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Abstract: Steel plate-concrete shear walls (SPSW) are used as the containment in nuclear power
stations. However, the influence of holes and axial loading on the behavior of steel plate-concrete
shear walls is neglected in most studies. Thus, it is necessary to understand the seismic behavior
of SPSW members with holes in order to avoid the potential risks for nuclear power stations. In
this study, a series of specimens were tested by low-cycle reciprocal loading. The specimens were
designed with different holes to simulate real members in nuclear power stations. A hysteretic
curve of specimens was obtained from a low-cycle reciprocal test to discuss the seismic behavior
of steel plate-concrete shear walls (SPSW). Moreover, effects of axial compression ratio, hole size,
thickness of the steel plate, and hole position on the hysteretic performance of SPSW were analyzed.
The horizontal ultimate bearing capacity of SPSW specimens was estimated using the norms of the
Architecture Institute of Japan and the calculation method of Ono reduction rate. Results provide
theoretical references for the design and application of SPSW with holes.

Keywords: SPSW; axial compression ratio; hole size; thickness of stiffening plate; hole position;
hysteretic performance

1. Introduction

Steel plate-concrete shear walls (SPSW) serve as the containment of AP1000 and CAP1400 nuclear
power stations and of the stress components of the internal plants in nuclear power stations. Structures
with SPSW have advantages of modular construction and strong seismic and impact resistance. In
the 1960s, Japan began to apply the steel stiffening concrete seismic structural structure. A series of
studies on shear capacity and the stiffness and ductility of SPSW structures have been conducted in
many countries, such as the US and Japan [1]. Other relevant research is based on low-cycle reciprocal
tests. Lubell et al. [2] conducted an experimental testing on two single and one four-story steel shear
wall specimens under cyclic quasi-static loading. Hjjar et al. [3] performed a low-cycle reciprocal test
on a 1:2 scale model of SPSW structure and found its high bearing capacity, energy-consumption
mechanism, and good ductility. The test results show that the superposition principle is basically
true [4]. Berman et al. [5] conducted an experiment on the light-gauge steel plate shear walls and
braced frames to study the hysteretic behavior. They revealed that the energy dissipated per cycle
and the cumulative energy dissipation are similar for the two structures. Later, Gan, Zhao, and
Wang et al. [6–8] studied the seismic behavior of the steel plate-reinforced concrete shear wall by using
the quasi-static test. Li and li [9] investigated the out-of-plane seismic behavior of steel plate and
concrete infill composite shear walls (SCW). They found that SCW has a better ultimate capacity and
lateral stiffness. Huang et al. [10] proposed an innovative concrete-filled double-skin steel plate SCW

Appl. Sci. 2019, 9, 5255; doi:10.3390/app9235255 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/23/5255?type=check_update&version=1
http://dx.doi.org/10.3390/app9235255
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 5255 2 of 15

and investigated its seismic behavior. By conducting a quasi-static cyclic test, the wall is confirmed to
have good seismic performance.

In recent years, various scholars have simulated the hysteretic curve and stiffness reduction rate
of SPSW through finite element simulation. Rafiei et al. [11] presented and verified the finite element
model to simulate the behavior of a novel SCW consisting of the two skins of profiled steel sheeting and
an infill of concrete under in-plane loadings. Hu et al. [12] analyzed the moment-curvature behavior of
concrete-filled steel plate SCW using refined material constitutive models. Peter et al. [13] presented
the development and benchmarking of a detailed 3D nonlinear inelastic finite element model to predict
the lateral load-deformation response and behavior of the 1/6th scale test structure. Nguyen et al. [14]
presented a numerical study of steel-plate concrete composite walls by using the general-purpose finite
element program ABAQUS. The influence of key design variables, including the reinforcement ratio,
connector type, and faceplate slenderness ratio, were likewise studied. Wang et al. [15] investigated
the hysteretic performance of the SPSW wall by using Open Sees software. Moreover, parameters such
as the steel plate ratio, axial compressive load ratio, concrete strength, and web reinforcement ratio
were analyzed. Yamatani [16] performed a low-cycle reciprocal test of SPSW with holes at the lower
position under the shear-span ratio of 0.7, a distance–thickness ratio of 100, and opening area ratio of
0.3. Other scholars proposed the concept of reduction coefficient to evaluate the bearing capacity of
an SPSW wall. Satou Kouichiet al. [17] conducted a numerical simulation of an SPSW structure and
found that a numerical simulation is applicable for the calculation and analysis of the performance of
shear walls with holes. Ishida Masatoshi [18] analyzed the seismic behavior of an SPSW structure by
using theories and finite element simulation. Fujita Tomohiro and Oosuka et al. [19,20] performed
anti-shear tests on SPSW structures with holes. Adding sleeves and using increased thickness surface
steel plates on the shear wall were determined to be effective reinforcement methods. Some scholars
also used the XFEM (the eXtended Finite Element), XIGA (the eXtended IsoGeometric Analysis) and
Jaya algorithm to predict the occurrence of cracks and other defects in walls and slab [21–23].

So far, steel plate-concrete shear walls are studied widely. However, the influence of holes and
axial loading on the behavior of steel plate-concrete shear walls are neglected in most studies. Thus,
the seismic behavior of steel plate-concrete shear walls is completely different when the influences
are considered. In the study, a series of low-cycle reciprocal loading tests are conducted on an SPSW
structure with holes, thus obtaining the ultimate bearing capacity and failure mode of the structure.
The influences of holes and reinforcing measures and axial loads of components on the seismic behavior
of an SPSW structure are analyzed, thus determining the difference between theoretical and test values.
The seismic behavior and stress mechanism of SPSW specimens are discussed theoretically.

2. Experiment

2.1. Experimental Apparatus

A low-cycle reciprocal test of an SPSW structure with different hole sizes was conducted in
the Beijing Key Laboratory of Engineering Anti-earthquake and Structural Diagnosis of the Beijing
University of Technology. The test applied a horizontal servo actuator (maximum range = 2000 kN),
which was fixed on the concrete counterforce wall. Test devices included a counterforce wall,
counterforce frame, loading beam, bottom beam, and displacement meter. The bottom beam was
strongly connected to the ground through a fixing device, and a steel ingot was used on the loading
beam. On the one hand, this design prevents concrete crushing caused by excessive force. On the other
hand, the vertical load is ensured to be a uniform load. In the test, the low-cycle reciprocal loading
test device is composed of horizontal and vertical jacks. In this device, the jack on the transverse
counterforce frame applies the vertical loads. During the whole test, these vertical loads are kept
as stable as possible through the manual control of the oil pump. The horizontal jack applies the
horizontal loads. One end of the jack is connected to the loading beam of the specimens, and the other
end is fixed on the counterforce wall (Figure 1).



Appl. Sci. 2019, 9, 5255 3 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 15 

  

(a) (b) 

Figure 1. Loading device (a) and measurement arrangement (b). 

2.2. Design of Specimens and Instrumentation 

To accurately reflect shielding plants and internal SPSW structures in a nuclear power station, 

specimens in this study were designed with reference to Japan’s Technical Regulations on Earthquake-

resistant Design of Steel Plate Concrete Structure (JEAC4618-2009) [24] and design documents of AP1000 

demonstration projects. According to Technical Regulations on Earthquake-resistant Design of Steel Plate 

Concrete Structure, the ratio between the thickness of SPSW for nuclear safety and thickness of the 

surface steel plate should be controlled within 30:200. On this basis, thicknesses of the shear wall and 

surface steel plate were set. Considering the actual welding ability in the laboratory, the thickness of 

the surface steel plate in the test specimens was determined to be 2.5 mm. 

In this study, low-cycle reciprocal tests of nine SPSW specimens were conducted. Dimensions of 

SPSW specimens were 800 mm (height) × 800 mm (width) × 125 mm (thickness).SPSW specimens 

were divided into three types: (1) without holes, (2) with small holes, and (3) with large holes. 

Considering the loading capacity of the laboratory, the SPSW specimens without holes and with 

small holes were flat (Figure 2), whereas the SPSW specimens with large holes were I-shaped (Figure 

3). The stiffening plates were spread around the hole, with a width is 90 mm, and the length 

determined by the perimeter of the hole. The hole size, thickness of the stiffening plate, hole position, 

and axial pressure ratio are listed in Table 1. In the SPSW specimens, the steel plate was made of 

Q235B, and the grade of the concrete strength was C35. Material properties are shown in Tables 2 

and 3. Fine aggregates with a diameter smaller than 10 mm were used. 

 

400100800100400

1800

70
0

28
8

12
5

28
8

6
125
6

60
0

4
00

80
0

30

135

30

1800

18
00

60
0

80
0

40
0

1300 500

700

Figure 1. Loading device (a) and measurement arrangement (b).

2.2. Design of Specimens and Instrumentation

To accurately reflect shielding plants and internal SPSW structures in a nuclear power
station, specimens in this study were designed with reference to Japan’s Technical Regulations on
Earthquake-resistant Design of Steel Plate Concrete Structure (JEAC4618-2009) [24] and design documents
of AP1000 demonstration projects. According to Technical Regulations on Earthquake-resistant Design of
Steel Plate Concrete Structure, the ratio between the thickness of SPSW for nuclear safety and thickness
of the surface steel plate should be controlled within 30:200. On this basis, thicknesses of the shear wall
and surface steel plate were set. Considering the actual welding ability in the laboratory, the thickness
of the surface steel plate in the test specimens was determined to be 2.5 mm.

In this study, low-cycle reciprocal tests of nine SPSW specimens were conducted. Dimensions of
SPSW specimens were 800 mm (height) × 800 mm (width) × 125 mm (thickness). SPSW specimens were
divided into three types: (1) without holes, (2) with small holes, and (3) with large holes. Considering
the loading capacity of the laboratory, the SPSW specimens without holes and with small holes were
flat (Figure 2), whereas the SPSW specimens with large holes were I-shaped (Figure 3). The stiffening
plates were spread around the hole, with a width is 90 mm, and the length determined by the perimeter
of the hole. The hole size, thickness of the stiffening plate, hole position, and axial pressure ratio are
listed in Table 1. In the SPSW specimens, the steel plate was made of Q235B, and the grade of the
concrete strength was C35. Material properties are shown in Tables 2 and 3. Fine aggregates with a
diameter smaller than 10 mm were used.

Table 1. Parameters of specimens.

Specimen
Flange Size (mm) Thickness

of Steel
Plate (mm)

Hole
Size
(mm)

Hole
Position

Thickness
of Stiffening

Plate

Axial
Compression

Ratio

Wall
TypeWidth Thickness

SCW-1 − − 2.5 − − − 0.3 Flat
SCW-2 − − 2.5 125 × 125 Center − 0.15 Flat
SCW-3 − − 2.5 125 × 125 Center 2.5 0.15 Flat
SCW-4 − − 2.5 125 × 125 Center 2.5 0.3 Flat
SCW-5 − − 2.5 125 × 125 Center 2.5 0.5 Flat
SCW-6 − − 2.5 125 × 125 Center 3.5 0.3 Flat
SCW-7 − − 2.5 180 × 180 Center 2.5 0.15 Flat
SCW-8 395 110 2.5 430 × 600 Center 2.5 0.15 I-shaped
SCW-9 395 110 2.5 430 × 600 Eccentricity 2.5 0.15 I-shaped

Table 2. Mechanical properties of the steel plate.

Thickness of Steel
Plate (mm)

Yield Strength
(MPa)

Tensile Strength
(MPa)

Elasticity
Modulus (MPa)

Maximum
Elongation (%)

2.5 369 486 2.02 × 105 28.5
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Table 3. Mechanical properties of the concrete.

Material Number Axial Compressive
Strength (MPa)

Axial Tension Strength
(MPa)

Elasticity Modulus
(MPa)

C35 25.98 2.33 3.25 × 104
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Figure 2. Typical flat specimens.
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Figure 3. Typical I-shaped specimens.
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In the test, five displacement sensors were set (Figure 1), three of which were set vertically on
the wall. The first displacement sensor on the side of the loading beam of the shear wall tested the
top wall displacement under reciprocal loads. The displacement sensor in the center of the shear wall
examined the bottom slippage during the loading process. The displacement sensor on the side of the
bottom beam tested the overall slippage of specimens to assure test accuracy. In addition, two dial
indicators were installed at diagonal positions of the wall to test for outward deflection.

2.3. Loading Mode

The loading process is composed of pre-loading and formal loading. First, the vertical jack applied
the vertical loads, and then 20kN force was pre-loaded by a horizontal actuator. Second, loads were
removed to ensure contact of the loading device with the specimens. The loading protocol refer to
construction standards of the China Construction Industry JGJ/T 101-2015 [25].

In the formal loading, the vertical jack also applied the vertical loads on the specimens. Before full
loading, the vertical loads were applied 2–3 times according to the design value of 40–60% to eliminate
the influences of the internal non-uniformity of shear wall specimens. When the vertical load was
applied to the designated value and stabilized, a horizontal actuator was used to apply the horizontal
low-cycle reciprocal loads to the specimens. Load control was applied in the early stage of the test.
Loads in the first, second, third, and fourth cycles were 50, 100, 200, and 400 kN, respectively. Later,
loads were increased by 100 kN every cycle until specimens fail. The loading system is illustrated in
Figure 4. Specimens were considered a failure upon attaining one of the following cases:

(1) The bearing capacity of specimens decreased to lower than 85%.
(2) Serious failure occurred in specimens, such as heaving of steel plates or crushing of concrete,

thereby resulting in a difficult loading.
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3. Experimental Analysis

3.1. Failure Mode

Specimen SCW-1 is an SPSW without holes. The loading process of SCW-1 was relatively stable.
When the cyclic loading approaches 700 kN, the concrete begins to crush, and the steel plate develops
slight deformation. With the continuous increase in loads, the crushing region in the concrete and
deformation of steel materials likewise continued. Heaves develop on the steel plate at the root side of
the shear wall until the load reaches 1100 kN. When the cyclic loads increase to 1240 kN, heaves at the
root side of the steel plate of the shear wall and surface steel plate intensify, accompanied with the
crushing of concrete at root positions. Due to the processing deviation of specimens and influences of
initial defects, deformations of steel plates at the two root sides of the shear wall are inconsistent but
are symmetric to an extent.
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In the tests of flat specimens with small holes, the horizontal loads are small in the initial loading
stage, and specimens are still elastic. A linear relationship is observed between the horizontal load and
vertex displacement of specimens. In the late stage, internal concrete begins to crack as horizontal
loads increase. The side and surface plates yield successively. As lateral displacement increases, the
steel plate begins to bend or crack. The weld joints of several specimens are pulled open, and internal
concretes are crushed, resulting in failure (Figure 5). The main failure develops at the wall bottom and
is evaluated as brittle failure. Several specimens develop slippage due to the lower stiffness of the
bottom beams.
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Figure 5. Bucklingof side plates, pulling failure of weld joints, and concrete crushing of flat steel
plate-concrete shear wall (SPSW) specimens with small holes.

Figure 6 shows the failure mode of I-shaped SPSW specimens with large holes. Bending shear
failure is the dominant failure mode. In the test of SCW-8, the internal concrete in SPSW begins to crack
at approximately 500 kN. Furthermore, the steel plate at the holes begins to yield and pull open at
approximately 800 kN. The surface steel plate yields at 1100 kN. Subsequently, the surface plate cracks
and bends, accompanied with wrinkles. The internal concrete of the steel plate is crushed after losing
constraints. Moreover, the steel plate at the wing wall side buckles, and the wall develops serious
deformation. The bearing capacity of SPSW specimens continue to decrease, and the loading test is
terminated. According to the results, SCW-8 with holes at the center and SCW-9 with holes biased to
the axis have no significant differences in terms of bearing capacity and failure mode.
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Figure 6. Failuremodes of I-shaped SPSW specimens with large holes.

3.2. Effects of Axial Compression Ratio on the Hysteretic Performance of SPSW Specimens

The axial compression ratio is an important factor that influences the hysteretic performance of
SPSW specimens. In this section, axial compression ratios in the low-cycle reciprocal tests of three
SPSW specimens with holes (SCW-3, SCW-4, and SCW-5) are set at 0.15, 0.3, and 0.5, respectively. The
ultimate loads and displacements of specimens are shown in Table 4. Figure 7 illustrates the hysteretic
curves of different SPSW specimens, whereas Figure 8 shows the skeleton curves.

Table 4. Ultimate loads and displacements of specimens.

Specimens Ultimate Loads (kN) Ultimate Displacements (mm)

Positive Negative Positive Negative

SCW-3 1100 −1074 18.09 −27.05
SCW-4 1217 −1185 18.46 −28.60
SCW-5 1362 −1301 16.56 −13.88
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Figure 8. Comparison of the skeleton curves of specimens of the same size under different axial
compression ratios.

In the loading process of the three specimens, steel plates develop low sounds, and internal
concretes begin to crack at 350 kN when the axial compression ratio is 0.5. When the axial compression
ratios are 0.15 and 0.3, steel plates develop low sounds at 500 kN and 150 kN, respectively. In summary,
the concrete begins to crack early under large axial compression ratios. With the continuous increase of
loads, SCW-3 and SCW-4 show a reduction stage of loads and good ductility. When loads increased to
1217 kN, the root plate of SCW-4 bent, and the test was terminated. SCW-4 thus shows poor ductility,
as verified from the skeleton curve. Table 4 shows that the ultimate bearing capacity of components is
positively related with axial compression ratio, but deformation resistance and ductility are negatively
correlated. Therefore, attention should be paid to the sudden failure of structures under high axial
compression ratio.

3.3. Effects of Hole Area on the Hysteretic Performance of SPSW Specimens

Influences of hole size on lateral bearing capacity, deformation resistance, and energy consumption
of SPSW specimens with different hole sizes are determined through a low-cycle reciprocal test. Ultimate
strengths and displacements of SPSW specimens with different hole sizes are presented in Table 5.
Figures 9 and 10 respectively display the hysteretic and skeleton curves of SPSW specimens with
different hole sizes.

Table 5. Ultimate loads and displacements of specimens.

Specimens Hole Size (mm)
Ultimate Loads (kN) Ultimate Displacements (mm)

Positive Negative Positive Negative

SCW-1 − 1277 −1310 23.15 −19.27
SCW-3 125 × 125 1100 −1074 18.09 −27.05
SCW-7 180 × 180 1190 −1105 37.43 −27.45
SCW-8 430 × 600 1055 −1007 51.94 −43.49
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Figure 9. displacement curves of SPSW specimens with different hole sizes. (a) SCW-1, (b) SCW-3, (c) 
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Figure 10. Skeleton curves of SPSW specimens with different hole sizes.

Table 5 shows that as hole area increases, the ultimate displacement of specimens gradually
increases, but the ultimate loads of specimens decrease slightly. Hysteretic curves of SCW-1, SCW-3,
and SCW-7 have similar shapes. They are full but have clear twist contraction effects. Compared with
the first three specimens, SCW-8 has a fuller hysteretic curve, indicating better seismic behavior.

3.4. Effects of the Thickness of the Stiffening Plate on the Seismic Behavior of SPSW Specimens

SCW-1, SCW-4, and SCW-6 have the same appearance size.SCW-1has no hole, SCW-4 and SCW-6
have the same geometric size, hole position, and hole size but are equipped with 2.5 mm and 3.5 mm
stiffening plates, respectively. Table 6 shows that compared with the uncut SCW-1, the strength and
stiffness of the open specimens are decreased. Compared with the ultimate strength of SCW-4, the
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ultimate strength of SCW-6 increased by 4% in the positive direction and 10% in the negative direction.
The hysteretic curves of SCW-4 and SCW-6 are shown in Figure 11, and the skeleton curves of specimens
are shown in Figure 12. The hysteretic curve of SCW-6 is S-shaped, which is attributed to slippage
caused by anchoring failure. Similarly, the SCW-6 skeleton curve displays that its initial stiffness is low
due to the large specimen displacement.

Table 6. Ultimate loads and displacements of specimens.

Specimens Ultimate Loads (kN) Ultimate Displacements (mm)

Positive Negative Positive Negative

SCW-1 1277 −1310 23.15 −19.27
SCW-4 1217 −1185 18.46 −28.60
SCW-6 1260 −1302 21.41 −28.11
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3.5. Effects of Hole Position on the Seismic Behavior of SPSW Specimens

Figures 13 and 14 illustrate the hysteretic and skeleton curves of specimens with large holes
at different positions as determined through low-cycle reciprocal tests, respectively. The ultimate
strengths and displacements of specimens are presented in Table 7.
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Figure 13. Hysteretic curves of specimens with holes at different positions. (a) SCW-8 and (b) SCW-
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Table 7. Ultimate loads and displacements of specimens.

Specimens Ultimate Loads (kN) Ultimate Displacements (mm)

Positive Negative Positive Negative

SCW-8 1055 −1007 51.94 −43.49
SCW-9 1103 −1031 34.14 −44.41

Table 7 shows that the ultimate displacement of the specimen with a hole in the center is higher
than that of the specimen with an eccentric hole. Comparing the two specimens, the hysteretic curve of
the specimen with a hole in the center is fuller, and its energy-dissipation capacity is larger. Hence,
placing the hole in the center of SPSW structures is suggested for practical engineering.

4. Theoretical Calculation

In order to estimate the ultimate bearing capacity and lateral stiffness resistance of SPSW specimens
with holes, two calculation methods are discussed. The first method is the reduction rate calculation
method of the Architecture Institute of Japan (AIJ) [26], and the second method is the Ono method [27].
A comparison between the experimental results and the theoretical results are discussed.
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4.1. ReductionRate Calculation Method of AIJ

The calculation methods of the reduction rates of horizontal bearing capacity (ru) and stiffness (rc)
of shear wall components with holes are regulated in the structural design codes of AIJ. These two
calculation formulas are as follows:

ru = 1− η, (1)

rc = 1− 1.25

√
h0l0
hl

, (2)

where h0 and l0 are the height and width of the hole, h is the floor height, l is the center distance of

frame columns, η is the hole area ratio with value η = max
{√

h0l0
hl

}
, and where

√
h0l0
hl ≤ 0.4. In AIJ

codes, the application of these formulas is regulated; they are applicable to situations when the hole
area is smaller than 0.4 but not for situations when the hole area is larger than 0.4. In these formulas,
the shape and position of holes are not considered when calculating bearing capacity and stiffness.
That is, the calculated results of bearing capacity and stiffness are the same for specimens with the
same hole size.

4.2. Ono Reduction Rate Calculation

Ono Masasyuki, a Japanese scholar, proposed the calculation method of Ono reduction rate
through a series of experiments wherein the influences of hole positions are considered [27] (Figure 15).

ru =
√∑

Aei/hl, (3)

when 0.1 ≤ γ ≤ 0.53,

re = (
0.025

0.0303γ
) × αβ+ (

0.6
0.55γ

)/(
1.55
γ2 )

k
, (4)

when 0.53 ≤ γ ≤ 1.00,

re = (
5.24

717.24γ
) × αβ+ (

0.6
0.55γ

)/(
1.55
γ2 )

k
, (5)

where Aei is the area of shadow part, h is the floor height, and l is the center distance of frame columns.
αβ = 2bD/tl′; where bD is the sectional area of columns, t is the wall thickness, and l′ is the net span.
γ= 2lw/l′; and where lw is the length of the wall after the hole is removed. κ = h0/h′, where h0 is the
height of the hole and h′ is the net height of the wall.
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In this study, the horizontal ultimate bearing capacity of SPSW members with holes can be
obtained by multiplying the reduction rate by that of the corresponding members without holes. The
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lateral stiffness of SPSW members with holes can be obtained with the same method. Change of the
concrete compression zone is considered in the method of Ono reduction rates. The reduction rates are
different in different directions for the specimen with biased holes.

Table 8 displays the comparison between the test results of horizontal ultimate loads and the
calculated results based on strength reduction rate. Table 9 compares the test results of lateral stiffness
and calculated results based on the stiffness reduction rate. This test has no effective lateral stiffness of
I-shaped SPSW structures without holes, and only the comparisons between the calculated and test
results of SCW-4 and SCW-6 are presented. According to the average ratio, the calculated value of the
Ono formula is closer to the experimental value than that of the code formula.

Table 8. Comparison of ultimate loads.

Specimen Stress
State Qtest /kN Qcode /kN Qcode/Qtest Qono /kN Qono/Qtest

Axial
Compression/kN

Type of
Walls

SCW-4
Stressed 1185 1127 0.95 1135 0.96

950
Flat

Tensioned 1217 1098 0.90 1106 0.91 Flat

SCW-6
Stressed 1302 1127 0.87 1269 0.98

950
Flat

Tensioned 1260 1098 0.87 1237 0.98 Flat

SCW-8
Stressed 1007 734 0.73 820 0.81

320
I-shaped

Tensioned 1055 734 0.70 857 0.81 I-shaped

SCW-9
Stressed 1031 734 0.71 836 0.81

320
I-shaped

Tensioned 1103 734 0.67 836 0.76 I-shaped
Average

ratio 0.80 0.88

Notes: Qtest is the test result of horizontal ultimate loads. Qcode and Qono are horizontal ultimate bearing capacities
calculated by AIJ codes and the Ono calculation formula.

Table 9. Comparison of lateral stiffness.

Specimens Ktest Kcode Kcode/Ktest Kono K ono/Ktest
Axial

Compression/kN

SCW-4
Negative 41.43 56.11 1.35 67.64 1.63

950
Positive 65.90 45.51 0.69 54.87 0.83

SCW-6
Negative 46.31 56.11 1.21 67.64 1.46

950
Positive 58.86 45.51 0.77 54.87 0.93

Notes: Ktest is the test result of lateral stiffness. Kcode and Kono are stiffness calculated by AIJ codes and the Ono
calculation formula.

Table 9 shows that the calculated results of AIJ codes are relatively safe. Moreover, the difference
of bearing capacity along different loading directions under eccentric holes is neglected, thus resulting
in the low accuracy. The Ono calculation formula considers the influences of loading direction and
reflects the effects of hole position on horizontal bearing capacity along different loading directions. The
calculation accuracy of the Ono calculation formula is thus higher than that of AIJ codes with respect to
specimens with small holes (SCW-4 and SCW-6) and with large holes (SCW-8 and SCW-9). With respect
to stiffness, the bottom slippage of the wall can influence the test results to a certain extent, resulting in
the difference in stiffness along the two loading directions. Therefore, the calculation method may differ.
In summary, the calculation formulas of AIJ codes and Ono are feasible in determining the influences
of holes on the horizontal bearing capacity of SPSW structures. Compared with the calculation results
of AIJ codes, those of the Ono formula are closer to the actual test results, indicating its high calculation
accuracy. Due to the bottom slippage of walls, the rigidity in the negative direction is lower than the
calculated values. In the positive direction, the calculated values are lower than the test results, which
is due to the fact that the AIJ code and Ono formula are used for structure design and the result are
relatively safer.
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5. Conclusions

Steel plate-concrete shear walls are studied widely. However, the influence of holes and axial
loading on the behavior of steel plate-concrete shear walls are neglected in most studies. Thus, the
seismic behavior of steel plate-concrete shear walls is completely different when the influences are
considered. Thus, a series of low-cycle reciprocal loading tests were conducted on SPSW specimens
with holes in this study. The failure modes and hysteretic curves of SPSW structures under different
working conditions were also studied. On the basis of failure modes and hysteretic curves, the
seismic behavior of SPSW structures was discussed. Influences of axial compression ratio, hole size,
hole position, and the thickness of stiffening plate on the seismic behavior of SPSW structures were
considered in the tests. The ultimate bearing capacity of SPSW structures with holes was estimated by
AIJ codes and Ono reduction rate calculation methods. The major conclusions are indicated as follows:

(1) SPSW structures without holes mainly develop failures at the roots of shear walls, accompanied
with the concrete and bending failures of steel plates. SPSW structures with small holes also
develop failures at the roots, but several steel plates crack along the corners of the holes. The
failure mode is brittle to a certain extent. SPSW structures with large holes develop significant
deformation and better ductility than SPSW structures with small holes but low ultimate loads.

(2) Concrete cracks early under high axial compression ratio. The ultimate strength of SPSW structures
increases, but the deformation capacity and ductility decrease to a certain extent. Deformation
capacity is enhanced, but the ultimate bearing capacity decreases as hole size increases. With an
increase in the thickness of stiffening plates, the ultimate bearing capacity of SPSW specimens
increases. Eccentric holes decrease the earthquake-resistant energy-dissipation capacity of SPSW
structures, and such a reduction is disadvantageous to seismic design. Therefore, eccentric holes
on SPSW structures should be avoided.

(3) The calculated results of AIJ codes are safe, but those of the Ono formula have high accuracy
because it considers the influences of loading directions. In summary, both calculation formulas
are feasible to calculate the ultimate shear capacity of SPSW structures with holes.
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