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Abstract: The urban heat island (UHI) is one of the essential phenomena of the modern urban climate.
In recent years, urbanization in China has gradually accelerated, and the heat island effect has also
intensified as the urban impervious surface area and the number of buildings is increasing. Urban
building density (UBD) is one of the main factors affecting UHI, but there is little discussion on
the relationship between the two. This paper takes Hefei as the research area, combines UBD data
estimated by Luojia1-01 night-time light (NTL) imagery as the research object with land surface
temperature (LST) data obtained from Landsat8 images, and carries out spatial correlation analysis
on 0.5 × 0.5 km to 2 × 2 km resolution for them, so as to explore the relationship between UBD and
UHI. The results show the following: (1) Luojia1-01 data have a good ability to estimate UBD and
have fewer errors when compared with the actual UBD data; (2) At the four spatial scales, UBD and
LST present a significant positive correlation that increases with the enlargement of the spatial scale;
and (3) Moreover, the fitting effect of the Geographically Weighted Regression (GWR) model is better
than that of the ordinary least squares (OLS) regression model.

Keywords: Luojia1-01; urban heat island; urban building density; land surface temperature;
geographically weighted regression

1. Introduction

With rapid development and the intensification of urbanization, the scale of cities has expanded
rapidly and urban buildings tend to be denser, which brings more pressure on the population,
transportation, and industrial production, and causes severe damage to the ecological environment of
the entire city. Urban Heat Islands (UHIs) are attracting more and more attention, especially in summer,
as scorching hot temperatures have severely affected people’s lives and work [1–3]. To date, researchers
all over the world have carried out much research on UHIs. Among this research, quantitative analysis
of the relationship between urban Land Surface Temperature (LST) and the underlying surface has
become a research hotspot [4–7]. Scholars believe that urbanization changes the atmospheric dynamics
and heat transfer characteristics of the underlying surface as a large number of natural landscapes are
gradually replaced by urban impervious surfaces such as buildings and pavements. This makes the
urban landscape fragmented and complicated, which changes the urban ground energy balance [8].
Under the same environmental conditions, impervious surfaces absorb and capture solar radiation
faster than green space or other natural underlying surfaces. At the same time, the artificial structure
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absorbing heat faster and the specific heat capacity being smaller gives rise to limited heat release.
In this way, the average LST in the area gradually increases with the spatial distribution of the UHI
area to become more continuous and concentrated, forming a high-temperature area centered on
artificial buildings in the city [1,9,10]. However, our comprehensive literature research found that past
studies focused on the analysis of seasonal, daily, and annual variations of the UHI, which revealed the
temporal and spatial variation of the UHI, the distribution characteristics of the horizontal and vertical
directions, etc., while there has been less quantitative analysis of the single factors of UHIs, especially
discussion of the ubiquitous relationship between impervious surfaces and UHI in the city.

As an integral part of the urban impervious surface percentage, the urban building density (UBD)
(percentage of built area) can directly reflect the degree of intensification and land-use efficiency in
cities to some extent [11]. It is also an essential comprehensive social indicator that can function as an
urban planning layout measure [12,13], resource utilization efficiency measure [14,15], and assessment
of the urban ecological environment and livability [16–19]. Some researchers have pointed out that
UBD is a crucial indicator to reduce the UHI effect [20] and proved a positive correlation between UBD
and LST or UHI [21–23]. Additionally, researchers have tried to use a variety of urban design factors to
study the relationships of UHIs, including UBD information. For example, Yang studied the summer
heat island intensity of three high-rise residential districts in Shanghai, based on the three indices of
building layout, density, and greening [1]. Hu used nine urban design factors to construct the Sky
View Factor (SVF), studied high-density urban areas with high UHI and low SVF as the research object,
and tested the possibility of UHI by optimizing the urban-form SVF [24].

Remote sensing technology, as an accurate and timely means to obtain macroscopic information
on the Earth’s surface, has been widely used in many fields [25]. Thermal infrared remote sensing
technology is a common means of monitoring LST [26,27]. Using remote sensing images to extract UBD
information is also a fast and effective method to make up for the shortcomings of traditional manual
mapping methods. Existing studies on UBD tend to use high-resolution remote sensing satellites
for research because they are more accurate [11,28,29], but their shortcomings are also obvious, such
as complex building analysis, the cumbersome automated extraction process, and a large number
of computations.

NTL remote sensing is widely used in macroeconomic and social parameter estimation [30–32],
urban monitoring [33–36], great event change [37,38], energy consumption [39,40], ecological
environment assessment [41,42], and other fields. Due to the low spatial resolution of NTL images,
previous studies focused on macroscopic dimensions, such as national or urban scales. However, urban
buildings with small-scale features are the basic unit of human activities. More sophisticated data and
advanced means are needed in terms of reasonable arrangements and scientific planning for the limited
land in a city, reduction of UHIs, and better ecological effects. Therefore, medium- and high-resolution
NTL sensors have become an urgent requirement for urban research. On 2 June 2018, the Luojia1-01
scientific test satellite successfully launched; it carries a large-field-of-view, high-sensitivity NTL remote
sensing camera with 130 m resolution and 260 km width NTL imaging capability. Compared with
commonly used NTL data such as that from the Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP-OLS) and Suomi National Polar-Orbiting Partnership’s Visible Infrared
Imaging Radiometer Suite (NPP-VIIRS), Luojia1-01 NTL imagery is a remarkable improvement in
terms of spatial resolution, image saturation, and blooming effects [43]. Conducted to provide frontier
data, the current research based on Luojia1-01 NTL imagery is expanding. Luojia1-01 NTL imagery
has been applied to the drawing of urban range [44], extraction of impervious surfaces [45], and urban
economic estimation [46,47]. However, it is not clear whether it is feasible to estimate UBD information
using Luoji1-01 NTL imagery, and there is little quantitative analysis of the single factors giving rise to
UHI, especially discussion of the spatial relationship between UBD and LST. As we seek to address
these problems, the purpose of this paper is to (1) test the feasibility of Luojia1-01 NTL imagery for
UBD estimation; (2) combine the UBD estimation with LST data obtained from the Landsat8 data
inversion; and (3) use the Geographically Weighted Regression (GWR) model and the spatial analysis



Appl. Sci. 2019, 9, 5224 3 of 20

method of the ordinary least squares (OLS) regression model to study the spatial relationship between
UBD and LST in order to provide a scientific basis for the planning of urban construction layout and
urban thermal environmental management.

2. Study Area and Data

2.1. Study Area

Hefei, the capital of Anhui Province, is situated in the center of Anhui Province, eastern China
(31.51 N, 117.17 E). It is also included as a key city in the national strategy for the development
of central China. Hefei covers a total area of 11,445 square kilometers and has municipal districts
(Yaohai, Luyang, Shushan, and Baohe), one county-level city (Chaohu city), and four counties
(Changfeng, Feidong, Feixi, and Lujiang). As of 2018, the city’s permanent population was 8.087 million,
and the main urban population was 3.938 million. Figure 1 is the area change data of each land
type in Hefei in 15 years obtained from the Geographical Information Monitoring Cloud Platform
(http://www.dsac.cn/DataProduct/Detail/20091601998301300). During the past 15 years, the vegetation
coverage of Hefei City has been decreasing year by year, and the urban area has been expanding.
Urbanization has brought many environmental problems in the city, and the UHI effect is one of them.
This prompts us to ask how to maintain a balance between urban development and livability. Based
on this background, this paper takes Hefei city as an example to analyze the four municipal districts,
Yaohai, Xiangyang, Lushan, and Baohe, as shown in Figure 2.
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2.2. Experimental Data

2.2.1. Luojia1-01

Luojia1-01, successfully launched at JSLC (Jaquan Satellite Launch Centre) on 2 June 2018, is
a scientific experimental microsatellite jointly developed by Wuhan University and CGSTL (Chang
Guang Satellite Technology Co., Ltd., Changchun, China). It is not only the first professional night-time
light remote sensing satellite in the world but also the first low-orbit satellite with Earth observation and
satellite navigation enhancement functions. It is capable of forming images with 130 m resolution and
250 km wide fields. Moreover, the Luojia1-01 satellite is ideally able to take global night-light images
and provide data within 15 days, which provides a basis for measuring the global gross domestic
product (GDP), the carbon emission index, and the urban housing vacancy index [48]. All of these data
can be downloaded free from the Hubei Data and Application Network of the High-Resolution Earth
Observation System (http://59.175.109.173:8888/app/login.html).

For this paper, we selected Luojia1-01 NTL imagery from 15 July 2018, with better image quality,
i.e., cloudless data. Then, we converted the digital number value (DN) to the spectral radiance by
radiation correction [46]. The following radiance conversion formula was as follows:

L = DN
3
2 · 10−10 (1)

where L is the radiance value after absolute radiation correction, for which the unit is W/
(
m2
·µm·sr

)
.

The DN value is the gray value of the image.

2.2.2. Landsat8

Landsat8 thermal infrared sensor (TIRS) data were utilized to analyze the LST. They were
issued by the United States Geological Survey (USGS) Global Visualization Viewer (GloVis, https:
//glovis.usgs.gov). To be consistent with the time of the Luojia1-01 data, we analyzed all images
(with less than 10% cloud cover) available for a three-months time period from 1 June to 30 August
2018. After this analysis, we chose the cloud-free image from 30 July, with path 121 and row 038.
As we were looking to reduce the influence of terrain, illumination, and atmosphere on the spectral
information, we performed radiation calibration and atmospheric correction on the image. The
Radiation Correctiong module sub-tool, Radiometric Calibration in ENVI software, is used to perform

http://59.175.109.173:8888/app/login.html
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the radiometric calibration on the TM image in the study area, and the FLAASH module is used for
atmospheric correction.

2.2.3. Other Auxiliary Data

ZY3-02 sensor-corrected products were acquired on 18 July 2018, provided by the China Centre for
Resources Satellite Data and Application (CRESDA, http://www.cresda.com/CN/), since the planimetric
and vertical accuracies of the ZY3-02 sensor-corrected products are better than 2.5 m and 2 m,
respectively [49]. We used the forward/backward stereo images to assist with Luojia 1-01 image
geometric correction and extract the building digitization.

In addition, the Hefei city Regional Map of the study area can be obtained from the Tianditu
net (http://map.tianditu.gov.cn). In order to maintain consistency between different data sources, all
remote sensing data were first converted into a WGS_1984_Albers projected coordinate system. The
study area, as captured by the different data sources, is shown in Figure 3.
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Figure 3. Remote sensing image data of the study area: (a) Night light image from Luojia1-01;
(b) Standard false-color composite images (made up of information from Bands 3–5) from Landsat8,
where the vegetation is red, the waterbody is blue, and the white is roads and buildings; and (c) ZY3-02
Multi-spectral image from ZY3-02, where the vegetation is green, the waterbody is white, and the gray
is buildings and roads.

3. Methodology

3.1. UBD Estimation Model and Verification

To achieve a small scale for research purposes and reduce the error in the research results, the
estimation of the UBD is generally calculated in units of fixed-size grid cells. Considering the spatial
resolution of the Luojia1-01, each sample area was divided into 0.5 × 0.5 km by testing the side length
of the cell. Then, the radiance value of the study area was divided into 32 classes of NTL intensity by
the natural breakpoint grading method, and 10 sample areas were set for each class of NTL intensity.
According to the principle of equilibrium distribution, in this article we tried to avoid the boundary of
the study area when selecting samples; finally, we set up 320 samples areas for modeling and randomly
selected another 20 areas as test samples, as shown in Figure 4a.

The area of a building’s roof can usually be used instead of the area of the building for UBD
calculations. Combined with the ZY3-02 orthophoto with a high resolution of 2.5 m, the building area
can be obtained by digitizing all the buildings in each sampling area in turn. Figure 4b,c shows an
example of building digitization. Through calculating the UBD of the 320 sample areas, we obtained a
calculation result which can be regarded as the actual UBD of the sample area. The calculation formula
is shown as follows:

ρai = Sai /S (2)

http://www.cresda.com/CN/
http://map.tianditu.gov.cn
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where ρ
a

.
i

is the UBD of the the
.
i-th sample area; Sai is the building area of the i-th sample area; and S is

the area of the sample area, which is 0.5 × 0.5 km.
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Among the various land use types, high-brightness lighting is widely used in the transportation
field, while residential areas have low illumination; this can explain why the lighting along the roads is
one factor in UBD estimation [43]. In recent years, researchers have used many methods to extract
road information from high-resolution remote sensing images. In this paper, referring to the method in
references [50–52], the road area information of the 320 modeling samples was extracted from ZY3-02
high-resolution images and overlapped with the Luojia1-01 NTL imagery to reduce the interference of
road light sources in the UBD estimation model. Figure 5 is a schematic diagram of the entire process.
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Step 1: Perform grayscale processing on the original image from ZY3-02. The Mean-Shift algorithm
was used to achieve the initial segmentation of the road. The setting of the dual-threshold can better
distinguish the features of different gray levels and eliminate the interference of small-area shadows
such as vegetation and vehicles. Finally, the binarized image containing road information is segmented.

After binarization, dual-threshold segmentation can well overcome the differences caused by the
different gray levels of various road materials since the spectral differences between shadows, green
spaces, and roads are then apparent. In the process of Mean-Shift algorithm segmentation, combined
with small-area segmentation and the dual-threshold segmentation method, most interfering factors
can be eliminated.

Step 2: For the binarized image, there is mainly interference from other artificial objects such as
buildings, and the buildings are usually a combination of regular rectangular shapes, but the roads are
strip-shaped. The shape feature processing should be conducted to the image because roads have a
certain width. By calculating the area of the segmented region and setting a certain threshold, it is
possible to effectively remove small patches that may exist after the binarization process. Rectangularity
is a measure of the target rectangle, which is defined as the ratio of the area of the target graph to the
smallest rectangle area surrounding the graph. The formula of rectangularity is as follows:

S = So/Sm, (3)

where So is the area of the target graph; Sm is the area of the smallest rectangle surrounding the graph.
S can indicate how close the target object is to the rectangle. The range of rectangularity is (0, 1).

The aspect ratio can reflect the slenderness of the object, and it can be used to extract areas with
significant length features. Aspect ratio is expressed as:

R = Lm/W, (4)

where Lm the length of the minimum circumscribed rectangle; W is the width of the smallest
circumscribed rectangle.

In this paper, the area, the aspect ratio, and the rectangularity were respectively set to 20, 2.5, and
0.36. Extensive use of these features can effectively remove non-road targets that are isolated from the
road. Furthermore, through further processing by morphological filtering, the road edge is refined and
smoothed to obtain the final road information [53].

Step 3: As the brightness value around the road is higher than the actual values in the Luojia1-01
images, the extracted road information was used to cover the Luojia1-01 NTL imagery, and K-means
clustering was used for Luojia1-01. The principle is to cluster the brightness values around the road in
order to take the average value and fill the brightness value of the road.

From the comparison shown in Figure 6, we can see that eliminating the interference of road light
sources improved the accuracy: the correlation between the sample area NTL and the actual UBD was
raised from 0.6530 to 0.7806.
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After stripping the road area of the sample area, the UBD values of samples of the 32 types of
NTL intensity were averaged, and the calculation formula was as follows:

ρ∗c =

∑N
i=1(Sai − Sbi)

(S×N)
=

∑N
i=1(ρai − ρbi)

N
(5)

where ρ∗c is the average UBD of the c-type NTL intensity sample area; N is the number of samples;
ρai is the UBD of the ith sample in the c-type NTL intensity sample area; ρbi is the density of the road in
the ith sample area of the c-type NTL intensity sample area; S is the area of the sample area; Sai is the
construction area of the ith sample area of the c-type NTL intensity sample area; and Sbi is the road
area of the ith sample area of the c-type NTL intensity sample area.

A segmented linear regression was used to fit the relationship between the average building
density and the light intensity in the 32 sample areas, and the average UBD estimation model under
different NTL intensities was obtained by:

ρc =

4.5053g + 0.9323, 0 < g� 14.319

0.1599g + 29.009, g > 14.319
(6)

where g is the brightness of Luojia1-01 NTL andρc is the average UBD of the NTL intensity classification
sample area.

Figure 7 is a schematic diagram of the segmented linear regression with a coefficient R2 of 0.9616
and 0.8949. The segmented linear regression model was used to calculate the statistics of the fitting
results of the average building density of the 32 types of NTL intensity samples, as shown in Figure 8.
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The spatial analysis tool in ArcGIS10.3 software was used to spatially interpolate the UBD values
of the 320 sampling points to obtain the overall distribution map of UBD in the main urban area of
Hefei City (Figure 9); Table 1 gives the detailed UBD distribution data. The formula for the inverse
distance weighted (IDW) method is as follows:

ρc =

∑N
i=i ρci /d2

ci∑N
i=i 1/d2

ci

(7)

where ρc is the value of the UBD estimate for the c-type NTL intensity sample area; N is the number
of samples; ρci is the average value of the UBD at the center point of the ith sample in the c-type NTL
intensity sample area; and dci is the distance between the center point of the ith sample and the c-point.
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Table 1. The UBD levels in the study area.

Density Class Density Range/% Area Percent/%

low
0–5 38.77

5–10 8.29

sub-low
10–15 4.34
15–20 10.66

middle
20–25 13.01
25–30 11.59

sub-high 30–35 5.86
35–40 3.11

high 40–45 2.58
45–50 1.79

The actual UBD values of 20 test samples were obtained from ZY3-02 high-resolution images, and
the final estimation results were tested. As shown in Table 2, the absolute UBD error of 11 in 20 test
plots was less than 5%, and there are only 2 plots with an absolute error higher than 10%. From the
average result, the absolute difference between the UBD of the sample area and the estimated UBD was
3.58%, which proves that the estimation result is highly reliable. For a single data, the estimated UBD
for the high-density region is generally higher than the actual UBD because the high-density region
has more interfering light sources and the blooming effect results in a larger estimated building area
than the actual one. From the absolute error, the absolute error for the low-value region of the average
luminance value is smaller than that for the high-value region. The reason for this is that the NTL
intensity of the low-value zone is smaller, and a more realistic light index can be monitored at night.

Table 2. UBD sampling results in the study area.

Test Sample Average NTL Actual UBD (%) Estimated UBD (%) Absolute Error (%)

1 0.034940 30.24 36.63 5.29
2 0.001009 0.52 0.57 0.05
3 16.683639 16.97 19.2 2.23
4 0.008449 9.08 13.57 4.49
5 0.037299 27.24 38.17 10.93
6 0.003676 2.32 0.02 2.3
7 0.000039 0 0 0
8 0.005766 7.03 4.48 2.55
9 0.020406 17.24 23.1 5.86
10 0.002532 2.83 1.36 1.47
11 0.043675 30.52 39.25 8.73
12 0.011192 8.09 14.02 5.93
13 0.009837 9.43 13.58 4.15
14 0.008594 10.35 17.37 7.02
15 0.000065 0 0 0
16 0.004996 4.57 2.32 2.25
17 0.027424 20.13 31.87 11.74
18 0.003096 2.95 1.62 1.33
19 0.007793 7.52 13.93 6.41
20 0.022627 22.02 29.46 7.44

average — 11.45 15.03 3.58

3.2. LST Retrieval from Landsat8

Conventional methods based on Landsat8 TIRS surface temperature inversion include the radiative
transfer equation (RTE) method, single-channel method, and split-window algorithm. Some scholars
have carried out quantitative comparison analysis on the inversion precision of the different algorithms.
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The results showed that the radiation transfer equation method has the highest precision [27]. The
basic principle of the radiation transfer equation method can be illustrated as follows: firstly, the
influence of the atmosphere on the surface heat radiation is estimated, then these effects are subtracted
from the total heat radiation amount observed by the satellite sensor, and the surface heat radiation
intensity is finally obtained and converted into the LST.

The Landsat8 TIRS has two thermal infrared bands (bands 10, 11), but the calibration parameters
for the TIRS band 11 are not stable; thus, we selected the Landsat8 TIRS band 10 on which to use the
RTE method to invert the surface temperature. The calculation formula is as follows.

The thermal infrared radiation brightness value Lλ received by TIRS consists of three parts:
the atmospheric transmissivity (τ), the atmospheric upward radiation (L ↑ ), and the atmospheric
downward radiation (L ↓ ). We use the atmospheric correction parameter calculator website provided
by NASA (https://atmcorr.gsfc.nasa.gov/) to get these values, where τ is 0.47, L ↑ is 4.93 W/

(
m2
·µm·sr

)
,

and L ↓ is 7.18 W/
(
m2
·µm·sr

)
.

The RTE of the thermal infrared radiance L received by the TIRS is as follows:

Lλ = L ↑ +[εB(Ts) + (1− ε)L ↓]τ (8)

where ε is the land surface emissivity; T is the real temperature of the surface; B(Ts) is the radiance of
the blackbody at temperature T in the thermal infrared band; and τ is the atmospheric transmittance in
the thermal infrared band.

Remote sensing estimation of Vegetation Fractional Cover (VFC) refers to the vertical projected
area of vegetation as a percentage of the total area of the study area. It reflects the degree of vegetation
and the size of the photosynthesis area of the plant. At present, the more mature VFC estimation
method is dimidiate pixel mode, which is estimated by the Normalized Difference Vegetation Index
(NDVI). NDVI can be expressed as:

NDVI =
NIR−R
NIR + R

(9)

VFC = (NDVI −NDVIS)/(NDVIV −NDVIS) (10)

where NIR is for near-infrared reflectivity; R is red band reflectivity; NDVIS is the NDVI value of bare
land; and NDVIV is the NDVI value of vegetation.

On the scale of pixels, surface features are mainly divided into three types: natural surface, water
body, and urban building. The natural surface is the main body in the composition of the ground, so
the natural surface is the main body of temperature inversion. The formula for calculating the surface
emissivity is as follows:

εs = 0.9625 + 0.0614VFC− 0.0461VFC2 (11)

εb = 0.9589 + 0.086VFC− 0.0671VFC2 (12)

where εs is the surface emissivity of the natural surface; εb is the surface emissivity of the built-up area.
B(Ts) can be expressed as:

B(Ts) = [Lλ − L ↑ −τ(1− ε)L ↓]/τε (13)

According to Plank’s law, Ts can be expressed as:

Ts =
K2

ln
(

K1
B(Ts)

+ 1
) (14)

In TIRS Band 10, K1 and K2 are constant: K1 = 774.89 W/
(
m2
·µm·sr

)
and K2 = 1321.08K.

It is necessary to verify the accuracy of the inversion for the reason that all kinds of LST inversion
methods errors exist. The MOD11A1 LST data of the same day is used as the reference value of Hefei

https://atmcorr.gsfc.nasa.gov/
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LST. The fishnet is used for grid processing, figuring out the mean value of temperature in each grid
and carrying on the correlation analysis. As shown in Table 3, the surface temperature obtained by the
RTE method differs very little from the maximum and average values of the MOD11A1 data. At the
same time, the correlation coefficient between the two is 0.94, which is very significant at a confidence
level of 0.001. The results show that the LST retrieved by the RTE method meets the research needs.

Table 3. Inversion accuracy verification of LST.

Data Sources Maximum (◦C) Minimum (◦C) Average (◦C) Standard Deviation (◦C)

RTE inversion value 36.93 12.06 27.44 4.72
MOD11A1 data 34.07 15.62 26.31 —

Finally, we converted the LST raster data into vector data, and the accordance means—standard
deviation method was employed to transform the LST into a thematic map of five thermal categories:
low, sub-low, middle, sub-high, and high, as shown in Figure 10. The basis of this grading and the
temperature ranges corresponding to the different temperature levels are shown in Table 4.
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Table 4. Temperature grading basis and temperature intervals.

Temperature Class Grading Basis Temperature Range/◦C Area Percent/%

low µ− SD > T T < 23.06 9.04%
sub-low µ− 0.5SD > T ≥ µ− SD 23.06 ≤ T < 26.97 33.87%
middle µ+ 0.5SD > T ≥ µ− 0.5SD 26.97 ≤ T ≤ 30.88 21.11%

sub-high µ+ SD > T ≥ µ+ 0.5SD 30.88 < T ≤ 34.93 25.77%
high T ≥ µ+ SD T > 34.93 10.21%

3.3. Geographically Weighted Regression

Geography objects, such as a change in the pattern, the distribution of time and space, and the
mutual coupling relationship, are scale-dependent, which means that a specific relationship within the
geographical aspect may only be expressed on a certain scale [54]. The study area was divided into
four spatial scales of 0.5 × 0.5 km, 1 × 1 km, 1.5 × 1.5 km, and 2 × 2 km, and the average UBD and
average LST in each grid were determined. The UBD data were logarithmically transformed to make
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the data population normally distributed. Then, the Pearson correlation coefficient between the UBD
and LST was calculated, and a linear regression analysis using the bivariate regression model was
used to explore the correlation between LST and UBD.

As shown in Figure 11, UBD and LST showed a significant positive correlation at each of the
four grid scales, the degree of correlation increased in pace with the spatial scale, and the correlation
coefficient reached a maximum at the scale of 2 km. This shows that the distribution of the UBD has a
warming effect on the LST at the fine-scale of the city, and the contribution UBD makes to the LST at
the grid-scale of 2 km was greater than that at the other three scales. Due to the small scale of analysis
and more complex factors affecting the LST, more variables need to be considered, such as local airflow
and the regional surface three-dimensional structure. Therefore, the impact of LST decreases with
increasing spatial scale, and the correlation between UBD and LST is stronger. The bivariate regression
model (R2 = km 22) established on the 2 km grid-scale, although having certain interpretation and
prediction capabilities, is not enough to express the spatial relationship between UBD and LST.
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We applied GWR and ordinary least squares (OLS) regression to further analyze the relationship
between the UBD and LST. The traditional regression model is based on the use of OLS to estimate the
parameters and is usually compared as a benchmark model with an improved model [55–57]. OLS can
be expressed as:

Yk = β0 +
k∑

i=1

βiXi + εk (15)

where Yk denotes the global dependent variable; Xi is the ith index of the independent variable;
β0 represents the intercept value; i is the number of indicators; βi is the slope coefficient; and ε denotes
the random error term.



Appl. Sci. 2019, 9, 5224 14 of 20

GWR is characterized by incorporating the spatial characteristics of data into the model to create
conditions for analyzing the spatial characteristics of the regression relationship [10,47]. The GWR
model is expressed as:

Yk = β0(ui, vi) +
k∑

i=1

βi(ui, vi)Xi + εk (16)

where (ui, vi) denotes the spatial coordinates of point i; Xi is the ith index of the independent variable;
β0(ui, vi) is the intercept value; βi(ui, vi) represents the ith slope coefficient at point i; and ε denotes the
random error term.

The weight is usually calculated by using a Gaussian function when correcting GWR. The Gaussian
function is expressed by the following formula:

Wi j = exp−
1
2 (

dij
b )

2

(17)

where dij denotes the Euclidean distance between location i and j; and b is the fixed bandwidth for
location i.

Before establishing regression models and analyzing, it should be judged as to whether there is a
spatial correlation in the variables. The index commonly used is Moran’s I. A scale of 2 km is suitable
for studying the UBD—LST relationship in the main urban area of Hefei. The difference between the
LST in different places depends mainly on the construction within 2 km of these places. Then, 2 km
will also be a reasonable measure for calculating Moran’s I. As shown in Figure 12, with a 2 km scale,
the Moran’s I value of the LST was 0.3948, the p-value was 0.0008, and the z score was 3.3532. This
indicates that the LST in the study area is agglomerated and distributed, the spatial difference is vast,
and there is spatial autocorrelation in the study area.
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4. Results and Analysis

4.1. Spatial Distribution of UBD and LST

Taking the main urban area of Hefei City as the research area (including the urban waterbody),
the UBD obtained from Luojia1-01 NTL imagery is consistent with the spatial pattern characteristics of
the LST obtained from Landsat8 TIRS.

From the overall distribution results of the study area UBD (Table 1), we can state the following:
The proportion of the low-density area is the largest, reaching 47.06%; and the low-density areas are
mainly distributed in the outer suburbs with high vegetation coverage, few buildings, and small
human development space. Besides this, the area ratio of the middle-density area is 24.60%, and the
high-density area and sub-high-density area take up less than 10%. The UBD value of Binhu New
Town is the highest, reaching 48.25%. This area is an emerging urban circle developed in Hefei City in
recent years, and it has had a new agglomeration effect on the UBD.

Table 3 shows that the LST range of the study area is between 19.21 ◦C and 46.14 ◦C, with an
average LST of 27.44 ◦C and a standard deviation of 4.72 ◦C. The spatial distribution of the LST is shown
in Figure 10. The area of the sub-low temperature zone in the study area is the largest, accounting for
33.87%, and the sub-high temperature zone is also large (25.77%); the high-temperature zone and the
low-temperature zone is the smallest. The area with LST larger than 26.97 ◦C is basically concentrated
in the urban area, while the LST in the suburbs is mostly between 23.06 ◦C and 26.97 ◦C. The LST is
quite different between the urban and suburban areas, and the UHI effect is significant.

The partial views of Figures 9 and 10 show that there are three typical areas in the entire study area:
the high-concentration areas for the LST and UBD are different in terms of geographic location. Figure 9
(I.) shows that the most concentrated areas of the high-density area are located at the intersection of
four jurisdictions in Hefei City, with an average UBD greater than 25%. The area is an old town with
numerous high-rise buildings, a dense population, low greening rate and fragmentation, and dense
road networks. In Figure 10 (I.), the densest and most continuous location in the high-temperature
zone is in the southern part of the study area. By comparing remote sensing images, it was found that
in addition to industrial production and anthropogenic heat emissions, there are a large number of
low-rise industrial buildings and hard pavements which absorb a large amount of heat and lead to an
increase in temperature.

As shown in Figure 10 (II.a. and III.a.,b.,c.), the low-temperature area is mainly concentrated
in urban water bodies and forest parks. The water body and vegetation effectively cut off the
high-temperature area and increase the fragmentation degree of the urban LST, while playing an
essential role in relieving the UHI effect and the local thermal environment. Besides this, the values of
LST and UBD at II.b. are significantly lower than those in the surrounding area. The remote sensing
image showed that the area is an abandoned airport in Hefei which has high vegetation coverage and
low UBD.

The obtained UBD layer and the inversion LST layer were superimposed and analyzed. The
results showed that the average temperature of the high-density area in the study area is 30.50 ◦C, and
the average temperature of the sub-high-density zone is 27.35 ◦C. The average temperature of the
middle-density zone is 26.31 ◦C, the average temperature of the sub-low-density zone is 23.32 ◦C, and
the average temperature of the low-density zone is only 21.05 ◦C. Therefore, UBD has a warming effect
on the thermal environment inside the city. Moreover, the LST increases with the UBD; especially at a
specific scale, this warming effect is more obvious.

In general, (a) the overall trend of the UBD and LST is a decline from the core area of the city
to the periphery; (b) the density of buildings and the spatial distribution of the LST are affected to
some extent by the terrain; and (c) the two data distribution characteristics are the same, but there are
differences in local areas.
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4.2. Spatial Quantitative Analysis of UBD and LST

The results of the comparison between OLS and GWR were obtained by using the GWR module
of Arcgis10.3 software. The results are shown in Table 5.

Table 5. Simulation effect by Geographically Weighted Regression (GWR) and a comparison with
ordinary least squares (OLS).

AICc R2
adj Sigma Residual

OLS −717.2 0.338 2.237 43.13
GWR −1464.9 0.542 1.753 27.96

The GWR model had a larger R2 and smaller Akaike information criterion (AICc) and sigma,
indicating that the LST and UBD fitting effects based on the GWR model were better than those based
on the OLS model. First, according to the GWR regression results, the overall effect of this model
is significant, and UBD can explain 54.2% of the LST total variation. In the OLS model, UBD can
only explain up to 33.8% of the LST variance. Figure 13a,b shows the residual spatial distributions
of OLS and GWR; compared with the results of OLS, the residuals dropped from 43.13 to 27.96. It is
not suitable for the global model to be established based on the OLS method because there is a strong
spatial correlation. Although spatial autocorrelation still exists in the GWR model residual, it is lower
than that in the OLS method and presents a more random spatial distribution.
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At the same time, the Akaike information criterion (AICc) of GWR dropped significantly from
−717.2 to −1464.9. The AICc is a measure of the fitting degree to a statistical model. According to
the evaluation criteria proposed by Fotheringham, a difference between the two of greater than 3 is
the optimal bandwidth, and the lower the value, the better the fitting effect. Even considering the
complexity of the GWR, the GWR model is better than the OLS model, and the difference between the
two models far exceeds this value.

The spatial distribution of the local fitting result of the GWR model (Local R2) is shown in Figure 14.
Where the subsurface of the suburbs is dominated by grassland and cultivated land, the LST is mainly
affected by vegetation and the GWR model has a high fitting degree. However, in the central urban
area where buildings are concentrated, the LST is affected by the buildings and the fitting degree of the
GWR is relatively low.
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5. Discussion

In this study, we first estimated the UBD and LST using Luojia1-01 NTL imagery and then used
the GWR model in the central city zone of Hefei as an example to study the correlation between the
two. The following conclusions were obtained:

(1) According to the accuracy verification, the absolute error between the estimated and actual values
of UBD was only 3.58%, which proves that Luojia1-01 NTL imagery has strong potential for UBD
estimation. The UBD can better reflect the aggregation degree in the built-up area of Hefei and is
a full expression of urbanization. Its main feature is that UBD decreases from the interior to the
periphery. The areas with high UBD are concentrated in the interior. Where the buildings are
dense, the UBD index is large and concentrated, while the lower UBD areas are mostly scattered
in the outer suburbs with more vegetation.

(2) UBD and LST were found to be positively spatially correlated at all four scales examined, and the
larger the spatial scale, the greater the correlation found.

(3) The simulation effect of GWR was significantly better than that of OLS. GWR had the smallest
AICc and Sigma, and the largest R2, while the regression residual of OLS was higher than that of
GWR. OLS overestimated or underestimated the heating or cooling capacity of different UBDs.
GWR can well reflect the influence of UBD on the LST in different spatial locations, and the results
showed excellent visualization effects. Therefore, when studying the relationship between UBD
and LST in the city, GWR is more intuitive and accurate.

The results show that there is a significant correlation between UBD and LST as a whole. The LST
was higher in regions with higher UBD, and vice versa. In addition, the GWR’s simulated effect and
regression coefficient in the central city were lower than those in the suburbs because the underlying
surface of the central city is dominated by buildings, while in the suburbs, vegetation is abundant.
This indicates that the LST is more affected by vegetation than by buildings.

6. Conclusions

This paper took the main urban area of Hefei as the research area, used Luojia1-01 NTL imagery
to estimate the UBD, and combined this with the Landsat8 data inversion LST to carry out small-scale
correlation analysis and modeling.

The emergence of Luojia1-01 NTL imagery opens a new door for microscale research, and it is
essential to explore its potential. In this paper, we applied remote sensing image data sourced from
Luojia1-01 NTL imagery to the internal research of a city, which proved that it can be used effectively
for the extraction of urban information. However, the research still has the following shortcomings:
(1) The team at Wuhan University only released the Luojia1-01 NTL data for 2018, so it is hard to
perform a multi-time series analysis and we lack a comprehensive evaluation method. (2) Many other



Appl. Sci. 2019, 9, 5224 18 of 20

factors, such as rainfall, vegetation, and wind speed, also affect LST changes. Future research could
integrate more factors into the GWR model for a more detailed analysis. We will strive to improve
the reliability and comparability of the Luojia1-01 NTL data estimation results so as to facilitate a
more detailed analysis of the heat island distribution pattern and its evolution, which is our future
research direction.
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