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Abstract: This paper discusses the effects of long-term environmental change (represented by
the abundance or scarcity relative to the long-term average level of crop yield/river flow) and
short-term environmental shock (represented by the maximum number of consecutive years below
the median crop yield/river flow per decade) on population redistribution in Mexico and Ethiopia.
Crop production and water resources, which are affected by climate change and influence human
survival and activities, were selected as research variables. Two developing countries, namely,
Mexico and Ethiopia, were selected as comparison cases. The results showed that short-term
environmental shocks had no correlation with population redistribution. Short-term environmental
shocks might fail to influence migration decisions or cause only temporary displacements that
cannot be detected by demographic statistics. Among the long-term environmental change factors,
only crop yield deviation was found to have a significant positive correlation with population
redistribution. Based on two different datasets and two different decades, crop yield deviation is
positively correlated with population redistribution; the correlation coefficients between crop yield
deviation and population redistribution were 0.134 to 0.162 in Mexico and 0.102 to 0.235 in Ethiopia.
When urbanization was considered as the control variable, the correlation coefficient between crop
yield deviation and population redistribution in Mexico dropped by half, while it was almost the
same in Ethiopia. However, Ethiopia’s population redistribution was more clearly influenced by the
population itself. Crop yield deviation relative to water flow deviation meant changes in livelihoods.
Population redistribution is a possible means of adapting to changes in livelihood. Mexico exhibited
high resilience to changes in livelihoods caused by long-term environmental change, especially in its
densely populated areas. In contrast, Ethiopia was characterized mainly by high population growth
and low population migration. People in some areas of Ethiopia were forced to endure hardship
of livelihood deterioration or to stay where they were due to the difficulty of obtaining sufficient
resources to afford the cost of migration.
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1. Introduction

During the 20th century, the world population increased from 1.65 billion to six billion [1].
The world population is currently growing by approximately 74 million people per year, with most
growth occurring in developing countries [2]. Much of the focus of the population–environment
literature is on how population growth impacts the environment [3–5]. Specific focus areas include the
effects of population dynamics on environmental degradation [6], water resources [7], deforestation [8],
and food security [9]. However, few studies have investigated how environmental change influences
demographic processes [10–12]. This study aimed to contribute to the literature on this topic.

Recent research illuminated the ways in which a number of population variables, such as age and
sex composition, household demographics, and the elements and processes of the population balancing
equation, are related to environmental change [3]. Some research found a reciprocal relationship
between population dynamics or development and environmental change [3]. Population redistribution
is driven by social, economic, geographical, and environmental factors in complex ways, making it very
difficult to predict outcomes [13]. Economic development ([14], industrialization and urbanization [15],
education [16], and environmental change [3] all influence population redistribution. For some
countries, especially countries with rapid economic growth, population redistribution caused by
environmental change is often masked by a variety of socio-economic factors. Identifying the
relationships between population redistribution and environmental variability and change is a
challenging task. Under the background of global climate change, the relationship between environment
and population redistribution attracted extensive attention [17]. Climate change has observable
effects on the environment and has the potential to impose additional pressure in some regions [18].
Climate change is recognized as a “threat multiplier” that compounds the difficulties currently facing
developing countries [19,20]. Some environmental factors driven by climate change were shown to
affect population redistribution, but the effects are often non-linear [21,22]. Environmental change
includes not only slow processes, such as changes in precipitation or temperature [23], but also rapid,
extreme events, such as extreme wet and dry events [24]. Some studies found that it has a different
response of population spatial movement for these two different categories of environmental changes.
Slow environmental change may lead to population migration [25], whereas sudden natural disasters
or extreme events are more likely to cause temporary displacement [12].

In this paper, we estimate the contributions of changes in water availability and agricultural
crop yields to past changes in population distribution. We select Mexico and Ethiopia as study cases
for a few reasons. Firstly, Mexico and Ethiopia are both developing countries, but the former is
an upper–middle-income economy, whereas the latter is a low-income economy [26]. In addition,
these countries represent contrasting cases in terms of dependence on agriculture; Mexico has 13%
of its population working in the agricultural sector and obtains 4% of its gross domestic product
(GDP) from agriculture, whereas, for Ethiopia, the corresponding percentages are 73% and 37% [26,27].
Secondly, these two countries have moderate population sizes and land areas relative to world
averages, lending them a certain amount of comparability. Thirdly, they are both low-latitude countries.
A growing body of evidence shows that low-latitude countries will experience the greatest impacts
from global warming [28]. Finally, regardless of the differences in overall income between the
countries, both have large proportions of their populations living in poverty, and poor populations are
generally more vulnerable to the effects of climate change than wealthier populations [29]. The world’s
demographic center of gravity will continue to shift from developed countries to developing countries
and less developed countries, many of which will face unprecedented and daunting challenges related
to the supply and distribution of food and water [4]. The relationship between environmental change
and population redistribution can be analyzed more comprehensively by selecting and comparing two
developing countries with different degrees of development.

Although water resources and agriculture are not the only environmental influences on populations,
these two factors are considered essential to rural livelihoods [30,31]. Water and food security are major
concerns, particularly in the least developed countries [32]. By correlating population redistribution
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directly with model-based estimates of historical crop yield and river flow, our analysis represents
an important advance over previous studies that used weather-based proxies for these variables,
usually temperature or precipitation.

2. Data and Methods

2.1. Data

Three databases were used, including The Gridded Population of the World version 4 (GPW-v4)
population count grids database, the Global Human Settlement (GHS) Built-Up grids database, and the
Inter-Sectoral Impact Model Intercomparison Project phase 2a (ISIMIP2a) database.

These different databases are inconsistent in resolution. The resolutions of the GPW and GHS
datasets are 30 arc-seconds (~1 km), and that of the ISIMIP2a database is 0.5 degrees. For this
study, we selected an intermediate resolution of 0.25 degrees. We used the Zonal Statics tool of
ArcGIS/ArcToolbox to aggregate the first two databases and used the Resample tool to resample the
third database (ISIMIP2a database). The purpose of unifying the resolution of the different databases
was to obtain sufficient data accuracy and data samples (2537 cells for Mexico and 1090 cells for
Ethiopia) to analyze the spatial distribution characteristics of the two countries. A detailed description
of potential factors influencing population redistribution and their data sources is given below (Table 1).

Table 1. Potential factors influencing population redistribution and their data sources.

Category Variable Abbreviation Database Institution

Dependent
variable Population redistribution PopReDist GPW 1 CIESIN 2

Independent
variable

Crop yield deviation MeanYield ISIMIP 3 PIK 4

Water flow deviation MeanFlow ISIMIP PIK
Maximum number of consecutive

years below median crop yield ConsecLowYield ISIMIP PIK

Maximum number of consecutive
years below median water flow ConsecLowFlow ISIMIP PIK

Control
Variables

Built-up Built-up GHS 5 EC 6

Population Pop GPW CIESIN
1 Gridded Population of the World. 2 Center for International Earth Science Information Network. 3 The Inter-Sectoral
Impact Model Intercomparison Project. 4 Potsdam Institute for Climate Impact Research. 5 The Global Human
Settlement. 6 the European Commission.

2.1.1. Population Redistribution

The Gridded Population of the world (GPW) version 4 [33] is a gridded data product that
facilitates the integration of population data with earth science data. It models the distribution
of human populations on a continuous global surface [34]. The data source is based on census
data from all countries in the world, and the statistical unit of census data varies from country to
country (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4). The population data of Mexico
and Ethiopia discussed in this paper were based on census data of cities and towns (administrative
units below the state level). The identification degree of its census data was about 15 min (about 30 km),
and some urban areas had a higher identification degree. Population redistribution (PopReDist) in
this paper was the spatial population change over decades, which is the absolute change for each
grid with the resolution of 0.25 degrees. This database provides variables of spatial distribution of
population (Pop) for the years 1990, 2000, and 2010 and spatial population redistribution (PopReDist)
for 1990–2000 and 2000–2010 by subtracting data of the previous year from the last year.

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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2.1.2. Built-Up

The Global Human Settlement (GHS) database distributed by the European Commission (EC)
provides built-up grid data and contains a multi-temporal information layer on built-up presence as
derived from Landsat image collections (GLS1975, GLS1990, GLS2000, and ad hoc Landsat 8 collection
2013/2014). Through data-interpolation processing, this database provides variables of Built-Up for the
years 1990, 2000, and 2010.

2.1.3. Climate Change Impacts

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) addresses climate impacts in a
range of systems and sectors such as health, coastal infrastructure, and forests and other ecosystems.

The first ISIMIP simulation round, the ISIMIP Fast Track, had a focus on providing cross-sectorally
consistent projections of the impacts of different levels of global warming in the 21st century.
The common set of scenarios made use of climate projections from five global climate models
(GCMs) driven by the recommended concentration pathways (RCPs), making ISIMIP a natural
extension of the work done within the Coupled Climate Model Intercomparison Project (CMIP) [35].
ISIMIP2a includes modeling intercomparison efforts in fisheries, permafrost, biodiversity, regional water,
forests, and energy, as well as those sectors already covered in the Fast Track. This serves as a basis
for model evaluation and improvement, allowing for improved estimates of the biophysical and
socio-economic impacts of climate change at different levels of global warming [36]. ISIMIP2b is
designed to provide robust information about the impacts of 1.5 ◦C global warming and related
low-emission pathways [37,38]. In this paper, we used the simulation data of crops yield and
water resources provided by ISIMIP2a. In the present work, the focus was on impacts of surface
freshwater availability and crop yields since these factors are likely to have the greatest direct
impacts on the livelihoods life and development of population [39]. Both factors were modeled
using the global gridded biosphere model LPJmL [40,41]. The model LPJmL (“Lund–Potsdam–Jena
managed Land”) was designed to simulate vegetation composition and distribution, as well as
stocks and land–atmosphere exchange flows of carbon and water, for both natural and agricultural
ecosystems. Using a combination of plant physiological relations, generalized empirically established
functions, and plant trait parameters, it simulates processes such as photosynthesis, plant growth,
maintenance and regeneration losses, fire disturbance, soil moisture, runoff, evapotranspiration,
irrigation, and vegetation structure [42–44]. Annual crop yields are simulated for each of the four major
crops (maize, wheat, rice, and soy beans) and for rain-fed and irrigated cultivation assuming crop
growth on all land grid cells [45]. These yields are weighted by each cell’s corresponding growing area
around the year 2000. The resulting index has units of production (tons per hectare), but its variability
represents yield variability because the growing areas are static. The weighted yield indices for all four
crops are summed to obtain an overall yield index that is comparable across countries (assuming that
these four crops represent, in both countries, the majority of crops produced). Water availability is
represented by monthly river flow (discharge) averaged over each year. Importantly, the simulations
do not take into account any water withdrawals for human use (such as irrigation) or any other
human-induced changes to the water cycle. This means that any changes over time in simulated water
availability can be attributed to changes in weather patterns.

The model is driven by two different climate reanalysis datasets to account for potential
uncertainties in climate reconstructions: the Global Soil Wetness Project phase 3 forcing dataset
(GSWP3) [46] (http://hydro.iis.u-tokyo.ac.jp/GSWP3/), based on the 20th century reanalysis (20CR),
and the Princeton Global Forcing dataset version 2 (PGFv2) [47], based on NCEP/NCAR reanalysis
(The NCEP/NCAR Reanalysis data set is a continually updated (1948–present) globally gridded data
set that represents the state of the Earth’s atmosphere, incorporating observations and numerical
weather prediction (NWP) model output from 1948 to present. It is a joint product from the National
Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR)). Both sets of simulations extend from 1970 to 2010.

http://hydro.iis.u-tokyo.ac.jp/GSWP3/


Appl. Sci. 2019, 9, 5219 5 of 21

We investigated the influences of changes in mean environmental conditions and in the occurrence
of prolonged adverse conditions (bad harvests, droughts) on population redistribution. The resulting
variables are called MeanYield and MeanFlow and represent the abundance or scarcity level relative
to the long-term average. We then calculate the maximum number of consecutive years below the
median crop yield/river flow for each decade. The resulting variables are called ConsecLowYield and
ConsecLowFlow and measure the successive shocks to crop production and water availability systems
in each decade.

Of course, extreme wet and dry events may significantly affect the water and agricultural
systems [24]. For example, Lesk et al. analyzed the influence of extreme weather disasters on
global crop production and found that production losses due to droughts were associated with a
reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields [48].
The societal infrastructure is becoming more sensitive to weather and climate extremes, which would
be exacerbated by climate change [49]. However, on the one hand, a majority of climate change models
underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems,
and heat-related human mortality [38]; on the other hand, environmental change is expected to increase
the likelihood and impacts of extreme weather events, and the scientific argument of climate-related
disasters is increasingly confident, but the impacts on human population patterns are unclear and
unpredictable. [50]. Therefore, the effects of extreme weather events on population redistribution are
not considered in this paper.

2.2. Methods

In this paper, we used crop–water model variables as independent variables and investigated
their correlations with population redistribution. Of course, there are discussions about migration
and climate change, such as climate migration [23,51,52]. However, it is difficult to get reliable net
migration data. In addition, either the mechanical growth of the population (through migration) or
the natural growth is likely to be affected by climate change. Therefore, it was reasonable to use
population redistribution as a dependent variable. The reason for using these variables was that crop
and water models do not include any changes in human management, such as growing areas. There is
no feedback from population to crops and water. As for validation data or observed data on crop yields,
both climate change and socioeconomic change have impacts on the results; however, perhaps the latter
is more important and significant. In addition, the population redistribution also affects crop yield
output (such as changes in labor input), thus forming a circular argument. For our purposes, it was
preferable to use simulation data over observed data. To reduce the influence of model simulation
errors on regression results, two different sets of modeling data on crop production and water discharge
distributed by ISIMIP were adopted: Lpjml_Gswp3 and Lpjml_Princeton. The two sets of data were
obtained by using the agricultural and water resources model LPJmL, which was driven by two different
observational climate datasets (GSWP3 and Princeton Global Forcing data PGFv2) to assess the effects of
the choice of climate data on the results. Considering the availability of population data, correlation and
regression analyses are performed for the two eras of the 1990s and the 2000s. Environmental variables,
including crop yield deviation (MeanYield), water flow deviation (MeanFlow), maximum number of
consecutive years below median crop yield (ConsecLowYield), and maximum number of consecutive
years below median water flow (ConsecLowFlow) were included as independent variables. Built-up
area (Built-up) and population (Pop) were included as control variables. These two control variables
are factors that have significant impacts on population redistribution and can objectively reflect the
demographic characteristics in the two countries.

Pearson’s correlation coefficients between the dependent variable (PopReDist), independent
variables (MeanYield, MeanFlow, ConsecLowYield, and ConsecLowFlow) and control variables
(Built-up and Pop) were calculated with the water–crop modeling data for each of the periods the
1990s and the 2000s.
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OLS (ordinary least squares) regression was then conducted to investigate the influences of the
independent variables. Three different models were considered in the OLS regression. OLS Model 1
examined the impacts of four environmental variables on population redistribution. OLS Model 2
explored the impacts of environmental variables on population redistribution while controlling for the
impact of urbanization level. OLS Model 3 included Pop as control variable; it explored the impacts
of the environmental change variables on population redistribution while controlling for population
density. VIF (Variance inflation factor) was used to assess the degree of multicollinearity among the
independent variables.

Formal studies of population redistribution tended to focus on identifying patterns that are
presumed to hold universally [4,53,54]. The global regression assumes that the relationships between
the variables are homogeneous across space. However, spatial dependences often are not homogeneous
across large geographical regions [55]. We were more concerned about areas where spatial redistribution
is sensitive to climate change. In addition, GWR can be used to statistically avoid the influence of
multicollinearity. To address this issue, a geographically weighted regression (GWR) model was
used to explore the spatially varying relationships between the dependent variable and the potential
influencing variables [13,56]. The spatial regression coefficients of each grid in GWR were not the
regression results of itself, but the spatial coefficients in the local area based on optimal bandwidth.
Of course, spatial regression methods are not limited to GWR; there are other spatial regression
methods, such as kriging, spatial error regression, etc.

In the OLS multiple regression model, the dependent variable y (population redistribution) is
statistically related to a set of N independent variables x as follows:

yi = β0 +
N∑

j=1

x jβ j + εi, (1)

where i = 1 to M, where i is an index of the number of cells for which data are available, M is the total
number of cells of the country, β0 is the intercept, β j represents the beta coefficients for each dependent
variable, and ε is a randomly distributed error term. An OLS regression model can be converted into a
GWR (geographically weighted regression) model by substituting each beta coefficient (the intercept
and the dependent variable coefficients) with its local counterpart such that the beta coefficients can
vary across space.

yi = β0(ui,vi)
+

N∑
j=1

x jβ j(ui,vi)
+ εi, (2)

where i = 1 to M, and (ui, vi) is the location in geographic space of the i-th observation. A set of beta
coefficients (and, hence, a regression model) is estimated at each location based only on neighboring,
geographically weighted data cells. A key feature of this approach is the ability to calibrate the spatial
weighting function to identify the bandwidth, i.e., the number or proximity of neighboring cells
included that results in a “best-fit” model. In this paper, AICc (corrected Akaike information criterion)
is used as the bandwidth method.

If an environmental change variable (MeanYield, MeanFlow, ConsecLowYield, or ConsecLowFlow)
was found to have a significant correlation with population redistribution consistently across both
crop–water model datasets and both decades, it could be considered as having a robust effect on
population redistribution. Urbanization level (Built-up) and population (Pop) were included as control
variables. The effects of environmental change on population redistribution may differ between urban
and rural areas and among areas with different population densities. The robustness of environmental
changes on population redistribution was analyzed by comparing different control variables.
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3. Case Study Countries

In this paper, we selected two countries at different stages in the demographic transition,
Mexico and Ethiopia, as case studies. Mexico, located in the southern portion of North America,
is the eleventh most populous country in the world and the second most populous country in Latin
America (after Brazil), covering almost two million square kilometers. It has an estimated population
of over 129 million, with 71.9% of the population living in urban areas. Ethiopia is in the horn of
Africa. With over 104 million people, 20.4% of whom live in urban areas, Ethiopia is the second most
populous nation on the African continent (after Nigeria); it occupies a total area of 1.1 million square
kilometers [26].

Figure 1 presents the urban, rural, and total populations from 1990 to 2017. The data source is
from the world bank open data (https://data.worldbank.org/). In 1990, the population of Mexico was
85.4 million, and that of Ethiopia was 48.1 million. The population of Ethiopia was only approximately
half of that of Mexico in 1990. By 2017, the populations of Mexico and Ethiopia were 129.2 million
and 105 million, respectively. The population numbers of the two countries are more similar currently.
Over a period of nearly three decades, from 1990 to 2017, the annual population growth rates of Mexico
and Ethiopia were 1.6% and 3.05%, respectively. Currently, Ethiopia has a rapidly growing population,
whereas Mexico’s population has a low growth rate. The proportion of Ethiopia’s population living
in urban areas increased from 12.6% in 1990 to 20.4% in 2017, whereas Mexico’s urban population
increased from 52.1% in 1990 to 71.9% in 2017. The rural population of Ethiopia in 1990 and 2017 was
42 million and 80 million, respectively; thus, the rural population nearly doubled in three decades.
However, in Mexico, the rural population in 1990 and 2017 was 40 million and 36.9 million, respectively,
revealing a slight decline in the rural population. Given that the total population is growing, the shift
from a farming population to non-farming is evident in Mexico. Much of the migration (~65%) in
Mexico from 2005 to 2010 was to urban destinations [57]. Mexico is a highly urbanized country with a
rapidly rising urban population, whereas Ethiopia remains a predominantly agricultural country with
a slowly increasing urban population.
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Figure 1. Urban, rural, and total population of Mexico (left) and Ethiopia (right).

Figure 2 shows the population distribution of Mexico and Ethiopia in 2000. Mexico’s population
distribution is highly concentrated, with high densities in the capital and surrounding areas and with
the population in the northern, eastern, and coastal areas being highly concentrated in urban areas.
While having high population density in the capital, Ethiopia has low population density overall and
low densities in remote areas far from the capital.

https://data.worldbank.org/
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4. Analysis

4.1. Correlation Analysis

An exploratory correlation analysis was performed to examine the relationships between
the independent and dependent variables. Table 2 shows the correlation matrix of all variables.
The correlations for Mexico and Ethiopia were calculated separately for each of the past two decades
(the 1990s and the 2000s). Four environmental variables, i.e., MeanYield, MeanFlow, ConsecLowYield
and ConsecLowFlow, were calculated based on the Lpjml_Gswp3 and Lpjml_Princeton datasets.
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Table 2. Correlation matrix of the dependent and independent variables.

Lpjml_Gswp3 Lpjml_Princeton

Mexico 1990–2000 PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up

MeanYield 0.167 ** 0.143 **
MeanFlow 0.051 ** 0.168 ** 0.006 0.053 **

ConsecLowYield 0.025 0.073 ** 0.039 * 0.089 ** 0.120 ** −0.102 **
ConsecLowFlow −0.024 −0.006 −0.054 ** 0.110 ** 0.006 −0.021 0.009 0.002

Built-up 0.605 ** 0.147 ** 0.042 * 0.001 −0.012 0.605 ** 0.137 ** −0.002 0.050 * 0.027
Pop 0.512 ** 0.162 ** 0.033 0.026 −0.008 0.859 ** 0.512 ** 0.151 ** −0.008 0.060 ** 0.004 0.859 **

Mexico 2000–2010 PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up

MeanYield 0.142 ** 0.146 **
MeanFlow 0.011 0.171 ** 0.038 0.223 **

ConsecLowYield −0.036 −0.180 ** −0.053 ** −0.003 −0.154 ** −0.072 **
ConsecLowFlow 0.028 −0.046 * −0.233 ** 0.075 ** 0.028 −0.021 −0.109 ** −0.005

Built-up 0.609 ** 0.124 ** 0.009 −0.028 0.033 0.609 ** 0.115 ** 0.032 −0.001 0.034
Pop 0.454 ** 0.113 ** 0.012 −0.014 0.015 0.928 ** 0.454 ** 0.102 ** 0.032 * −0.003 0.017 0.928 **

Ethiopia 1990–2000 PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up

MeanYield 0.109 ** 0.252 **
MeanFlow 0.163 ** 0.393 ** 0.171 ** 0.566 **

ConsecLowYield −0.002 0.043 0.089 ** −0.176 ** 0.024 −0.009
ConsecLowFlow −0.066 * 0.029 0.249 ** 0.147 ** -0.55 −0.064 * −0.059 0.070 *

Built-up 0.361 ** 0.003 0.072 0.009 −0.012 0.361 ** 0.027 0.019 0.028 0.019
Pop 1.000 ** 0.109 ** 0.163 ** −0.001 −0.066 ** 0.363 ** 1.000 ** 0.252 ** 0.172 ** −0.177 ** −0.055 0.363 **

Ethiopia 2000–2010 PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up PopReDist MeanYield MeanFlow ConsecLowYield ConsecLowFlow Built-Up

MeanYield 0.182 ** 0.100 **
MeanFlow 0.171 ** 0.269 ** 0.080 ** −0.161 **

ConsecLowYield −0.114 ** −0.198 ** −0.152 ** −0.144 ** −0.213 ** −0.114 **
ConsecLowFlow −0.077 * −0.020 −0.176 ** 0.187 ** −0.109 ** 0.150 ** −0.155 ** −0.084 **

Built-up 0.339 ** −0.028 0.029 −0.030 −0.012 0.339 ** −0.050 0.043 −0.043 0.014
Pop 0.977 ** 0.181 ** 0.186 ** −0.134 ** −0.094 ** 0.391 ** 0.977 ** 0.120 ** 0.048 −0.133 ** −0.059 0.391 **

** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).
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In both Mexico and Ethiopia, the two control variables (Built-up and Pop) had strong positive
correlations with the dependent variable (PopReDist). In Mexico, the correlation coefficient of the
Built-up was 0.605 for the 1990s and 0.609 for the 2000s; these values were higher than the correlation
coefficient of Pop, which was 0.512 for the 1990s and 0.454 for the 2000s. Possible reasons for the greater
influence of Built-up on population redistribution in Mexico are higher migration from rural areas
to urban areas or higher natural population growth rate in urban areas. In Ethiopia, the correlation
coefficient of population distribution was 1.0 for 1990 and 0.977 for 2000, which indicates that population
redistribution in Ethiopia is largely determined by natural population growth, and migration plays a
relatively limited role.

Regarding the environmental variables, in Mexico, with both sets of modeling data and in both
decades, MeanYield was significantly and positively correlated with population redistribution; it was
the only environmental variable to exhibit a significant correlation. In contrast, in Ethiopia, MeanYield
and MeanFlow were positively correlated with population redistribution, whereas ConsecLowYield
and ConsecLowFlow were negatively correlated with population redistribution. The correlation results
were consistent across datasets and across decades, although not all correlations were significant in all
cases. For Ethiopia, we must carefully demonstrate the correlation between environmental change
factors and population redistribution.

4.2. OLS Results

In the OLS analysis, we examined the regression coefficients describing the relationships between
independent variables and dependent variables. MeanYield and MeanFlow can be expected to be
positively correlated with population redistribution. In theory, an increase in crop production or
water resources indicates improved living conditions, which promotes population increase; decreases
in these factors can be expected to result in population decrease. Furthermore, ConsecLowYield
and ConsecLowFlow can be expected to be negatively correlated with population redistribution,
as continuous shortages of agriculture or water resources worsen living conditions, resulting in
population decrease.

For Mexico, when no control variable was considered (Model 1), there was a significant positive
correlation between MeanYield and population redistribution with both datasets and in both decades;
correlations between the other three environmental variables and population redistribution were
not detected (Table 3). When Built-up (Model 2) or Pop (Model 3) were introduced as control
variables, MeanYield continued to show a significant positive correlation with the dependent variable.
However, after including the control variables, the standardized correlation coefficient between crop
yield deviation and population redistribution was significantly reduced. We can conclude that crop
yield deviation (MeanYield) in Mexico has a robust effect on population redistribution. Tables 3
and 4 show the OLS regression results between the four environmental change variables in Mexico
and Ethiopia and the dependent variable (population redistribution). The correlation coefficients
between the independent variable and the dependent variable in Tables 3 and 4 are standardized
correlation coefficients.
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Table 3. Ordinary least squares (OLS) regression results for Mexico.

1990–2000 2000–2010

Lpjml_Gswp3 Model 1 VIF Model 2 VIF Model 3 VIF Model 1 VIF Model 2 VIF Model 3 VIF

MeanYield 0.162 ***
(0.000) 1.033 0.076 ***

(0.000) 1.055 0.082 ***
(0.000) 1.059 0.143 ***

(0.000) 1.062 0.068 ***
(0.000) 1.078 0.091 ***

(0.000) 1.076

MeanFlow 0.022
(0.273) 1.033 0.011

(0474) 1.033 0.019
(0.259) 1.033 −0.006

(0.759) 1.087 −0.004
(0.794) 1.087 −0.005

(0.782) 1.087

ConsecLowYield 0.015
(0.451) 1.019 0.020

(0.199) 1.019 0.007
(0.670) 1.020 −0.013

(0.509) 1.038 −0.008
(0.623) 1.038 −0.016

(0.382) 1.038

ConsecLowFlow −0.024
(0.225) 1.016 −0.018

(0.248) 1.016 −0.019
(0.255) 1.016 0.035

(0.087) 1.062 0.011
(0.482) 1.063 0.026

(0.152) 1.062

Built-up 0.593 ***
(0.000) 1.022 0.600 ***

(0.000) 1.017

Pop 0.076 ***
(0.000) 1.027 0.443 ***

(0.000) 1.013

Adjusted R2 0.027 0.371 0.268 0.020 0.374 0.214

Lpjml_Princeton Model 1 VIF Model 2 VIF Model 3 VIF Model 1 VIF Model 2 VIF Model 3 VIF

MeanYield 0.134 ***
(0.000) 1.020 0.054 ***

(0.001) 1.038 0.061 ***
(0.000) 1.042 0.149 ***

(0.000) 1.078 0.080 ***
(0.000) 1.091 0.104 ***

(0.000) 1.088

MeanFlow 0.005
(0.782) 1.014 0.010

(0.523) 1.014 0.012
(0.479) 1.014 0.006

(0.755) 1.070 −0.002
(0.918) 1.070 0.001 ***

(0.955) 1.070

ConsecLowYield 0.074 ***
(0.000) 1.026 0.055 ***

(0.001) 1.027 0.053 ***
(0.002) 1.028 0.021

(0.293) 1.026 0.010
(0.510) 1.026 0.015

(0.410) 1.026

ConsecLowFlow 0.008
(0.664) 1.001 −0.009

(0.559) 1.001 0.005
(0.773) 1.001 0.032

(0.106) 1.012 0.009
(0.570) 1.014 0.023

(0.193) 1.013

Built-up 0.595 ***
(0.000) 1.021 0.600 ***

(0.000) 1.015

Pop 0.499 ***
(0.000) 1.025 0.443 ***

(0.000) 1.011

Adjusted R2 0.024 0.371 0.268 0.021 0.376 0.215

Dependent variable: population redistribution. *** p < 0.01; ** p < 0.05; * p < 0.1.
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Table 4. OLS regression results for Ethiopia.

1990–2000 2000–2010

Lpjml_Gswp3 Model 1 VIF Model 2 VIF Model 3 VIF Model 1 VIF Model 2 VIF Model 3 VIF

MeanYield 0.173 ***
(0.000) 1.190 0.140 ***

(0.000) 1.191 0.001
(0.577) 1.192 0.137 ***

(0.000) 1.112 0.152 ***
(0.000) 1.114 0.010

(0.146) 1.130

MeanFlow 0.044
(0.173) 1.270 0.056 *

(0.066) 1.279 −0.001
(0.732) 1.301 0.117 ***

(0.000) 1.119 0.105 ***
(0.000) 1.121 −0.010

(0.148) 1.137

ConsecLowYield −0.003
(0.908) 1.026 −0.006(0.828) 1.026 −0.001 **

(0.048) 1.026 −0.061 **
(0.046) 1.084 −0.050 *

(0.082) 1.085 0.015 **
(0.024) 1.091

ConsecLowFlow −0.110 ***
(0.000) 1.091 −0.097 ***

(0.001) 1.093 0.001
(0.558) 1.104 −0.042

(0.170) 1.064 −0.042
(0.143) 1.064 0.086 *

(0.086) 1.067

Built-up 0.350 ***
(0.000) 1.007 0.338 ***

(0.000) 1.003

Pop 0.990 ***
(0.000) 1.042 0.958 ***

(0.000) 1.068

Adjusted R2 0.037 0.158 1.000 0.052 0.165 0.955

Lpjml_Princeton Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

MeanYield 0.235 ***
(0.000) 1.474 0.226 ***

(0.000) 1.475 0.001
(0.166) 1.535 0.102 **

(0.001) 1.100 0.122 ***
(0.000) 1.103 −0.010

(0.116) 1.113

MeanFlow 0.035
(0.311) 1.472 0.033

(0.307) 1.472 −0.001 *
(0.075) 1.474 0.063 **

(0.042) 1.074 0.052 *
(0.072) 1.075 0.022 **

(0.001) 1.076

ConsecLowYield −0.180 ***
(0.000) 1.006 −0.189 ***

(0.000) 1.007 0.001
(0.216) 1.043 −0.126 ***

(0.000) 1.079 −0.109 ***
(0.000) 1.082 −0.019 **

(0.004) 1.092

ConsecLowFlow −0.026
(0.377) 1.010 −0.032

(0.227) 1.010 −0.001
(0.395) 1.011 −0.125 ***

(0.000) 1.048 −0.133 ***
(0.000) 1.048 0.048 ***

(0.000) 1.054

Built-up 0.360 ***
(0.000) 1.002 0.340 ***

(0.000) 1.007

Pop 0.990 ***
(0.000) 1.109 0.972 **

(0.000) 1.036

Adjusted R2 0.095 0.224 1.000 0.043 0.158 0.958

Dependent variable: population redistribution. *** p < 0.01; ** p < 0.05; * p < 0.1.
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In Ethiopia, we firstly examined the correlation between population redistribution and
environmental change factors (Model 1). MeanYield and MeanFlow had positive correlations with
population redistribution, and ConsecLowYield and ConsecLowFlow had negative correlations
with population redistribution (Table 4). Although the correlation results were consistent with our
expectations, the correlations were not consistently significant across two crop–water datasets in two
decades. When Built-up, which reflects urbanization level, was included in the model as a control
variable (Model 2), the adjusted R2 for Mexico was significantly increased to approximately 0.37,
whereas Ethiopia’s adjusted R2 was approximately 0.16. Compared with that in Ethiopia, the degree of
urbanization in Mexico has a greater impact on population redistribution. In Ethiopia, urbanization is
still in the primary development stage, and population redistribution is only weakly influenced by
Built-up. However, when Built-up was introduced as a control variable, population redistribution
and crop yield deviation (MeanYield) in Ethiopia were significantly and positively correlated in both
decades and with both datasets.

When Pop was included as the control variable (Model 3), the adjusted R2 value of Ethiopia
was much higher than that of Mexico. When the influence of Pop on population redistribution
was controlled, in Ethiopia, there was no correlation between crop yield deviation (MeanYield) and
population redistribution under Model 3.

In general, for Mexico, with or without the control variables, MeanYield consistently showed
a significant positive correlation with population redistribution. However, there were no obvious
correlations between the other three environmental change factors and population redistribution.
In Ethiopia, there was the suggestion of a possible effect of crop yield deviation on population
redistribution, but the coefficients were small and of opposing signs between decades under OLS
Model 3. The lack of consistent results between decades might be due to poor population data and
poor crop–water model performance.

In summary, no significant impact of short-term environmental shock on population redistribution
was found. Crop yield deviation (MeanYield) was the key environmental change factor influencing
population redistribution in both Mexico and Ethiopia, as evidenced by models based on two different
datasets and two different decades.

4.3. GWR Results

Here, we explore the spatially varying relationships between the dependent variable and potential
influencing variables with GWR with the two sets of crop–water modeling data for the 1990s and the
2000s. In the OLS analysis, we found that crop yield deviation had a relatively strong correlation with
population redistribution, whereas there was no obvious correlation between any of the other three
environmental change factors and population redistribution. In the GWR analysis, we investigated
the spatial correlation between crop yield deviation and population redistribution. The white part of
Figures 3 and 4 shows the area without data, and the gray part represents areas that did not exhibit
significant correlations (t-values with significance less than 90%). The green areas represent areas
with positive spatial correlations, and the red areas represent those with negative spatial correlations.
The results show that MeanYield was positively correlated with population redistribution in most areas.
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Figure 3 shows the spatial distribution of the correlation coefficients between crop yield deviation
and population redistribution in Mexico. The first, second, and third rows show the distributions of the
correlation coefficients of MeanYield with no control variable (Model 1), Built-up as a control variable
(Model 2), and Pop as a control variable (Model 3), respectively. The first and second columns present
the coefficient distributions of MeanYield calculated using the LPJmL_Gswp3 and LPJmL_Princeton
model data, respectively, for 1990–2000, and the third and fourth columns present the corresponding
distributions for 2000–2010. Figure 4 shows the spatial distribution of the coefficients of the correlation
between crop yield deviation and population redistribution in Ethiopia, which is consistent with
Figure 3.

In Mexico, with no control variable (Model 1), the correlation between MeanYield and population
redistribution was positive; positive coefficients were mainly distributed in the capital and nearby
areas and gradually decreased from the capital to the surrounding areas. For 1990–2000, only parts of
the west coast showed negative correlations (Figure 3, top row of panels). When including Built-up
as a control variable (Model 2), the distribution of correlation coefficients was similar to that for
Model 1; however, under Model 2, the positive coefficient areas were more concentrated in the densely
populated capital city and nearby areas, and there were almost no areas with negative correlation
coefficients. Therefore, the influence of crop yield deviation on population redistribution was more
apparent when Built-up was controlled for. When population was included as the control variable
(Model 3), we obtained results similar to those obtained with Model 1, with positive coefficients.

In Ethiopia, population development was mainly reflected in the rapid growth of population,
and crop yield deviation and population redistribution were positively correlated at the country
scale. Crop yield deviation in Ethiopia was positively correlated with population redistribution in
peripheral areas but negatively correlated in the central areas with high population density (Figure 4,
row 1). When Built-up was included as the control variable (Model 2), the results (second row of
Figure 4) were similar to those obtained with Model 1 except that the area of positive correlation was
expanded and that of negative correlation was reduced. However, when population was included
as the control variable (Model 3), no significant correlation between population redistribution and
crop yield deviation was observed at the country level, and the distribution of coefficients revealed no
specific patterns.

In conclusion, in Mexico, crop yield deviation has a robust positive correlation with population
redistribution in the densely populated capital and nearby areas; however, in other areas, population
redistribution is not significantly affected by crop yield deviation. Thus, in the capital and nearby
areas, population redistribution effectively adapts to environmental changes (manifested as crop yield
deviation). In Ethiopia, crop yield deviation impacts population redistribution at the country level.
Unlike the pattern in Mexico, in the peripheral areas in Ethiopia, which are mainly non-urbanized
areas, there are positive spatial correlations between crop yield deviation and population redistribution.
However, in the densely populated capital and nearby areas, the correlations are negative. In local
areas, population development and environmental changes cannot be coordinated, and people’s lives
may deteriorate further. The potential decline of living standards may further hinder the free flow of
the population.

5. Discussion

This paper aimed to explore the potential impacts of long-term and short-term environmental
changes on population redistribution. Crop production and water resources, which are closely related to
human living conditions, were selected as environmental change factors. Some related studies showed
that short-term environmental shocks have different effects than long-term processes, typically resulting
in temporary and short-distance population movements [58]. In some poor countries, because people
lack sufficient resources for supporting migration, displaced people often have to return to their
hometowns, and some people remain stationary [59]. Migration due to short-term environmental shocks
is difficult to predict and observe [58]. In this paper, short-term environmental shocks, as measured by
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consecutive years below median crop yield (ConsecLowYield) and consecutive years below median
water flow (ConsecLowFlow), were not found to be correlated with population redistribution. It is
possible that population redistribution is not affected by short-term environmental shocks or that
demographic data do not capture temporary population movements.

Some studies yielded conflicting results about the impacts of long-term environmental change on
population redistribution. Large-scale population displacement caused by drought was observed in
some countries in Africa, Latin America, and the Middle East [60]. However, in some poor counties,
such as Mali in the mid-1980s, due to the lack of adequate resources to support migration, migration
declined relative to past levels [61]. Furthermore, Cattaneo found that temperature rise gradually
reduced international migration in some poor countries [62]. By using Mexico and Ethiopia as case
studies, employing two different model datasets, considering two decades, and considering Pop and
Built-up as control variables, it was found that crop yield deviation was significantly correlated with
population redistribution at the country level. However, there was no consistent significant correlation
between water flow deviation and population redistribution. Long-term environmental changes
tended to result either in migration, which is generally perceived as being voluntary and predominantly
economically motivated, or in immobility [58]. Reduced crop production means the deterioration of
livelihoods for people, especially farmers. Economic losses from environmental change might have a
more direct impact on people’s migration decisions than short-term environmental shocks.

Analysis at the local level of the relationship between crop yield deviation and population
redistribution in Mexico and Ethiopia revealed spatial heterogeneity. The main factor causing
population redistribution in Mexico was population migration, whereas the natural population
growth rate in the country was low. In the face of the challenges imposed by environmental change,
migration was a common response. As one of the least developed countries in the world, Ethiopia
is characterized by a high population growth rate. Because it is difficult to obtain enough resources
to support migration, environmental change may also result in immobility [61,63]. The notion of
“trapped” populations was used to describe those who are not able to migrate even if they wish to do
so. Immobility may be a forced choice [58].

6. Conclusions

Environmental changes caused by climate change are increasingly affecting human survival
and development. Crop production and water resources are the most important factors affecting
human survival. The present study found no correlation between short-term environment shocks
and population redistribution. Regarding long-term environmental change, crop yield deviation was
found to have robust impacts on population redistribution at the country level in Mexico and Ethiopia.
Based on two different datasets and two different decades, the correlation coefficients between crop
yield deviation and population redistribution were 0.134 to 0.162 in Mexico and 0.102 to 0.235 in
Ethiopia. When urbanization was considered as the control variable, the correlation coefficient between
crop yield deviation and population redistribution in Mexico dropped by half, while it was almost the
same in Ethiopia. However, when population was introduced as a control variable, there was little
significant correlation between crop production deviation and population redistribution in Ethiopia.
There was a suggestion of a possible effect of crop yield deviation on population redistribution, but the
correlations were not significant and not consistent across areas in Ethiopia. Crop production deviation
is associated with changes in livelihood in developing countries and indirectly affects population
growth and migration. Another long-term environmental change factor, water flow deviation, did not
exhibit a significant correlation with population redistribution in either country. A possible reason for
this result is that this factor does not directly affect the survival and development of human beings and
does not necessarily entail a shortage of absolute water resources.

There was marked spatial heterogeneity in the relationship between crop yield deviation and
population redistribution. In Mexico, crop yield deviation mainly affected population redistribution
in the densely populated capital area and nearby areas. However, in Ethiopia, crop yield deviation
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showed a positive correlation with population redistribution in the peripheral areas but a negative
correlation in the capital and nearby areas.

Regarding population adaptability to environmental changes, people in Mexico were able to
adapt to crop yield deviation by migrating, whereas, in Ethiopia, although crop yield deviation was
positively correlated with population redistribution, the relationship appears to be indirect. In some
places, declines in crop production were accompanied by population increases, which aggravated the
vulnerability of populations to environmental change.

There is no doubt that climate change had some effects on population redistribution in developing
countries, as shown by the cases of Mexico and Ethiopia. The effect of environmental changes factors
related to climate change was indirectly related to population redistribution, especially in densely
populated areas with more prominent human–land conflict. As a developing country with slow
population growth but high migration rates, Mexico’s internal migration was conducive to adapting to
the effects of climate change. However, in Ethiopia, an underdeveloped country with a fast-growing
population, people had to passively endure the adverse effects of climate change. For developing
countries like Mexico, the key question is to properly arrange and guide climate migration, including
how to find new livelihoods for migrants from rural to urban areas. For underdeveloped countries
such as Ethiopia, the unaffordable cost of migration becomes an obstacle to migration. The rapid
population growth rate further aggravates the contradiction between human and land. At the present
stage, the focus should be on how to strengthen the local climate adaptation capacity.
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