fractional controller settings are obtained:

Kci =
τi

Kiτci
; τIi = τi; λi = αi; σi = 1− αi; τDi = τFi = 0 (30)

Case 2: The fractional second order transfer function:

qio(s) =
Ki

τ2isα2i + τ1isα1i + 1
(0 < α1i ≤ 1 < α2i < 2) (31)

The proposed IMC filter structure

fi =
1

(τcis + 1)2 (32)

The ideal feedback controller is obtained by:

gci(s) =
τ2isα2i + τ1isα1i + 1

Kiτcis(τcis + 2)
(33)

Rewritten Equation (35) into the form of Equation (21), the controller is derived as Equation (36):

gci(s) =
τ1i

2Kiτci

1
s1−α1i

(
1 +

1
τ1isα1i

+
τ2i
τ1i

sα2i−α1i

)
1

(τci/2)s + 1
(34)

Kci =
τ1i

2Kiτci
; τIi = τ1i; τDi =

τ2i
τ1i

; λi = α1i; µi = α2i − α1i; σi = 1− α1i; τFi =
τci
2

(35)

The tuning rules for different types of process models are summarized in the Table 1.

Table 1. Tuning rules for different types of fractional order process models.

Models Tuning Rules

qio(s) =
Ki

τisαi+1
(0 < αi < 1)

Kci =
τi

Kiτci
; τIi = τi; λi = αi; σi = 1− αi; τDi = τFi = 0

qio(s) =
Ki

τ2isα2i+τ1isα1i+1
(0 < α1i ≤ 1 < α2i < 2)

Kci =
τ1i

2Kiτci
; τIi = τ1i;τDi =

τ2i
τ1i

λi = α1i; µi = α2i − α1i;σi = 1− α1i
τFi =

τci
2

2.4. System Performance and Robustness Analysis

2.4.1. Integral Absolute Error Index

To evaluate the closed-loop performance, the integral absolute error (IAE) criterion is considered,
which is defined as

IAE =

∫ T

0

∣∣∣e(t)∣∣∣dt (36)

where T is the simulation time.

2.4.2. Integral of Time-Weighted Absolute Error (ITAE)

Another performance index is also used to evaluate the response where t (time) is considered as a
weighted coefficient of the absolute error. It is defined as follow:

ITAE =

∫ T

0
t
∣∣∣e(t)∣∣∣dt (37)
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2.4.3. Total Variation (TV)

To evaluate the magnitude of the manipulated input usage, the total up and down movement of
the control signal is considered as.

TV =
T∑

k=1

∣∣∣u(k + 1) − u(k)
∣∣∣ (38)

TV is normally used to measure the smoothness of manipulated variables and should be as small
as possible.

2.4.4. Robust Stability Analysis

Robust stability is a very important criterion when evaluating the performance of a control system.
Since the models used for analyzing and designing are normally imperfect matches with the real
processes due to many sources of uncertainties. For fractional order control systems, in previous works,
most authors focus exclusively on two criteria including maximum sensitivity (Ms) and maximum
peak (Mp) in the frequency domain. In this study, the structured singular value (SSV) or µ-synthesis
with the M-∆ structure, which is usually employed to evaluate the robustness of integer order systems,
is also adopted to analyze the robust stability of the fractional order control systems. In addition,
perturbations due to the multiplicative output uncertainty in each loop of multivariable processes are
also considered as Figure 3.
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The transfer function matrix from the outputs to the inputs of ∆(s) can be easily obtained by:

M(s) = −Wo(s)Q(s)Gc(s)[I + Qo(s)Gc(s)]
−1 (39)

where Wo(s) is a weighted matrix representing the output uncertainties.
According to the µ–synthesis, the control system will remain stable under multiplicative output

uncertainty if the following constraint inequality is satisfied

µ[M( jω)] = µ
{
Wo jω)Q( jω)Gc( jω)[I + Qo( jω)Gc( jω)]−1

}
< 1, ∀ω (40)

Note that, in this work, Q(s), Qo(s) and Gc(s) are in fractional order forms.

3. Results

In this section, three examples of the well-known TITO processes are considered to demonstrate
the performances of the proposed method in comparison with those of other existing methods.
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Example 1. Heavy oil fractionator

It is a 2 × 2 process given in [20]. The open-loop transfer function matrix is as follow (43) where
time constants and delays are expressed in minutes.

G(s) =

 4.05e−27s

27s+1
1.77e−28s

60s+1
5.39e−18s

50s+1
5.72e−14s

60s+1

 (41)

The decoupler matrix is easily obtained using the Equation (10) and the result is as follow:

D(s) =

 1 −
0.437(27s+1)

60s+1 e−s

0.9423(60s+1)
(50s+1) e−4s 1

 (42)

Then, using (11) and (12) to calculate the diagonal elements of the decoupled matrix. However,
in this case, the approximation technique using the PSO algorithm [15] is addressed to derive the
fractional order transfer functions. The results are obtained by the following equations:

q11 =
2.3979e−27s

15.1333s1.1334 + 6.9815s + 1
(43)

q22 =
3.3877e−14s

45.6092s0.9967 + 1
(44)

Using the above fractional transfer functions and the proposed controller for each case, the fractional
controllers are derived as follows:

gc1 = 0.0622
(
1 +

1
4.166s

+ 5.7077s0.1334
) 1

7s + 1
(45)

gc2 = 0.6732
1

s0.0033

(
1 +

1
45.6092s0.9967

)
(46)

In this example, the proposed method is compared with those of inverted decoupling internal
model control with filter (IDIMC-F) and centralized inverted decoupling control (ID-K) which are
proposed by Garrido [20]. The closed-loop responses for the sequential step changes in the set-points of
loops 1 and 2 are shown in Figure 4a,b. The performance indices of the three methods are summarized
in Table 2.
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Table 2. The resulting performance indices for Example 1.

Tuning Method IAE ITAE TV µ[M]

F-SDSP 57.824 10173 1.4838 0.200
IDIMC-F 750.00 218750 1.7289 0.7068

ID-K 95.521 14561 14.678 0.3880

From Figure 4a,b, it can be seen that the proposed controller has familiar response compared
to the IDIMC-F method and far better than the ID-K one in loop 1, however, in loop 2 the proposed
method has faster rising time and shorter settling time in comparison with the others. Disturbance
rejection performance by considering the mutual effects of sequential changes on loops 1 and 2 is much
improved in the proposed method. As a result, the performance indices including TV, IAE, and ITAE
of the proposed one are superior to the others. Figure 5a,b illustrate the manipulated variables of both
loops with respect to time and they indicate that the proposed method has smoother signals.
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The robust stability of the system is investigated using Equation (42) with a multiplicative output
uncertainty, where Wo(s) = diag

{
−

s+0.2
2s+1 ,− s+0.2

2s+1

}
which means that relative uncertainties are decreased

by 50% in a high frequency range and by 20% at low frequencies. Figure 6 presents the performances of
stability analysis of the proposed method along with the others. It is obvious that the proposed method
guarantees the robustness of the control system in the whole range of frequency. The maximum values
of µ listed in Table 2 show the smallest value that belongs to the proposed method.
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Example 2. Wood and Berry (WB) distillation column
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The well-known WB column is used for evaluating the performances of the proposed method.
The transfer function matrix of WB can be found in [24] and expressed as Equation (49):

G(s) =

 12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

 (47)

The matrix of the simplifier decoupler for this process can be obtained by Equation (10):

D(s) =

 1 1.477(16.7s+1)e−2s

21s+1
0.34(14.4s+1)e−4s

10.9s+1 1

 (48)

Similar to the Example 1, the FOTFs of the diagonal elements of decoupled matrix are approximated
as follows:

q11 =
6.4911e−s

7.1079s0.8714 + 1
(49)

q22 =
−9.8693e−3s

3.3615s1.788 + 5.2645s0.8462 + 1
(50)

According to Table 1, the proposed fractional controllers are obtained for each loop:

gc1 = 0.2882
1

s0.1286

(
1 +

1
7.1079s0.8714

)
(51)

gc2 = −0.1212
1

s0.1538

(
1 +

1
5.2645s0.8462

+ 0.6385s0.9418
) 1

1.1s + 1
(52)

The performances of the proposed method are compared with those of the previous works
including the simplified decoupling Smith predictor (SDSP) [15] and simplified filter Smith predictor
proposed by Santos et al. [22]. The sequential unit step changes in the set-points are made to the 1st
and 2nd loop at t = 0 (min) and t = 100 (min), respectively. The closed-loop responses to the set-point
changes, the control signals of loop 1 and 2 are shown in Figure 7a,b and Figure 9a,b, respectively.
The performance indices are summarized in Table 3. From the figures, it is obvious that the F-SDSP and
SDSP methods have almost the same performance. However, when considering Table 3, the proposed
method still gives better performance indices. In comparison with the Santos’ approach, the F-SDSP
has far better responses in both set-point changes and disturbance rejection.

The robustness analysis of those methods is illustrated in Figure 8. In this case, the uncertainties
of 10% of gains are applied to the Santos approach while the other approaches still keep the same
uncertainties as the previous example, i.e. the uncertainties are decreased by 50% at high frequencies
and increased by 20% in a low-frequency range. The maximum µ values shown in Table 3 prove that
the proposed controller has the smallest value that means the best robustness among those approaches.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 16 
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Table 3. The performance indices for the wood and berry (WB) column.

Tuning Method IAE ITAE TV µ[M]

F-SDSP 9.221 631.207 0.9587 0.2291
SDSP 10.963 667.088 0.7720 0.3091
Santos 13.294 881.098 1.2976 0.5750

Example 3. Vinante and Luyben (VL) column

The transfer function matrix for a VL column introduced by Luyben [25] has the following form:

G(s) =

 −2.2e−s

7s+1
1.3e−0.3s

7s+1
−2.8e−1.8s

9.5s+1
4.3e−0.35s

9.2s+1

 (53)

The simplified decoupling matrix can be easily obtained by using Equation (10):

D(s) =

 1 0.591
0.651(9.2s+1)e−1.45s

9.5s+1 1

 (54)

Similar to the previous examples, the diagonal elements q11 and q22 are approximated to the
fractional forms as Equation (17) or (18). The obtained results are as the following equations:

q11 =
−1.3629e−s

6.6757s0.97 + 1
(55)
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q22 =
2.6679e−0.3s

8.8871s0.9683 + 1
(56)

In this example, the fractional controllers are obtained as follows:

gc1 = −2.5765
1

s0.03

(
1 +

1
6.6757s0.97

)
(57)

gc2 = 2.082
1

s0.0317

(
1 +

1
8.8871s0.9683

)
(58)

In this simulation, the performances of the proposed method are compared with those of the
simplified decoupling Smith predictor (SDSP [15]) and the centralized inverted decoupling method
(Garrido et al. [21]). For the sequential unit step changes in the set-points, Figure 10a,b compare the
closed-loop time responses afforded by the proposed and other methods. It is clear that in the 1st loop,
the fractional controller shows superior responses over the others in a set-point change. In the 2nd
loop, the obtained performance is almost the same as SDSP one (dash line) and still better than the
response of the centralized inverted decoupling proposed by Garrido (dot line). The control signals of
the two loops are shown in Figure 12a,b. Moreover, the values of the performance indices in Table 4
also confirm the obtained results.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 
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Table 4. The performance indices in the Example 3.

Tuning Method IAE ITAE TV µ[M]

F-SDSP 3.7490 101.66 10.838 0.2974
SDSP 3.4382 102.83 8.7549 0.3046

Garrido 4.5255 126.04 11.295 0.4107

The robustness analysis in this example is illustrated in Figure 11 in which the weighted matrix,
Wo(s), is the same as previous examples. The figure shows that the proposed method and the
SDSP controller have similar robustness. On the other hand, in comparison with Garrido’s method,
the proposed F-SDSP presents much better robustness performance. The µ values of those methods
are also listed in Table 4 in which the fractional controller gives the smallest value.

4. Conclusions

In this paper, a new formula of fractional PID controller is proposed to apply for a two-input
two-output process. In order to deal with the issues of multivariable systems including interactions
between process variables and multiple delay times, the simplified decoupling Smith predictor structure
proposed by Chuong et al. is addressed. However, it is different from the previous work, the fractional
order process is adopted to approximate the complicated elements of a decoupled matrix. The analytical
tuning rules of the proposed fractional PI/PID controllers are also derived for the delay-free parts
of the approximated fractional transfer functions. The effectiveness and robustness of the proposed
controller are proved by applying to some well-known TITO processes. In general, the obtained results
demonstrate the better performances of the proposed controller in both set-point changes as well as
load disturbances. The robust stability is always guaranteed with the smallest µ values compared to
other methods.
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