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Abstract: The exponential growth of cities has brought important challenges such as waste
management, pollution and overpopulation, and the administration of transportation. To mitigate
these problems, the idea of the smart city was born, seeking to provide robust solutions integrating
sensors and electronics, information technologies, and communication networks. More particularly,
to face transportation challenges, intelligent transportation systems are a vital component in this quest,
helped by vehicular communication networks, which offer a communication framework for vehicles,
road infrastructure, and pedestrians. The extreme conditions of vehicular environments, nonetheless,
make communication between nodes that may be moving at very high speeds very difficult to achieve,
so non-deterministic approaches are necessary to maximize the chances of packet delivery. In this
paper, we address this problem using artificial intelligence from a hybrid perspective, focusing on both
the best next message to replicate and the best next hop in its path. Furthermore, we propose a deep
learning–based router (DLR+), a router with a prioritized type of message scheduler and a routing
algorithm based on deep learning. Simulations done to assess the router performance show important
gains in terms of network overhead and hop count, while maintaining an acceptable packet delivery
ratio and delivery delays, with respect to other popular routing protocols in vehicular networks.
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1. Introduction

As urban environments have exponential grow, smart cities (SC) is the technological paradigm
that aims at providing the ultimate solution to the urban development in every aspect in wide areas
such as social management, security and safety, health and medical care, smart living, tourism, and
transportation, with the aid of sensors and electronics, communication networks, and information
technologies [1,2]. Among the essential needs and key components of a smart city are intelligent
transportation systems, which seek to provide a solution to transportation-related problems, such
as pollution, traffic congestions, and accident reduction [3,4]. In this sense, vehicular networks play
a key role by providing a communication framework for moving vehicles, road infrastructure, and
pedestrians [5]. The main goal of vehicular networks is to provide seamless wireless communication
between cars (vehicle to vehicle, or V2V), infrastructure (vehicle to infrastructure, or V2I), pedestrians
(vehicle to pedestrian, or V2P), and virtually any object (vehicle to anything, or V2X), which would
allow important improvements to transportation services as we know them as well as the creation of
new ones [6,7].
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The promise of vehicular networks is the evolution of transportation areas such as security and
safety, traffic management, sustainability (green transportation), and other digital services, including
e-commerce and infotainment, to more efficient ones. However, due to the harsh conditions of
vehicular environments, this kind of network presents serious challenges that limit and slow down
its deployment and adoption. For instance, the very high speeds at which nodes can move lead to a
lack of end to end connectivity between them, which makes having a fixed network topology rather
difficult [8]. Furthermore, the frequent disruptions in the connections add significant drawbacks in the
network performance, such as poor delivery rates and long delays [8] (that is why these networks are
often referred to as vehicular delay tolerant networks, or VDTN, for short). These and other issues are
mainly caused by network partitioning, which in turn can be a result of several factors. Disruptions in
the network can be caused when node density is sparse or very high in small areas; also, data congestion
and of course the high mobility of nodes are two of the main causes of network partitioning [9]. As a
consequence, delays are an expected, natural characteristic observed in the delivery process, due to the
lack of an end-to-end path between source and destination, that has to be created over time with the
aid of opportunistic encounters with other nodes [10]. Moreover, in order to increase the chances of
delivery, copies of the messages are spread through the network in the hope that they eventually get
to their destination, but this introduces another issue in the process, called network overhead. This
parameter refers to the redundancy of information in the network, such as message copies that did not
make it to their destination but did use network resources [10]. These particular characteristics bring
to life one of the main challenges in vehicular communications, which is the message routing [10–12]:
Depending on the application scenarios, it is desirable to have a high delivery ratio, while maintaining
acceptable delivery delays and network overhead. Packet routing in these environments is a difficult
situation to solve, as no predefined paths in the network can be considered, so deterministic methods for
optimization tend to fail and non-deterministic approaches have to be employed instead [10,12]. To face
this issue, VDTN routing algorithms opportunistically rely on other nodes to deliver data packets using
the store-carry-forward mechanism, where nodes store exchanged data with other nodes, carrying it as
they travel and forwarding it when appropriate, in the hope that the messages make it to their destination.

In the past several years, many opportunistic routing algorithms and non-deterministic solutions
have been proposed [13,14], but due to the very unique characteristics of this kind of networks, the
efficiency is limited, and the search for the best algorithm that can provide seamless and reliable
communication is still an ongoing primary quest. Some algorithms, like the epidemic routing [15] and
spray and wait [16], make use solely of a flooding-based principle, in which copies of the message
to deliver are spread in a controlled way. Others, like PRoPHET [17], make use of probabilistic
encounters maximizing the chances of two nodes meeting in the future. One third group, like SeeR [18],
seeks to make use of heuristic approaches to approximate a global optimization in a larger search
space. Nowadays and for the past few years, artificial intelligence (AI) has become an increasingly
important field of study to assist in the evolution of science, engineering, business, medicine, and
more [19]. Industry, finance, healthcare, education, and transportation have seen important advances
with the aid of image and speech recognition, natural language processing, and intelligent control and
predictions [19–21], which are possible thanks to different AI techniques. In this paper, we propose DLR+,
a deep learning–based router that is capable of learning to make intelligent decisions based on local and
global conditions from a dual perspective. The simulation results show that this router outperforms some
well-known routers in network overhead and hop count, while maintaining an acceptable delivery rate.

The rest of the paper is organized as follows: In Section 2, we dive into relevant related work,
and in Section 3, we frame the routing problem in a more formal way. In Section 4, an overview of
the proposed router is given, presenting the router architecture and its modules, and in Section 5,
we describe the routing algorithm in more detail. Section 6 is dedicated to the experiment and in
Section 7, we discuss the obtained results. Finally, in Section 8, we conclude this paper, providing a
quick summary of this work and the findings, and provide some recommendations to further advance
on this topic taking the proposed router as a starting point.
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2. Related Work

In the past several years, several approaches have been proposed to address the routing problem
in VDTN, but due to the particular characteristics of vehicular environments, and especially the lack of
an end-to-end connection between nodes in a vehicular network, non-deterministic approaches must
be used [10,11].

Some routers for delay-disruption tolerant networks, like the epidemic router [15] and the spray
and wait router [16], use a flooding-based principle of spreading copies of the messages to newly
discovered contacts. The epidemic router is one of the most popular routers in this category [7,15],
whose approach is to distribute messages to other hosts within connected portions of the network,
relying upon such carriers coming into contact with another connected portion of the network through
node mobility, hoping that through that transitive transmission of data, messages will eventually reach
their destination. This routing protocol provides an acceptable delivery rate and delay but at the
expense of using too many resources in the network. In the same way, the spray and wait router [16]
uses a similar (flooding-based) but more controlled mechanism, “spraying” a number of copies into
the network, and “waiting” until one of these nodes meets the destination. More particularly, this
router passes L copies from the source node (phase 1—spray), and then each of the L copies waits in
their temporal host until there is a contact, if any, with the destination (phase 2—wait), to whom they
are only then forwarded.

Other routers use probabilistic approaches to increase the chances of packet delivery. MaxProp [22]
is one of the first routers proposed in this category. This router uses what the authors call an estimated
delivery likelihood for each node in the network, updated through incremental averaging, so nodes that
are seen infrequently obtain lower values over time, and packets that are ranked with the highest
priority are the first to be transmitted during a transfer opportunity, whereas those ranked with the
lowest priority are the first to be deleted to make room for incoming packets. On the other hand,
the PRoPHET Router [17] is perhaps the most popular router in the probabilistic routing category.
Based on the history of encounters between the nodes, this router introduces a metric called delivery
predictability, a set of probabilities for successful delivery to known destinations in the network and
established at each node for each known destination. This way, when nodes meet, they exchange
information about the delivery predictabilities and update their own information accordingly, and the
final forwarding decision is made based on these values to whether or not pass the current message to
particular nodes.

In recent years, the use of artificial intelligence techniques has gained tremendous popularity
because of the successful application to many practical optimization, prediction, and classification
problems that include image processing (facial recognition, cancer detection, etc.), forecasting (stock
prediction, weather forecasting, etc.), and others [23,24]. The application of AI-based algorithms to
the routing problem in VDTN, however, is still not fully explored, although some efforts have been
conducted towards this direction. In this category, SeeR is one of the most efficient routers [18]. This
router uses the simulated annealing algorithm to evaluate which messages are best to be transferred
in each contact opportunity. Each message is associated with a cost function in terms of the hop
count and the average intercontact time of the current node, and one node transfers a message to
another node if the second node offers lower cost value. Otherwise, the messages are forwarded,
first decreasing their probability. Their experiment results show considerable gains in the average
delivery ratio and improvements in delivery delays with respect to flooding algorithms like epidemic
routing and spray and wait. Another router in this category is KNNR, a router based on the KNN
classification algorithm, proposed in [25]. They use six parameters (available buffer space, time-out
ratio, hop count, neighbor node distance from destination, interaction probability, and neighbor speed)
to decide on the final label. The class used during the training stage (which is done offline) is based on
the interaction probability, which is the same used in PRoPHET. Like SeeR, this router addresses the
routing problem under the best next message perspective. Their results show better average delivery
ratio and acceptable delay with respect to Epidemic and PRoPHET routers. Also, the authors in [26]



Appl. Sci. 2019, 9, 5254 4 of 17

propose MLProph, a machine learning model as a routing protocol. They use the PRoPHET router as
the base and expand its capabilities by adding some other features to the equation, and the result is an
improved router with respect to the base. Although they use a neural network model as well, they use
a different algorithm than the one proposed here, Furthermore, their router makes calculations for
each connected router, which increases computational resources such as time and CPU usage, and
transfers sensible information from the connected nodes, increasing the risk of security leaks. In [27],
the authors presented CRPO (cognitive routing protocol for opportunistic networks), which also uses a
neural network as the core, although the decision parameter is the probability of encounter defined in
PRoPHET; hence, CRPO is similar in nature to MLProph, since both of them use PRoPHET’s probability
as their main decision parameter. Although the authors claim that the training stage is run for X units
of time each Y units of time, they do not provide further detail on this. Finally, in [28], the authors
explore the possibility of removing the routing protocol from a wireless network using deep learning
techniques. The problem statement, however, is formulated as a classical optimization problem to
find the shortest path in a connected graph. That is, the scenario is different to that of a vehicular
network, since one of the main characteristics in VDTN is precisely the lack of a fixed topology with
pre-defined paths.

3. Formulation of the Routing Problem

Let N = {Ni|1 ≤ i ≤ LN} be the set of available nodes in a vehicular network with constant
disruptions and non-fixed topology, and let A ∈ N be a given node in that set (Figure 1). Given the fact
that there are no predefined paths and the connections are intermittent, the nodes in the network must
act opportunistically, taking advantage of any node that gets into their communication range, because
whenever these encounters happen, the opportunity of replicating a message arises. In those situations,
A has to decide on a node to start a transfer, and several criteria can be used for this decision, but
ultimately, A would like to choose the node with better capabilities of further spreading the messages
until hopefully they get to their destination. Following this approach, the routing problem can then
be expressed as finding the best next hop (BNH) for the messages. That is, from all k nodes that A is
connected to in a given moment, the one, Nx, with better fitness fx must be determined, in terms of
its current features x1, . . . xn. Furthermore, in order to optimize the communication conditions, not
only must the best next hop B be selected, but we can also detect the best next message (BNM) to be
transferred. That is, based on its current attributes y1, y2, . . . , ym, we must be able to select from the
message queue M = {Mi|1 ≤ i ≤ LM} the message My ∈ M with the best fitness fy. Because neural
networks have the power to learn very complex non-linear patterns, they are the perfect fit for what we
are traying to achieve here, so we can model both optimization scenarios as binary classification tasks
to allow us to quantify the capabilities of such nodes Ni as a function F of some of their characteristics
xi as fx = F(x1, x2, . . . xn) and the capabilities of such messages Mi as a function G of some of their
characteristics yi as fy = G(y1, y2, . . . yn).
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4. DLR+ Router Overview

In this section, we describe in more detail the fundamental principle and architecture of DLR+,
the router in the proposed solution. The main idea is to have a router capable of learning from the
conditions of its environment and use such information to make smart forwarding decisions. In
order to achieve that, the router uses two pre-trained feed forward neural networks to process the
information from both its neighbors and the messages in their queues in real time and select from them
the best next hop for the best next message, according to their current fitness. More details are given in
the following subsections.

4.1. Router Architecture

The core of the router has two fundamental modules that allow the router, upon a connection-up
event, to choose the best next hop from its current connections and the best next message to send from
its queue, but also to share information to other nodes (upon request), so they can decide whether
or not to pass a packet to it. Such modules are called, respectively, the connections manager and the
fitness center, which in turn has two independent modules for the messages and for the host itself
(Figure 2).
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4.1.1. The Fitness Center

This part of the router has two pre-trained deep feed forward neural networks that use the available
local information to compute the router’s current fitness fx, defined as the value that determines its
ability to correctly deliver data packets to the final destination, and the fitness fy for each message in the
queue, with fx, fy ∈ R, 0 ≤ fx, fy ≤ 1. The closer these values are to 1, the fitter their owners are. More
details on how to get these numbers are given in Section 4.2. These values are automatically updated
in each router right after a connection is ended and right after a new message has been received, so
they are available and ready to be used at any moment.

4.1.2. The Connections Manager

The function that this module has is vital in the selection of the best next message for the best next
hop. This module manages the incoming connections, requesting their fx values in order to select the
fittest node. After this, if available, the message scheduler will send the fittest message to such node.

4.2. The Neural Networks

We treat the problem of finding the BNH and BNM as binary classification problems, given that
we would like to know if the node and messages are in best conditions (i.e., fit) to carry and deliver
the messages, or not. Thus, the neural networks used in the fitness center are feed forward neural
networks, whose general architecture is presented in Figure 3.



Appl. Sci. 2019, 9, 5254 6 of 17
Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17 

  
(a) (b) 

Figure 3. Architecture of the neural networks used in the host’s fitness center: (a) Neural network 
used to calculate the host’s fitness; (b) neural network used to compute the messages’ fitness. 

Here, 𝑋 ∈ 𝑅  is the set of 𝑛  input values 𝑥 , ∀𝑖 ∈ {1,2, … , 𝑛}  that reflect some of the 
characteristics of the host at that moment, such as its speed and buffer occupancy; 𝐻 ∈ 𝑅  is the 
vector that contains the values ℎ (computed according to Equation (3)) of the 𝑛  neurons in the 
hidden layer number 𝑖, ∀𝑖 ∈ {1, … , 𝐾}, where 𝐾 is the number of hidden layers in the network; and 𝑓 is the resulting fitness value of the host in the given conditions. The set of weights (synapsis) of the 
neural network, without its bias values, is given by 𝑆 ∈ 𝑅 ×  for the connections between the 
input layer and the hidden layer 1, and 𝑆 ∈ 𝑅  for the connections between the hidden layer 𝑖 
and the next hidden layer 𝑖 + 1, for all 1 ≤ 𝑖 ≤ 𝐾, including the connections from the last hidden 
layer to the output layer. Finally, the bias values of each synapsis are given by 𝐵 ∈ 𝑅 , ∀𝑖 ∈ (0, 𝐾). 
Similarly, 𝑆 ∈ 𝑅 ×  is the synapsis vector for the connections from the input layer to the first 
hidden layer, and 𝑆 ∈ 𝑅  are the synapsis for the connections from the 𝑖-th hidden layer to the 
next one, including the connections from the last hidden layer to the output layer, and the bias values 
of each synapsis are given by 𝐵 ∈ 𝑅 , ∀𝑖 ∈ (0, 𝐾]). 

As for the number 𝐾 of hidden layers, the universal approximation theorem [29] establishes 
that “a neural network with a single hidden layer with a finite number of neurons can approximate 
any continuous function on compact subsets in 𝑅 ”; this implies that, finding the appropriate 
parameters, a neural network with one single hidden layer is enough to represent a great amount of 
systems. Nonetheless, the width of such layer might become exponentially big. Indeed, Ian 
Goodfellow, a pioneer researcher on deep learning, holds that “a neural network with a single layer 
is enough to represent any function, but the layer can become infeasibly large and fail to learn and 
generalize correctly” [30]. On the other hand, while not having hidden layers at all in the neural 
network would only serve to represent linearly separable functions, a hidden layer can approximate 
functions with a continuous mapping from a finite space to another, and two layers can represent an 
arbitrary decision boundary with any level of accuracy [31]. In summary, this means that one hidden 
layer helps to capture non-linear aspects from a complex function, but two layers help generalize and 
learn better. In fact, the authors hold that one rarely needs more than two hidden layers to represent 
a complex non-linear model. On the other hand, for the number 𝑛  of neurons in each hidden layer 𝐻 , there is no formula to have an exact number, although some empirical rules can be used [32]. The 
most common assumption is that the optimal size of the hidden layers is, in general, between the size 
of the input layer and the size of the output layer. For this module in DLR+, this would mean that 𝑛 ≥ 𝑛 ≥ 1. Another suggestion is to keep this number as the mean between the number of neurons 
in the input and output layers and from here start decreasing the number of neurons in each 
subsequent layer without falling below 2 neurons in the last hidden layer. In DLR+, this would imply 
that 𝑛 = ≥ 𝑛 ≥ 2. One last suggestion to avoid overfitting during the training process (which 
would mean that the neural network would have great memory capacity, but no prediction 
capabilities over unseen data) is to keep the number of neurons in the hidden layers as 𝑛 <

Figure 3. Architecture of the neural networks used in the host’s fitness center: (a) Neural network used
to calculate the host’s fitness; (b) neural network used to compute the messages’ fitness.

Here, X ∈ Rn is the set of n input values xi, ∀i ∈ {1, 2, . . . , n} that reflect some of the characteristics
of the host at that moment, such as its speed and buffer occupancy; Hi ∈ Rnhi is the vector that contains
the values hi(computed according to Equation (3)) of the nhi neurons in the hidden layer number
i,∀i ∈ {1, . . . , K}, where K is the number of hidden layers in the network; and f is the resulting fitness
value of the host in the given conditions. The set of weights (synapsis) of the neural network, without
its bias values, is given by SN0 ∈ Rn×nh1 for the connections between the input layer and the hidden
layer 1, and SNi ∈ Rnhi for the connections between the hidden layer i and the next hidden layer i + 1,
for all 1 ≤ i ≤ K, including the connections from the last hidden layer to the output layer. Finally,
the bias values of each synapsis are given by BNi ∈ Rnhi , ∀i ∈ (0, K). Similarly, SM0 ∈ Rm×mh1 is the
synapsis vector for the connections from the input layer to the first hidden layer, and SMi ∈ Rmhi are
the synapsis for the connections from the i-th hidden layer to the next one, including the connections
from the last hidden layer to the output layer, and the bias values of each synapsis are given by
BMi ∈ Rnhi , ∀i ∈ (0, K]).

As for the number K of hidden layers, the universal approximation theorem [29] establishes that
“a neural network with a single hidden layer with a finite number of neurons can approximate any
continuous function on compact subsets in Rn”; this implies that, finding the appropriate parameters,
a neural network with one single hidden layer is enough to represent a great amount of systems.
Nonetheless, the width of such layer might become exponentially big. Indeed, Ian Goodfellow, a
pioneer researcher on deep learning, holds that “a neural network with a single layer is enough to
represent any function, but the layer can become infeasibly large and fail to learn and generalize
correctly” [30]. On the other hand, while not having hidden layers at all in the neural network would
only serve to represent linearly separable functions, a hidden layer can approximate functions with a
continuous mapping from a finite space to another, and two layers can represent an arbitrary decision
boundary with any level of accuracy [31]. In summary, this means that one hidden layer helps to
capture non-linear aspects from a complex function, but two layers help generalize and learn better.
In fact, the authors hold that one rarely needs more than two hidden layers to represent a complex
non-linear model. On the other hand, for the number nhi of neurons in each hidden layer Hi, there is no
formula to have an exact number, although some empirical rules can be used [32]. The most common
assumption is that the optimal size of the hidden layers is, in general, between the size of the input
layer and the size of the output layer. For this module in DLR+, this would mean that n ≥ nhi ≥ 1.
Another suggestion is to keep this number as the mean between the number of neurons in the input and
output layers and from here start decreasing the number of neurons in each subsequent layer without
falling below 2 neurons in the last hidden layer. In DLR+, this would imply that nh1 =

∣∣∣n
2

∣∣∣≥ nh2 ≥ 2 .
One last suggestion to avoid overfitting during the training process (which would mean that the neural
network would have great memory capacity, but no prediction capabilities over unseen data) is to keep
the number of neurons in the hidden layers as nhi <

Ns
γ (Ni + No)

, where Ns is the number of samples in
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the training set, Ni is the number of neurons in the input layer, No is the number of neurons in the
output layer, and γ is an arbitrary scaling factor, generally with 2 ≤ γ ≤ 10.

Finally, the rectified linear unit (ReLU, for short) was used as activation function for the neurons in
the hidden layers (Equation (1)), and the sigmoid function σ(z) (defined in Equation (2)) as activation
function for the neuron in the output layer, because we want this value to reflect the fitness of the hosts,
and the nature of this function returns values between 0 and 1. This way, the fitness value for the
host is computed taking the current set of features X of the host and making a forward pass through
the neural network, as is shown mathematically by Equations (3) and (4), where P·Q denotes the dot
product between P and Q. Given the nature of the sigmoid function, the closer to 1 is a value f , the
fitter the host will be, and vice versa.

R(z) =
{

0, z ≤ 0
z, z > 0

(1)

σ(z) =
1

1 + e−z (2)

Hi = R(Hi−1 · Si−1 + Bi−1),∀i ∈ {1, . . . , K} (3)

f = σ (HK· SK + BK) (4)

5. The Routing Algorithm

To have some sensitivity with respect to other node’s fitness, DLR+ uses the parameter α, with 0
≤ α ≤ 1, named as the host fitness threshold, that determines the fitness limit over which the incoming
connections may be directly ignored. This value is a key component in the routing protocol in DLR+,
because different threshold values result in different dynamics in the opportunistic environment. In a
similar way, we introduced β, the message fitness threshold, that determines a limit of fitness for the
messages in the queue, above which they can be directly ignored by the message dispatcher.

5.1. f-Value Update

This first stage takes place each time a connection between the host and another node in the
vehicular network has ended. Since some of the host’s features may have changed (such as buffer
occupancy, dropping rate, and others), its fitness value has to be recomputed as well. For this, the
considered features xi are obtained in the fitness center, and they are passed through a process of
normalization to obtained normalized features x′i , according to Equation (5), where x is a feature that is
being transformed, and xm and xM are the minimum and maximum registered values of that feature.

x′ =
x− xm

xM − xm
(5)

This will give final input values x′i , with 0 ≤ x′i ≤ 1, which in turn will make the prediction
process more reliable. These normalized values are forward passed through the network, according to
Equations (3) and (4) to get the final updated f value.

A similar process is executed each time a message is received by the host. Whenever this happens,
the f value of the incoming message is computed according to Equations (3) and (4) in its corresponding
neural network. Finally, the message is put in the queue according to its fitness. This way, the message
queue is always ready with the messages ordered by the fittest message first.

5.2. BNH Selection and Packet Forwarding

The second stage of the routing process occurs when a link is established between the current
host and some of its neighbor nodes. At that moment, the router will attempt to exchange deliverable
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messages (i.e., messages whose final destination is among the current connections), if any. Then, the
host router asks the connected nodes for their fitness values (which, thanks to their fitness center,
are always up to date). After that, before entering the final selection, the router directly discards
those connections whose f value is not at least the fitness threshold α, and orders in descending
order the remaining connections, according to their fitness. With a complete list of fit candidates, the
selection process is straightforward: The best next hop will be the fittest node (the one with the higher
f value), so the router will attempt to replicate a data package to the nodes in that order. Algorithm 1
summarizes the routing protocol, as explained in the previous subsections.

Algorithm 1 DLR+ algorithm. Actions in node c connected to a set of nodes C and having a queue of
messages M.

Message received event—msg fitness update
Inputs:

mi: incoming message
M: c’s message queue

Outputs:
Mo: c’s message queue, ordered by fitness value

Steps:
1. Insert mi in M, in descending order
2. Return M
Connection down event—host fitness update

Inputs:
X: the set of features xi of c

Outputs:
fx: the updated fitness value of c

Steps:
1. X← current features xi of c
2. Normalize X according to Equation (5).
3. Compute the value fx of c according to Equations (3) and (4).
Connection up event—Selection of BNH and BNM dispatch

Inputs:
C: the set of nodes connected to c at that moment
M: c’s message queue

Outputs:
Co: the set of connection tuples ordered by fitness

Steps:
1. Exchange messages whose final destination is in C
2. Do: for each ci ∈ C:
get fi
if fi ≥ α:
store tuple (ci, fi) in Co

3. Sort Co in descending order
4. Do:
for each mi ∈M:
get fi
if fi ≥ β:
for each ci ∈ Co:
replicate mi to ci
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6. Experiment

In this section, we describe the design and execution of the experiment to validate the proposed
solution. First, we explain the general setup, and then go to the router and neural networks tuning as
well as the evaluation metrics considered in this experiment.

6.1. Simulation Setup

We used The ONE simulator, which is a virtual environment designed to test opportunistic
networks [33]. The test scenario, delimited by a 1000 m by 1200 m squared terrain (Figure 4), was a
portion of Queretaro City, a medium-sized state in Mexico, with little over 2 million inhabitants.
The main simulation was done with DLR+, and we tested against four popular routing protocols:
The epidemic router, the spray and wait router, the PRoPHET router, and the Seer router, from
the flooding-based, probabilistic, and AI-based categories, respectively, as explained in Section 2.
The simulation period was 43,200 s (12 h).
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6.1.1. Mobility Model

One of the features that makes the simulation more realistic is the model that governs the
movement of the nodes in the vehicular network, providing coordinates, speeds, and pause times
for the nodes. Popular models include random waypoint, map-based movement, and shortest path
map-based movement [34]. We used the latter for the simulation, which constrains the node movement
to predefined paths, using Dijkstra’s shortest path algorithm to find its way through the map area.
Under this model, once one node has reached its destination, it waits for a pause time, then another
random map node is chosen, and the node moves there repeating the process.

6.1.2. Host Groups

For this simulation, there was a total of 85 nodes, divided into eight different groups, each
with particular characteristics. The wireless access for vehicular environment (WAVE) IEEE 802.11p
Standard [35] established a minimum of 3 Mbps and a maximum of 27 Mbps speeds for wireless
communications. Thus, we decided to include connections at 6 Mbps, 12 Mbps, and 24 Mbps. Also, we
included some Bluetooth connections at 2 Mbps. The buffer size, maximum node speed, and number
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of nodes of each type are shown in Table 1. The time to live of the messages (TTL, in seconds) was
iterated from the list TTL = {0, 25, 50, 75, 100, 150, 200, 300} to have a broader understanding of the
behavior of the router.

Table 1. Group of nodes in the simulation.

Group Nodes ID Buffer Size (MB) Speed Range (m/S) Interface Description

1 10 p1 5 0.5–1.5 Bluetooth A group of pedestrians
2 10 p2 5 0.5–1.5 WAVE 802.11p@6Mbps Another group of pedestrians
3 5 b1 10 2.7–16.7 WAVE 802.11p@6Mbps A group of buses
4 10 b2 10 2.7–16.7 WAVE 802.11p@12Mbps Another group of buses
5 15 c1 15 5.5–22.22 WAVE 802.11p@12Mbps A group of low-speed cars
6 15 c2 15 5.5–22.22 WAVE 802.11p@24Mbps Another group of low-speed cars
7 10 c3 20 8.3–30.56 WAVE 802.11p@12Mbps A group of high-speed cars
8 10 c4 20 8.3–30.56 WAVE 802.11p@24Mbps Another group of high-speed cars

6.2. Design and Training of the Neural Networks in DLR+

The general architecture of the neural networks used in DLR+ was presented in detail in Section 4.2.
As noted, all of the parameters were left as variables, meaning that they can be further adjusted in
future versions as desired. The neural networks considered in this work are deep feed forward neural
networks with two hidden layers, which provide the capability to capture complex non-linearities in
the system. This way, the networks consisted in an input layer, two hidden layers, and an output layer.
As explained in Section 4.2, the number of neurons in the input layers is the number n of features to
process from each sample in the classification process. For this version of DLR+, for the host’s fitness,
eight different features xi were considered, plus an additional eight features x j = x2

i , 1 ≤ i ≤ 8, to help
capture nonlinearities, for a total of n = 8 input features, listed in Table 2.

Table 2. Features considered in the first neural network (for host fitness) in DLR+.

Feature Name Description

x1 Host speed Speed (m/S) at which the vehicle is moving
x2 Transmission speed Transmission speed of the communications link (Mbps)

x3 Transmission range Maximum radial distance (m) at which the host can
connect to other nodes

x4 Avg number of connections The number of connections, on average, that a host handle
x5 Buffer size Buffer size (MB)
x6 Buffer occupancy Percentage of buffer occupancy
x7 Dropping rate Rate at which a host drops packets
x8 Abort rate Rate at which a host aborts packet transmissions

xi = x2
i−8, for 9 ≤ i ≤ 16 Composite features to help capture non-linearities

For the second neural network (the one that takes care of the messages fitness), we used a total
of m = 3 different features, described in Table 3. We also included the squared features during the
training process, but did not notice any gains in accuracy, so we decided to take them out.

Table 3. Features considered in the second neural network (for message fitness) in DLR+.

Feature Name Description

y1 Residual TTL Also known as time-out ratio, is the ratio of the
remaining TTL to the initial TTL

y2 Message size Size of the message (Bytes)

y3 Hop count The number of nodes that the message has
traversed so far

As for the number of neurons in the hidden layers, following the suggestions shown in Section 4.2
and seeking a short computational time, we opted for nh1 = 14 and nh2 = 10. In a similar way, we
decided to use mh1 = 5 and mh2 = 3 for the messages’ neural network.
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Finally, the output layer in both neural networks (the one for the host fitness and the one for the
messages) has a single neuron, that, according to Equation (2) and explained in Section 4.2, will have a
value between 0 and 1. During the training process, this value is further converted to a digital value,
so each sample has a unique label l ∈ {0, 1}, given by Equation (6), where f is the value returned by the
sigmoid function in the last part of the forward pass.

l = round
(

f + 0.5
2

)
(6)

This labeling process is used to compare and evaluate the prediction class during training.
However, we have to remember that during runtime in the VDTN environment this labeling process
must not be done, because we are only interested in identifying the samples with the best fitness (that
is, the samples with the highest f value), which are directly obtained after the forward pass by the
sigmoid function (see Equations (3) and (4)).

For the training stage, DLR+ uses K + 1 synapses matrixes Si with their corresponding bias
vectors Bi, with i ∈ {0, . . . , K}, where K is the number of hidden layers of the deep neural networks, as
introduced before in Section 4.2. These matrixes are obtained during the training process by using a
dataset with samples obtained from a simulation scenario with the conditions defined in Section 6.1.
More particularly, the hosts were configured to be one of the three popular routers PRoPHET, Spray
and Wait, or SeeR, and a total of 11,016,000 sample vectors X = [x1, x1, . . . , x8] were obtained from
a simulation with a simulation time of 43,200 s (12 h), gathering the current features xi of each of
the 85 hosts each second. The labels l for each sample were directly obtained from the feature final
delivery rate (FDR), considering that the more messages a host delivers to a final destination, the closer
to a fit node it must be. For this, the samples were passed through a standardization process and the
ones that got a positive z-score were considered as “fit” (l = 1) according to Equation (7), where x is
the value of the aforementioned feature FDR, x is the mean of all those FDR values in the data set, and
σ is the sample standard deviation.

l =

{
0, z < 0
1, z ≥ 0

, with z =
x− x
σ

(7)

In preprocessing, all duplicated records were deleted from the original dataset, and all remaining
values were normalized for each feature xi/yi, according to Equation (5), to have a better mapping and
a faster convergence during training; finally, the final dataset was randomly permuted. From this, the
resulting dataset was split into two subsets for real training (80% of the data) and validation (20%),
to assess the learning process and generalization. Other hyperparameters of the neural networks
were the ADAM optimizer (faster than the traditional stochastic gradient descent, [36]) and binary
cross-entropy as an error function. This way, we got 90.12% accuracy in the training set and 90.55% in
the validation set. This is how synapses and bias matrixes Si and Bi used in DLR+ were obtained.

6.3. The Fitness Thresholds in DLR+

As described at the beginning of Section 5, the fitness threshold α is a router parameter used to
discriminate “bad” from “good” nodes as explained in the routing algorithm definition. This value can
be any real number between 0 and 1, each possibility resulting in a different router performance, as
can be seen in the results section (Section 7). We found that α = 0.65 offered the optimal performance,
so that is the default value for this parameter in DLR+. As for the β value, we did not notice any
significant differences for values different than 0, so we decided to use β = 0 as the default value.

6.4. Evaluation Metrics

The following key evaluation metrics were considered to assess the performance of DLR+ during
the simulation.
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6.4.1. Packet Delivery Ratio

We will call this metric PDR, for short. This value is defined as in Equation (8) and is a value that
is desired to be maximized, which would mean that a great amount of the messages that were created
were successfully delivered to its destination.

PDR =
# o f delivered msgs
# o f created msgs

(8)

Ideally, we would like this number to be 1, but in practice, this seems rather impossible, since
there are other constrains in the network, such as buffer size and message TTL, resulting in dropping
or destruction policies, which prevent some of the messages to get to its destination. Because the
resources in the network are limited, that is precisely why they must be optimized. This parameter
shows the fraction of created messages that got to its destination.

6.4.2. Average Delivery Delay

Also known as latency, this parameter is the elapsed time since a message is created until it reaches
its destination. In other words, this number shows how long it takes for a message to be delivered.
Ideally, we would like this value to be 0, but this is obviously impossible. Instead, the minimization of
this parameter is pursued. We will call this parameter ADD, for short.

6.4.3. Network Overhead Ratio

This parameter (that we will call OVH, for short), shows the ratio of the messages that were
relayed to the network that did not reach their destination with respect to the number of messages that
did do it. Equation (9) shows this definition:

OVH =
#relayed msgs− #delivered msgs

#delivered msgs
. (9)

The impact of OVH in the network is directly in the resource usage on the entire network. Ideally,
this value should be minimized to reduce the problems related to poor bandwidth allocation, such as
network congestions and consequential delays and disruptions.

6.4.4. Hop Count

HOP for short, this parameter shows the number of nodes that a message must have traversed to
get to their final destination. The smaller this parameter is, the less administrative overhead in the
previous hosts this message may have caused, so it is ideal to keep this value low.

All of the above described metrics are desired to be optimized, since all of them offer some
advantages in the overall performance of the network, which can be critical under particular
environments. For instance, a low OVH would be desired in networks with hosts with low buffer
capacity, such as sensor networks.

7. Results

In this section, we describe and comment on the simulation results.

7.1. Effect of TTL

As can be seen in the subsequent plots, the time-to-live of the messages has a significant impact
on the metrics to a certain extent, as the longer a message exists, the higher the probability it has to be
delivered. Any metric value, however, tends to plateau as more TTL is granted. We found that the TTL
value at which the metrics began to settle in a notable way is around 300 s. This means that adding
more time-to-live to the messages will not normally add any improvements. Also, depending on the
router, some of them will exhibit a better performance when the TTL is smaller than that of the settling
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point. Therefore, at least a minimum of TTL = 300 s is advised when evaluating router performance to
capture the complete behavior.

7.2. Effect of the Fitness Thresholds

As described in Section 5, the α parameter is a value that determines to what extent some of the
connections are immediately discarded as next hop candidates. Intuitively, a very small value would
mean that only a small portion of the current connections are discarded, so most of them have a chance
to be chosen (although in descending order with respect to their fitness values). The limit is α = 0,
and since 1 ≥ f ≥ 0, the condition f ≥ α means in this case that all of the connections are considered
as potential candidates. Similarly, a very large value of α will result in a strong limiting condition,
meaning that only the very best hosts (the ones with considerably large fitness) will be considered as
possible next hops. As we can infer from this explanation, the dynamics of the environment are strongly
influenced by the α value. To better understand the effect of this fitness threshold, we run simulations
changing this parameter with α = {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.65, 0.8, 0.95, 1.0} and a msg TTL
varying from TTL = {10, 25, 50, 75, 100, 150, 200, 300}. A similar reasoning than that for α was made
for the β fitness threshold, so we considered β = {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.65, 0.8, 0.95, 1.0}
in the simulations as well. We distinguished two main differentiators in both the α and β values: α = 0
and α > 0, and β = 0 and β > 0. In the first case, with α = 0, we can see that the cases β = 0 and β > 0
resulted in noticeable different dynamics (see Figures 5 and 6). We notice that for α = 0, for TTL values
smaller than 60, the performance of DLR+ is better with β = 0 for PDR. For ADD, in turn, β = 0 is the
choice, as it showed better results than for other β values.
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In any case, however, for OVH and HOP (Figure 6) the choice is any value different than 0 for β.
As we can see, there is a tradeoff mainly between network overhead and delivery ratio or delivery
delays, and the final choice of the parameters ultimately depends on the final application of the router
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in delay-tolerant networks (i.e., if we are interested in minimizing latency, at the expense of some
overhead, or we have limited resources, such as in mobile sensor networks).

For α > 0, we did not notice any significant difference in the values of β. Finally, for α > 0.5 there
was a slightly improvement in overhead and number of hops. For this version of DLR+, we decided to
use α = 0.65 and β = 0.

7.3. Performance of DLR+

In this subsection we discuss the final performance of DLR+ (α = 0.65/0, β = 0) and compare it
against other well-known routers (Figures 7 and 8).
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As can be seen in Figure 7a, DLR+ (α = 0.65) offers a greater PDR than the epidemic router and
PRoPHET for TTL greater than 60 and 130, respectively. Although its performance on this metric
is not the best, it is very close to those who offer the best values, only about 6.07% below its better
counterparts. On the other hand, with α = 0, DLR+ outperforms all routers in PDR for TTL < 25. This
reflects an interesting dynamic in the response of DLR+ for this case, in contrast with other routers:
The more TTL is provided, the more inefficient the router becomes; however, as TTL is smaller, the
response of the proposed router increases, outperforming the other routers in this metric. There is a
tradeoff, nonetheless, in this range of operation, because in this part, DLR+ (α = 0) does not have the
best performance in network overhead and hop count (Figure 8), although it shows acceptable values,
very close to the ones generated by other routers.

As for delays, in the long run, DLR+ does not provide the best performance on average delivery
delay (Figure 7b). We can see that as the TTL increases, so does the delivery delay values, and although
they tend to stabilize at some point, there are significant differences with respect to other routers’
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performance. The proposed router, however, performs fairly well for small TTL values, laying in points
very close to those resulted from their counterparts, with roughly the same ADD values than those of
other routers for TTL ≤ 25.

In network overhead (Figure 8a), DLR+ (α = 0) did not have the best results, with significant
differences with respect to their counterparts, closely resembling the epidemic routing. For α = 0.65,
however, DLR+ had the best performance, with nearly zero overhead, which means extremely efficient
resource usage, way below the OVH values returned by other routers.

In hop count, on the other hand, with α = 0 the number of hops used by DLR+ is very close to
a constant 1.6 in the long run, which shows better values than other routers. Indeed, for TTL > 50,
the proposed router (α = 0) outperforms all other routers in the experiment, but even for TTL values
smaller than 50, the number of hops used by DLR+ is between 2.2 and 2.8, which is a range in which
all other routers lie as well. For α = 0.65, however, the proposed router shows an impressive HOP of
nearly 1, which is a very significant difference with respect to the rest, confirming the highly efficient
usage of network resources.

8. Conclusions and Future Work

The integration of vehicular networks in intelligent transportation systems will bring a vast set of
new services in areas such as traffic management, security and safety, e-commerce, and entertainment,
resulting in a global evolution of cities as we know them. The deployment of this kind of network,
however, is slowed down by the intrinsic severe conditions of its environment. Among others, routing
in vehicular delay-tolerant networks is a research challenge that requires special attention, since their
efficiency will ultimately dictate when these networks become real life implementations. In this paper,
we have modeled a solution to the routing problem in VDTN and presented a router based on deep
learning, which uses an algorithm that leverages the power of neural networks to learn from local and
global information to make smart forwarding decisions on the best next hop and best next message.
As discussed in the previous section, the proposed router presents improvements in network overhead
and hop count over some popular routers, while maintaining an acceptable delivery rate and delivery
delay. For TTL ≤ 25, if resources are not a problem, it is recommended to use DLR+ with α = β = 0,
as it will provide the highest delivery ratio. On the contrary, if network resources are a concern, the
proposed router is recommended to use with α = 65 and set the message scheduler to β = 0, so it has
the highest performance despite the resource limitation.

In the future, the DLR+ router can be further developed, including the full integration of the
neural network to work in real time and automatic online parameter tuning to increase the overall
performance. Also, more features of the host and messages can be added to the paradigm, so the router
gets an even better understanding of its environment.

As discussed earlier, there has to be a trade-off between some of the metrics that are sought to
be optimized to achieve an overall better performance in the VDTN, and the quest for this continues.
Ultimately, the corresponding trade-offs depend on the particular application of the network; for
instance, in mobile sensor networks, the delays may not be an important thing, but the limited
resources might be, whereas in VDTN, there can be a certain level of flexibility depending on even
more specific applications, such as e-commerce transactions versus entertainment applications. All in
all, the DLR+ router provides an insight into how deep neural networks can be used to make smarter
routers, and this work provides a framework than can serve as a starting point to build more intelligent
routing algorithms.
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