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Abstract: In this paper, the improvement of the cascaded prediction method was presented. Three
types of main predictor block with different levels of complexity were compared, including two
complex prediction methods with backward adaptation, i.e., extension Active Level Classification
Model (ALCM+) and extended Ordinary Least Square (OLS+). Our own approach to implementation
of the effective context-dependent constant component removal block is also presented. Additionally,
the improved adaptive arithmetic coder with short, medium and long-term adaptation was presented,
and the experiment was carried out comparing the results with other known lossless audio coders
against which our method obtained the best efficiency.

Keywords: adaptive arithmetic coder; cascaded prediction; context-dependent constant component
removing; extended active level classification model; Least Mean Square

1. Introduction

The compression of audio and video signals is getting increasing attention as the transmission
bandwidth is getting wider, storage media is getting cheaper and the requirement for better quality
is growing. This has been proven by the dynamic work of the MPEG Group, operating from 1988
to today, and its impressive portfolio [1]. Among the developed standards and technologies, the lossless
compression algorithms deserve special attention, which enables the conversion of the raw data into
a compressed form and reconversion without losing any information.

Important purposes of lossless audio compression include recording storage, saving of records
with high-quality sound on commercial media (e.g., DVDs, Blu-Ray, and CD (44100 sample/16 bit))
and selling songs in an online music stores for more demanding customers who are not satisfied
with the quality of mp3 format [2]. Moreover, lossless mode is often required at the stage of music
processing in a studio, advertising materials and in the production of radio and television programs,
films, (post-production [3]) etc. In such cases, no lossy coding is used, which, at each iteration of sound
editing, may cumulate additional distortions.

The motivation for our work is to improve the seemingly complete solution, in which we see
areas of further development opportunities. We hope that through this research in the future the
archiving and transmission of audio data in lossless form will become even better and more popular.
Our solution is designed for target to use in static long-term archiving, such as the music database,
source distribution of high-quality audio samples, where it is not required too often encoding but only
distribution of coded files and encoding on client side. However, our solution does not give up and
is also suitable for online encoding and decoding. Our solution is time symmetric, and is explained
in more detail in Section 8.

Some popular examples of lossless audio compression codecs are APE (Monkey’s Audio) [4],
Free Lossless Audio Coding (FLAC) [5], Shorten [6], WavPack [7], Nanozip [8], True Audio (TTA) [9],
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Tom’s verlustfreier Audiokompressor (TAK) [10], Lossless Audio (LA) [11] and the most often
scientifically published one among lossless coders—MP4-ALS-RM23—which was published as
a standard ISO/IEC 14496-3:2009 with the last revision in 2015 [12]. MP4-ALS-RM23 has many
switches to customise the operation of the algorithm. Therefore, in the further part of the work, we
distinguish two modes: default mode and the best mode, where default mode is used without any
parameters, whereas the best mode uses switches in such a way as to obtain the best results for the
tested base.

Lossless audio coders usually have two characteristic stages: modelling and fast compression,
where the linear prediction is usually used for modelling, and entropy coders for fast compression [13].
Usually the modelling consists in replacing the current sample x(n) with its difference from the expected
value x̂(n) rounded to the nearest integer number:

e(n) = x(n) −
⌊
x̂(n) + 0.5

⌋
. (1)

The error signal e(n) has a distribution similar to the Laplace distribution, but because of the use
of integers, in practice, the geometric distribution is used (see the Golomb code in Section 7).

The simplest constant prediction model is DPCM using the previous sample x̂(n) = x(n − 1).
The basic predictive models are those with r-fixed coefficients (linear prediction in more detail is
described in Section 2, see Formula (2)). A fixed predictor with a fixed set of r prediction coefficients can
be used to efficiently encode various categories of audio data. The basic assumption of its universality
is the fact that the sum of the coefficients should be 1 (this is a condition of the unbiased prediction
estimator). The prediction order for the universal predictor (not associated with a specific audio signal)
should not be too large (r ≤ 4).

The low order rule does not apply to, e.g., static predictors, in which the coefficients are determined
for individual signal frames [14] (or entire sound files [15]), e.g., by means of minimising the mean
square error (MMSE).

The publication of the results of our research has been divided into three stages of research. In [16],
the general concept of new predictive cascade coding was presented, and in [17], the advantages
of adaptive Golomb coding [18] are described. A description of the last widest stage of research work
is in this article. Among the published solutions of this type, the highest efficiency is characterised by
a cascaded RLS-LMS coder (see Section 5) [2] (implementation of MP4-ALS-RM23 in the best mode).
Our method is a significant improvement in this cascading concept. Our coder has higher compression
efficiency with a noticeable shortening of the total encoding time relative to work [16]; the experiments
shown in Section 9 prove this. In Section 2 the basic prediction methods was described. In Sections 3
and 4, we focus on simple and complex prediction methods with backward adaptation. In Section 4.2,
the most effective OLS+ prediction block was described. Cascade connection of prediction block
was described in Section 5. Details about removing context-dependent cumulate prediction error are
presented in Section 6. In Section 7, a high efficiency version of the binary arithmetic coder using
the Golomb code family was presented and analysis of practical aspects of prediction error encoder
implementation is presented in Section 7.5. Schematic diagram of the proposed cascading audio data
encoder method was presented in Section 8. The conclusion and summary are found in Section 10.

2. Basic Prediction Method

Among the basic prediction methods, i.e., constant and static linear predictive models, presented
in the literature [19], lossless audio compression uses two approaches of an adaptive predictive
modelling: forward adaptation and backward adaptation.

In the coding of audio, the method of determining the predicted value based on a linear
prediction (which is based on the MMSE criterion) is most frequently used at the pre-modelling
stage [13]. It requires a solution system of equations with r variables wj that create vector of coefficients
w = [w1, w2, . . . wr]T. Due to how the varied nature of the data in different parts of the sound work,
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methods with the current adaptation of the prediction coefficients allow achieving a high degree
of compression.

Forward adaptation is an asymmetrical method of time, and its advantage is fast decoding time.
The encoding process can be much longer because is possible perform initial coding multiple times,
choosing the best parameters for the final version of the encoded file. In addition to the classic
solutions used in MP4-ALS-RM23 (default version), it is possible look for better prediction models
using extended data analysis [20], using other predictive techniques than the basic LPC computed
using the Levinson–Durbin method, such as using Laguerre filters [21], and also due to cascading
block connections with different lengths and prediction orders [22].

The predominantly used version is prediction with forward adaptation, which requires saving
of prediction coefficients for individual encoded frames (the vector w of prediction coefficients is
determined by optimising the mean error of prediction in the entire frame which requires access
to it for analysis before coding [20,23]). In backward adaptation, the access to future samples is
not required because the adaptation of vector of prediction coefficients is based on already coded
samples [23,24]. The literature shows that prediction methods with backward adaptation achieve
higher compression efficiencies because of the possibility of using higher orders of prediction and
quick adaptation to changes in signal characteristics over time (adaptation of parameters every single
sample of data). For this reason, this work focuses on this approach. In addition, we are currently
focusing only on the CD standard parameters, i.e., 44,100 samples per second, with a resolution of
16 bits, as it is still the most common format for commercial use of music.

In stereo CD standard existing dependencies between channels allow to use in r-order predictive
models using samples from both channels, left xL(n − i) and right xR(n − j).

x̂L(n) =
rL∑

i=1
ai · xL(n− i) +

rR∑
j=1

b j · xR(n− j)

x̂R(n) =
rL∑

j=1
c j · xR(n− j) +

rR−1∑
i=0

di · xL(n− i)
(2)

Based on the general form wCh = [w1, w2, . . . wr]T, according to Formula (2) (where Ch is
the channel L (left) or R (right)), we can distinguish vectors of prediction coefficients for the left

channel wL = [a1, a2, . . . , arL , b1, b2, . . . , brR ]
T and for right channel wR =

[
c1, c2, . . . , crL , d0, d1, . . . , drR−1

]T
.

There are two formulas because by coding (decoding) the value of the right channel sample xR(n), there
is already access to the current sample of the left channel xL(n). The result of the bit average can be
influenced by the selection of which channels are coded in the first order. Note that the rL ordering
in both cases concerns the set of samples of the currently coded channel, whereas rR is number samples
of the opposite channel, in addition r = rL + rR.

There is a problem with the selection of the universal rR/rL ratio. The most common proportions
in the literature are 1:1 and 1:2, after completing the bit-minimising experiments (in forward adaptation
mode) it turned out that depending on the size of frame (2q), the best order of prediction r is changing
(within the test database). Also, the increase order of the prediction r leads to a decreasing value of the
ratio rR/rL [14]. For backward adaptation (methods described in Section 4), good results were obtained
for a 1:1 proportion.

3. Simple Prediction Method with Backward Adaptation

The basic advantage of adaptation of prediction coefficients is the ability to adjust wj coefficients
to the variability of the signal over time. An additional characteristic, only for backward adaptation,
is the lack of the need for initial analysis of the entire signal frame, which must be carried out using,
for example, static models (forward adaptation), where in the case of MMSE, one or many systems
of equations with r unknowns must be determined and solved.
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One of the simplest methods of adapting prediction coefficients is Least Mean Square (LMS). In the
basic version it is less effective compared to even the RLS, ALCM+, and OLS+ methods discussed
in the next section, as it is relatively slow convergence to achieve the results obtained than MMSE with
forward adaptation.

Adaptation of prediction coefficients in LMS is done according to the following relation,

w(n + 1) = w(n) + µ · e(n) · x(n) (3)

where vector x(n) = [x(n− 1), x(n− 2), . . . , x(n− r)]T contains r samples of the currently encoded channel.
Most often, the vector w(0) is initialised as w(0) = [β, 0, . . . , 0] where β = 0 or β = 1. The complexity
of this procedure is linear O(r), therefore it is suitable for building high order predictive models.

The step size, µ, is very important here, as it determines the speed of adaptation of the vector
coefficients w(n) to the current signal characteristics. Proper selection of this value has a significant
impact on the final bit average of the encoded audio track and it is difficult to find a universal
experimental value, the same problem applies to the value of the prediction order.

To a large extent, these problems can be solved by introducing an extended version of this method.
The standardised version of Normalised LMS (NLMS) [25] has a higher rate of adaptation due to the
energy level of the last encoded signal samples. This involves changing the learning factor:

µ(n) =
µ

1 + xT(n + 1) · x(n + 1)
=

µ

1 +
r−1∑
i=0

x2(n− i)
. (4)

In our solution, we proposed to develop Formula (3) by introducing a scaling factor, which is
located on the diagonal of the matrix C = diagonal ([0.9951 0.9952 . . . 0.995r]), to the formula for
adaptation of prediction coefficients by ES-NLMS method (an idea taken from the exponentially
weighted step-size (NLMS) [26]), and the value of 0.995 was selected experimentally:

wNLMS(n + 1) = wNLMS(n) + µ(n) · e(n) ·C · x(n). (5)

4. Complex Prediction Method with Backward Adaptation

In [24], the authors presented a highly efficient cascade method combining several stages
of prediction (DPCM + RLS + LMS1 + LMS2 + LMS3 − see Section 5) with backward adaptation
(implementation the MP4-ALS-RM23 – in the best mode). It is a method using high complexity of the
recursive least square (RLS) block and a large summary number of prediction coefficients undergoing
adaptation in LMS1, LMS2 and LMS3 blocks.

In RLS, the backward adaptation method of linear prediction coefficients has the computational
complexity O(r2), which is much greater compared to NLMS while offering faster and more effective
prediction with a small order of prediction (details of adaptation of coefficients in RLS are described
in [24]). To further improve its performance, it is proposed to use preliminary data modelling in the
form of a DPCM block. This allows reducing the dynamics of the signal fed to the input of the RLS
block (see Figure 1). In this figure, the RLS predictive block is the only one in the cascade approach
that uses interchannel relationships in stereo. Similarly, the cases of ALCM+ and OLS+ are described
in the next two items.

4.1. ALCM+

In the proposed solution, the complexity of the main prediction block can be significantly reduced
by replacing the RLS block with the rapid ALCM+ method. In the ALCM+ method, the prediction
coefficients adaptation procedure has a linear complexity relative to the order of prediction and does
not require any square matrix to be adapted.
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4.1.1. ALCM Rapid Adaptation Method

The adaptive prediction method Activity Level Classification Model (ALCM) [27] was developed
in the 1990s for image coding purposes. It is characterised by a lower, though similar, computational
complexity compared to the classic LMS solution. Originally, the method operated on linear prediction
models of the fifth or sixth order, with the set of all coefficients in each step being adapted (by the
constant µ = 1/256 at 8-bit samples) only two (up to six in the ALCM+ version proposed in this paper)
properly selected.

Despite its simplicity, this method gives relatively good results also with regard to audio coding.
The method is applied with respect to the interchannel stereo mode, and therefore two prediction
orders {rL, rR} correspond to the data from the currently coded and opposite channels, and the total
prediction order of the ALCM+ method equals r = rL + rR. Generalising some formulas, we can
introduce the designation Ch (channel) in place of L (left) and R (right).

To increase the efficiency of the method, the initial DPCM block is used, the DPCM block returns
an eDPCM

Ch (n) error at the time n, which is buffered as a set of errors from previous i-th moments
marked as g(i). Therefore the ALCM+ input stream consists of elements that are the difference of two
consecutively coded samples g(i) = x(n − i) − x(n − i − 1). Assuming that the left channel sample are
encoded before right channel sample, the ALCM+ encoder input vectors at time n have the following
form; for the left channel, gL(n) = [gL(1), gL(2), . . . , gL(r)]T = [xL(n − 1) − xL(n − 2), xL(n − 2) − xL(n − 3),
. . . , xL(n − rL) − xL(n − rL− 1), xR(n − 1) − xR(n − 2), xR(n − 2) − xR(n − 3), . . . , xR(n − rR) − xR(n − rR−

1)]T, while for the right channel gR(n) = [gR(1), gR(2), . . . , gR(r)]T = [xR(n − 1) − xR(n − 2), xR(n − 2) −
xR(n − 3), . . . , xR(n − rL) − xR(n − rL − 1), xL(n) − xL(n − 1), xL(n − 1) − xL(n − 2), . . . , xL(n − rR + 1) −
xL(n − rR)]T.

Due to the specificity of the vector gCh(n), the predicted values are determined as

x̂Ch(n) = xCh(n− 1) +
r∑

i=1

wCh(i) · gCh(i). (6)

4.1.2. The Principle of Adaptation in Our Proposition of the Improved Version of ALCM+

In the new version of ALCM+ presented in this paper, it was proposed to introduce five parallel
predictive models with orders rj of r = {10, 22, 30, 56, 110}, respectively, where the orders of predictions
have been chose as a result of many experiments to optimise compression efficiency for the learning base.

The predicted value is determined as the arithmetic mean of these five prediction models:

x̂Ch(n) = xCh(n− 1) +
1
5
·

5∑
j=1

r j∑
i=1

w( j)
Ch(i) · gCh(i), (7)

where Ch is the indicator of L (left) or R (right) channel and j is the number of one of the five
prediction models.

In each of these models, after coding the next sample, six prediction coefficients are adapted.
For this purpose, the three highest and lowest values of rj from the gCh(i) elements from the vector gCh(n)
are determined, where i ∈ 1; r j.. Denoting these three elements, respectively, as the smallest value:

gCh(q
( j)
Ch(1)

) ≤ gCh(q
( j)
Ch(2)

) ≤ gCh(q
( j)
Ch(3)

) (8)

and three largest values:

gCh(p
( j)
Ch(3)

) ≤ gCh(p
( j)
Ch(2)

) ≤ gCh(p
( j)
Ch(1)

). (9)

Then, for everyone j-th ( j ∈ 1; 5) predictive models (if assuming that the condition gCh(q
( j)
Ch(1)

) <

gCh(p
( j)
Ch(1)

) is true), the following adaptation prediction coefficients are used (see Algorithm 1).
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Algorithm 1: Adaptation of prediction coefficients by predictive models.

if x̂Ch(n) < xCh(n)then {

w( j)

p( j)
Ch(k)

(n + 1) = w( j)

p( j)
Ch(k)

(n) + µ
( j)
Ch(k)

, for k = {1, 2, 3}

w( j)

q( j)
Ch(k)

(n + 1) = w( j)

q( j)
Ch(k)

(n) − µ( j)
Ch(k)

, for k = {1, 2, 3}

} else if x̂Ch(n) > xCh(n){
w( j)

p( j)
Ch(k)

(n + 1) = w( j)

p( j)
Ch(k)

(n) − µ( j)
Ch(k)

, for k = {1, 2, 3 }

w( j)

q( j)
Ch(k)

(n + 1) = w( j)

q( j)
Ch(k)

(n) + µ
( j)
Ch(k)

, for k = {1, 2, 3 }

}

The modifying step-size µ( j)
Ch(k)

value is determined as follows,

µ
( j)
Ch(k)

= min
{
2−6;µ( j)

Ch(k)

}
, (10)

where,

µ
( j)
Ch(k)

=

∣∣∣xCh(n) − x̂Ch(n)
∣∣∣

23 ·
3∑

k=1
αk ·

(
gCh(p

( j)
Ch(k)

) − gCh(q
( j)
Ch(k)

)
) (11)

and αk = {1; 0.5; 0.5}.

4.2. OLS+

Extended version of Ordinary Least Square (OLS+) is characterised by a slightly more
computational complexity than RLS. In addition to the update (O(r2) complexity, as in RLS) of the
square matrix R(n) autocovariance (r×r dimensions), an additional procedure for determining the
inverse matrix with the O(r3) complexity is required.

In the OLS+ method, prediction coefficients are calculated adaptively, individually for each coded
sample, minimising the mean square error in a certain limited backward area. The influence of older
samples is limited by the use of the forgetting effect determined by the factor ff.

In OLS+, the basic matrix equation used to calculate the vector w(n) has been extended by the
element ubias, which comes from the principles of ridge regression [28]. The ubias element modifies
the main diagonal values in autocovariance matrix R(n). This prevents the occurrence of a singular
matrix and also improves the overall efficiency of modelling. The vector of prediction coefficients is
obtained by solving the matrix equation (for simplification the designations of L and R channels have
been removed at this point, remembering that for each channel, there are separate RCh(n) matrix’s and
vectors wL(n) and wR(n), as described in Section 2, Formula (2)):

w(n + 1) = R−1
bias(n + 1)·q(n + 1), (12)

where the matrix Rbias(n + 1) is complemented by a value ubias(n + 1):

Rbias(n + 1) = R(n + 1) + ubias(n + 1) · I, (13)

where I is a identity matrix. In [16], ubias was a fixed value. Based on the work in [28], it was proposed
to determine the ubias in the following way,

ubias(n + 1) =
r · (1− f f ) · cOLS · e2(n)

max
{
1, w2

j (n)
} , for j ∈ 1; r. (14)
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Elements Rj,i(n + 1) of the matrix R(n + 1) with dimensions r×r are updated after encoding each
subsequent sample as follows.

Rj,i(n + 1) = cOLS·x(n − i)·x(n − j) + ff·Rj,i(n). (15)

Therefore, the elements qj(n + 1) of the vector q(n + 1) with dimensions r×1 are updated as follows.

qj(n + 1) = cOLS·x(n)·x(n − j)+ ff·qj(n). (16)

For the first 100 samples, the predictive model is not determined, due to the insufficient
representativeness of data in the autocovariance matrix, so a simple DPCM prediction model of the
first order is used. The weight

cOLS = (serr(n + 1) + 2)−
3
4 (17)

is dependent on the calculated iterative value

serr(n + 1) = hf·serr(n)+ |e(n)|. (18)

The introduction of cOLS is intended to reduce the role of input data for which larger absolute
prediction errors |e(n)| are obtained. The best compression results were obtained at r = 20 (predictor
using 10 samples back from both channels) and with forgetting factors ff = 0.9983 and hf = 0.69.

The OLS+ method has greater computational complexity than in case of RLS method because
of need to inverse the matrix. An advantage of OLS+ is the better efficiency of the predictive model,
obtained by using additional operations on autocovariance matrix before it is inverse, according
to the Formulas (13), (17), and (18). It is different to the case of the method of fast adaptation in RLS
as it applies to the already inverted matrix, which is more sensitive and difficult to determine the
common forgetting factor that ensures proper efficiency in all the test base files. For this reason, in the
MP4-ALS-M23 forgetting factor has a universal value equal 1.

5. Cascade Connection of Prediction Method

In the solution described in [24] based on prediction models with backward adaptation, a cascade
connection of individual five stages (blocks) is used. The first one is the constant predictor DPCM,
whereas the second block uses the RLS method for example with an order rRLS = 16 (using w vector
with eight wj coefficients per channel in stereo mode [24,29]). The remaining three blocks (see Figure 1)
use the NLMS method (see Section 3), wherein each subsequent block the smaller prediction order is
used; the outputs of subsequent blocks are dependent on the values calculated in the preceding blocks.
For the NLMS blocks, the following prediction orders were proposed, ri = {384, 112, 16}.

Our previous approach in [16] also uses a cascade of five blocks including three subsequent
blocks of the modified version of NLMS with orders {1000, 25, 10}. In the solution proposed here,
which is an extension of the codec from work [16], the prediction order in the middle NLMS block
has been increased from r = 25 to r = 380. Instead of the OLS block, an improved version of OLS+
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has been introduced, whose simplified version has been successfully used earlier in lossless image
compression [30,31].

In Section 4, two new approaches to the initial prediction stage (ALCM+ and OLS+) are proposed.
In Figure 2, the proposed solution with the ALCM+ block (of lower complexity) is shown. The higher
complexity version differs only in that the OLS+ block has been introduced in place of DPCM and
ALCM+ blocks.
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If we define w(j)(n) as a vector that stores the prediction coefficients used in the j-th stage of the
cascade, then the relationships between the successive stages of the cascading system are as follows,

y1(n) = x(n − 1) (19)

y j(n) =
r j∑

i=1

w( j)
i (n) · e j−1(n− i), for j > 1 (20)

e1(n) = x(n) − y1(n), (21)

ej(n) = ej−1(n) − yj(n), for j > 1. (22)

Compared to the original approach presented in [24,29], the initial DPCM block has been
abandoned (y1(n) = 0), and the RLS block has been replaced with the extended OLS+ block, where
interchannel dependencies are removed.

After K stages of prediction blocks as the last block of determining the final version of the predicted
x̂(n) = yK value, the method of removing the cumulative prediction error was added where the Cmix

value is calculated as the constant component (bias), depending on the individual number of the context
for each successively coded x(n) sample (see Section 6). This method earlier was successfully used only
in lossless image compression [32]. This block is marked as Context-Dependent Constant Component
Removing (CDCCR) and, similarly to the development of NLMS blocks, has been described in detail
in Section 3.

The final prediction error is calculated from

e(n) = x(n) −
⌊
y1(n) + y2(n) + . . .+ yK(n) + Cmix + 0.5

⌋
. (23)

The last two blocks (marked in Figure 2 as Golomb Code and CABAC) in the cascade audio data
compression system proposed here are used to efficiently code prediction errors e(n) into the resulting
binary data stream (see Section 7).

In Table 1, the first-order entropy results for 16 test files are presented (more about first-order
entropy in Section 7). The first three columns contain entropy results after applying DPCM + ALCM+,
DPCM + RLS and OLS+, respectively. The last three columns present the results of the same set, but
with an additional three NLMS blocks with prediction orders {1000, 380, 10}, respectively. In both RLS
and OLS+, blocks the prediction order of r = 20 was used (the average first order entropy of the whole
database was bold in the last row of Table 1.).
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Table 1. Comparison first-order entropy using DPCM + ALCM+, DPCM + RLS and OLS+ without
and with connection three Normalised Least Mean Square (NLMS) blocks in cascade.

Without Three NLMS Blocks With Three NLMS Blocks in Cascade

File ALCM+ RLS OLS+ ALCM+ RLS OLS+

ATrain 8.3507 8.1934 8.2817 7.7531 7.7088 7.6675

BeautySlept 9.8388 9.7497 9.8416 8.8806 8.8194 8.7118

chanchan 10.3974 10.3807 10.3537 10.2931 10.2278 10.1932

death2 6.4038 7.0594 6.5856 6.6436 6.9072 6.3777

experiencia 11.5514 11.5710 11.5828 11.3683 11.3198 11.2973

female_spech 5.8583 5.6922 5.7743 5.7413 5.5754 5.5857

FloorEssence 10.4917 10.4153 10.3952 10.1471 10.0712 10.0134

ItCouldBeSweet 9.6181 9.3986 9.4630 9.3595 9.2149 9.2689

Layla 10.6077 10.5589 10.6175 10.2457 10.1759 10.1559

LifeShatters 11.1976 11.1492 11.1698 11.0151 10.9659 10.9481

macabre 10.1090 10.1758 10.1952 9.5819 9.5489 9.5070

MaleSpeech 5.8177 5.7310 5.7632 5.7054 5.6156 5.5813

SinceAlways 11.5095 11.3424 11.3904 11.3111 11.2132 11.2034

thear1 12.0500 11.9855 12.0026 11.9159 11.8660 11.8490

TomsDiner 8.2075 7.9984 8.0337 7.9481 7.7740 7.7600

velvet 11.4401 11.2113 11.1379 11.0710 10.8298 10.7851

Average 1st order entropy 9.5906 9.5383 9.5368 9.3113 9.2396 9.1816

An important conclusion is that the advantage of OLS+ over RLS is only noticeable after including
three NLMS blocks in the cascade prediction system. This shows how unobvious the purely theoretical
approaches can be. Only practical experiments (see [24]) allow determining the final universal form
of the cascade prediction system.

The final solution proposed in this work is therefore the cascade shown in Figure 2 after taking
into account the changing of the first two DPCM + ALCM+ blocks into the OLS+ block.

6. Removing Context-Dependent Cumulate Prediction Error

Often prediction methods can introduce constant (bias) components in predetermined prediction
errors. The nature of component depends on the properties of a context defined as (heuristically
selected) a set of features the nearest neighbourhood. In practice, the division into a large number
of contexts is used (it can be from several hundred to several thousand), which precisely allows
to determine the type of the closest neighbourhood of the coded sample using different features of the
previous few samples and previously coded prediction errors. The context number can be represented,
e.g., as the i-bit-number, where each bit can be determined in a separate way; for example, by two-state
quantisation of the module of the previous prediction error, checking if the condition |e(n − 1)| > 50 or
checking the condition x(n − 1) > x(n − 2).

For example, with i = 11 different rules of this type, 2048 contexts can be created, and each can
adaptively calculate a separate average or median value from previous prediction errors that can
be subtracted from the predicted prediction error at the next occurrence of the given context in the
coding step.

This idea is commonly used in relation to image coding [32]. The adaptive method of removing
a constant component is used both in the CALIC [33] and JPEG-LS algorithms [34].

The algorithms are shown in Algorithm 2, where j is the context number, S(Ch)
( j)

is the current

cumulative value of prediction error e(Ch)
K (n) in the given context, N(Ch)

( j)
is the count of occurrences
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of the given context and C(Ch)
( j)

is the current correction value that should be added to the predicted
value eK(n) as its corrective value.

Algorithm 2: Our authorial algorithm of adaptation C(Ch)
( j)

value based on the CALIC method.

Initial value:
S(Ch)
( j)

:= C(Ch)
( j)

:= 0, for every j;

N(Ch)
( j)

:= 4, for every j;

if | e(Ch)
K (n)| < 4 · 4

√
Var(X) then {

S(Ch)
( j)

:= S(Ch)
( j)

+ e(Ch)
K (n);

N(Ch)
( j)

:= N(Ch)
( j)

+ 1;

}

C(Ch)
( j)

:= S(Ch)
( j)

/N(Ch)
( j)

;

The periodic forgetting technique is also useful, which additionally allows adjustment of the
values of the constants C(Ch)

( j)
to the local properties of the j-th context, if N(Ch)

( j)
is greater than 127 then

N(Ch)
( j)

is set on 64 and S(Ch)
( j)

is set as S(Ch)
( j)

/2.
To remove a context-dependent constant component, instead of the arithmetic mean used in CALIC,

it is possible to use the median of a set of prediction errors previously appearing in a given context.
Also, in this case, it is worthwhile to additionally use the technique of forgetting periodic after

the occurrence counter of N(Ch)
( j)

j-th context has reached the value of 128. This improves the overall
efficiency of compression while also reducing the size of the vector to 64 elements, which store the
prediction errors that appear earlier in the given context. Forgetting periodic consists in reducing the
vector by half of 128 elements by removing the first 32 and last 32 elements sorted ascending vector
which stores the prediction errors that appear earlier in the given context.

In presented codec this solution was proposed to encode an audio signal with equally good effect
as the last block CDCCR in the cascade as an improvement of the value of the predicted coded samples.
Due to this work a bit average can be shortened by up to 1% (depending on the input data and the
efficiency of previous prediction blocks).

The idea is based on the determination of 4 types of contexts, and each of them is used twice
(using the arithmetic mean and medians marked with the AVE and MED symbols, respectively). In this
way, eight constant components are created, and, on the basis of which, the final weighted C(Ch)

mix is
determined by

C(Ch)
mix =

1
36

4 ·
4∑

i=1

C(Ch)AVE
( j(i))

+ 5 ·
4∑

i=1

C(Ch)MED
( j(i))

. (24)

The high efficiency of the mixed method of constant component correction results from the
principles of mixing correction values that are burdened by some of level of uncertainty, which may
individually deteriorate in some situations the final level of prediction error (incorrect prediction
of correction values). This is prevented by mixing (weighted average) that causes the correlation
of these uncertain correction values to a large extent. At the same time, this method reduces the
chances of occurrence of the asymmetry effect of the distribution, which can be manifested by the
occurrence in the given j-th context of differences between the position in the histogram, indicated as
the arithmetic mean C(Ch)

( j)
of prediction errors, and the actual position indicating in the histogram the

maximum probability (histogram of the Laplace distribution has one maximum), indicated in [35].
In Table 2 is a set of decision rules based on which the numbers of contexts are determined.

Decisions are two-state (binary) quantizer that returns the value of bit 0 or 1 (individual bits are
defined here as αi), which corresponds to the fulfilment or non-fulfilment of a given condition (YES/NO
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answer). As they are partially repeated in subsequent ways of building the context number, they will
be listed Table 2, and the construction rules for the four types of context number are described in the
following Sections 6.1–6.4.

Table 2. A set of decision rules for determining number of contexts.

Bits Condition

αi 2·x(n − i) − x(n − i − 1) > x̂(n), for i = {1, 2, 3}

αi + 3 x(n − i > x̂(n), for i = {1, 2, 3}

αi + 6 e(n − i) > 0, for i = {1, 2}

αi + 8 e(n − i) > e(n − i − 1), for i = {1, 2, 3}

αi + 11
∣∣∣x(n− i) − x̂(n)

∣∣∣ > Th(i), for i = {1, 2, 3, 4}, Th(i) = {250, 100, 1500, 1500}

αi + 15
∣∣∣e(n− i)

∣∣∣ > Th(i), for i = {1, 2}, Th(i) = {50, 150}

αi + 17
∣∣∣e(n− i)

∣∣∣ > Th(i), for i = {1, 2}, Th(i) = {750, 900}

αi + 19 x(n − i) > x(n − i − 1), for i = {1, 2}

α22 1.75·x(n − 1) − 0.75·x(n − 2) > x̂(n)

6.1. First Type of Context

The number 1 of the context type is determined as a ten-bit number of κ9κ8κ7κ6κ5κ4κ3κ2κ1κ0

characters, where κi − 1 = αi for i = {1, 2, . . . , 8}. The last two bits of κ9κ8 are determined using
a four-state quantizer of the sum of S1 with three thresholds {50, 250, 700}, where

S1 =
5∑

i=1

∣∣∣x(n− i) − x̂(n)
∣∣∣. (25)

6.2. Second Type of Context

The number 2 of the context type is determined as a eleven-bit number ofκ10κ9κ8κ7κ6κ5κ4κ3κ2κ1κ0

characters, where κi − 1 = αi + 19 for i = {1, 2}, κi + 1 = αi + 8 for i = {1, 2, 3}, κi + 4 = αi + 11 for i = {1, 2, 3,
4} and κi + 8 = αi + 15 for i = {1, 2}.

6.3. Third Type of Context

The number 3 of the context type is determined as a eleven-bit number ofκ10κ9κ8κ7κ6κ5κ4κ3κ2κ1κ0

characters, where κi − 1 = αi + 19 for i = {1, 2}, κi + 1 = αi + 8 for i = {1, 2}, κi + 3 = αi + 3 for i = {1, 2},
κi + 5 = αi + 17 for i = {1, 2} and κ8 = α22. The last two bits of κ10κ9 are determined using a four-state
quantizer of the sum of S2 with three thresholds {100, 400, 1550}, where

S2 =
4∑

i=1

1
√

i

∣∣∣x(n− i) − x̂(n)
∣∣∣. (26)

6.4. Fourth Type of Context

The number 4 of the context type is determined as a number that is a composite of three values.
The first two are determine as six-state quantizer with thresholds {-100, -10, 0, 10, 100} for value d1 and
d2, respectively, where di = x(n − i) − x(n − i − 1), for i = {1, 2}. The third value of the context number is
the six-bit κ5κ4κ3κ2κ1κ0 character value, where κi − 1 = αi + 8 for i = {1, 2}, κ2 = α2, whereas three bits
κ5κ4κ3 are determined using an eight-state quantizer of the sum of S2 with seven thresholds {40, 80,
180, 400, 1000, 2000, 4000}, totally obtaining 6·6·26 = 2304 contexts of type number 4.
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7. Adaptive Golomb Code and Context Adaptive Binary Arithmetic Coder

Practical implementation of effective data encoding involves minimising the average number
of bits per single data generated by the S source (in the case of audio compression the input data are
samples, in this work, we adopted the standard 16-bit per samples, which the source S is a stream
of sample from CD). Depending on what sources we deal with, we can divide them into sources
without memory DMS (Discrete Memoryless Source) and sources with memory CSM (Conditional
Source Model). Considering this division from the point of view of Markov model, in the first case,
for the lower limit of the bit average we can introduce unconditional entropy (H(SDMS) - zero order
entropy), and in the second case, we deal with the conditional entropy of the k-th order defined as
H(S|C(k)), where in the case of audio signal, the context of C(k) is defined in example as k samples
backwards. By introducing the total entropy as H(S), we obtain the relation H(S) ≤ H(S|C(k)) ≤H(SDMS).

Trying to use a static version of Huffman code, for example, in the case of 16-bit data, requires
giving the decoder a probability distribution of the encoded file, which is an impractical idea, because,
with 16-bit samples and possibly low precision of writing, the individual probabilities pi, for example,
using 2 bytes per one pi value, the size of the file header itself will be 217 B. In addition, the zero order
entropy, which is the lower limit of the bit average of the static encoder, indicates that this approach
gives unsatisfactory results (see the second column in Table 3).

Table 3. Entropy and bit-average values for several encoder settings.

File Zero Order
Entropy

First-Order
Entropy

Golomb
Code 1 CABAC 2 CABAC 3 Our

Proposition

ATrain 11.894 7.664 7.370 7.210 7.135 7.134

BeautySlept 11.942 8.712 8.502 8.346 8.266 8.265

chanchan 14.214 10.181 9.959 9.795 9.728 9.711

death2 14.559 6.323 5.840 5.779 5.652 5.642

experiencia 14.856 11.285 11.106 10.945 10.879 10.874

female_spech 12.537 5.580 4.637 4.611 4.496 4.493

FloorEssence 14.708 10.001 9.506 9.342 9.279 9.267

ItCouldBeSweet 15.125 9.262 8.544 8.383 8.308 8.307

Layla 13.753 10.153 9.811 9.649 9.574 9.573

LifeShatters 14.830 10.946 11.030 10.871 10.786 10.786

macabre 13.852 9.506 9.314 9.159 9.082 9.082

MaleSpeech 12.421 5.574 4.767 4.712 4.594 4.589

SinceAlways 14.652 11.200 10.615 10.456 10.379 10.377

thear1 15.128 11.847 11.644 11.487 11.405 11.406

TomsDiner 12.654 7.752 7.356 7.188 7.116 7.114

velvet 13.884 10.773 10.243 10.068 10.002 9.999

average 13.813 9.172 8.765 8.625 8.543 8.539
1 after using Golomb code, 2 using long-term adaptation, 3 using long- and medium-term adaptation.

For this reason adaptive versions of codecs are used in practice. Moreover, since the audio data do
not constitute a sequence of independent values it is difficult to determine and apply the k-th order
of Markov model. In practice, it is assumed that the removal of interdependencies is possible by use
of predictive techniques writing only predictive errors into the file. The prediction model can be a linear
model of the k-th order or a more complex nonlinear solution, but we reduce it to the one value predicted
x̂(n) (creating not explicitly defined first-order Markov model), which we subtract from the current
sample x(n), see Formula (1). As a result a sequence of prediction errors can be interpreted as a source
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for which the first-order entropy value is noticeably smaller than the zero order entropy (see the third
column in Table 3). It should be noted here that it is extremely difficult to determine the total entropy
H(S) because it is difficult to determine the order of the Markov model, which will take into account all
the interdependencies between the individual data (an example is the use of linear prediction of the
order of r = 1000 in the first degree of NLMS proposed here the cascading prediction technique).

Usually, instead of a static Huffman code, the adaptive Rice coder [36] and the multivalued
arithmetic coder with quantisation are used for efficient coding of prediction errors [15]. This allows
reducing the size of the alphabet as a result of which a part of less-significant bits representing the
value of prediction errors is saved without further coding [37]. The method proposed here has a similar
implementation complexity compared to the one described in the work [37], where simple mapping
function is used. That indicates currently the best Rice code parameter, which corresponds statistically
to the most suitable fit (in the medium-term sense) to the distribution used by the coder.

Our solution uses an adaptive Golomb code, whose output data is additionally subjected
to compression using two context adaptive binary arithmetic coders (CABAC). Each of these coders
has its own way of determining the number of the context with which the individual probability
distribution of bits 0 and 1 is associated. This solution is faster than used in work [16] while it is
characterised by greater flexibility in adjusting to changes in signal features over time. The combination
of adaptive versions of the arithmetic encoder and Golomb code allows for taking into account changes
in the characteristics of the probability distribution of prediction errors over in time, which involves
into a further decrease the bit average.

7.1. Short-Term Feature of the Probability Distribution

Analysing the closest neighbourhood composed of samples x(n − i) and the prediction error signal
e(n − i), the fact that there are short-term dependencies between the coded data in sequence can be
used. On the basis of these features, the correct type of distribution of the currently coded modified
prediction error e(n) value can be determined quite accurately, where e(n) = 2e(n) − 1 for e(n) > 0,
and e(n)= −2e(n) in otherwise.

Starting from this assumption, a contextual arithmetic coder is usually designed so that has t
distributions of probabilities associated with individual context numbers from 0 to t − 1. Theoretically,
it is expected the increase in compression efficiency with the increasing number of contexts. However,
there is the problem of too slow adaptation of their distribution to the approximate actual state.
The adaptive nature of calculation of probability distributions requires a quick defined of the
approximate target shape of each of t distributions. Therefore, a certain compromise should be
made between the number of contexts and the speed of adaptation of their distributions. In coding
of images t is 8 [33], 16 and even 20 [38].

The proposed solution uses nine classes that define coarse signal characteristics from a short-term
point of view, using principles similar to those used in the works [39,40]. The ω parameter is calculated
as a weighted average of z = 17 previous prediction error modules |e(n − i)|:

ω =
5
4z

z∑
i=1

∣∣∣e(n− i)
∣∣∣

√
i

. (27)

The ω value is quantised using t − 1 thresholds th(j), to obtain the short-term arithmetic context
number. For t = 9, thresholds were set as th = {4, 10, 30, 50, 80, 180, 500, 1100}, receiving bmedium number
belonging to the range 0; 8.

It is possible to include ultra-short-term features based on only the closest four errors, by calculating
the max{e(n − 1), e(n − 2), e(n − 3), 0.6·e(n − 4)} value. If the value is greater than 1500, the bultra bit
assumes value 1, otherwise 0.
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7.2. Medium-Term Features of the Probability Distribution

The values of bmedium and bultra presented in Section 7.1 provide information on short-term
features of the currently estimated probability distribution. Additionally, in the case of the prediction
error stream, the assumption is made about the medium-term stationarity of its distribution, which is
usually similar to the geometrical distribution. Data on such features can be coded in a highly efficient
manner using the Golomb code family [18].

For each coded e(n) value, an individual m group number is calculated. For this purpose,
the adaptive average cost of coding with the Golomb code use one of the appropriately selected
40 probability distributions. Probability distributions are defined based on the formula G(i) = (1 − p) ·
pi, with individual values p(j) associated with the j-th distribution depending on the m(j) parameter
of the Golomb code, which is the j-th number from the experimentally selected set m = {1, 2, 3, 4, 6, 8,
12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 448, 512, 576, 640, 768, 896, 1024, 1152,
1280, 1536, 1792, 2048, 2560, 3072, 4096, 5120, 6144, 8192}. This increased flexibility gives the Golomb
codes an advantage over the Rice code, for which m values can be only a number 2 raised to an integer
value (e.g., 21 = 2, 22 = 4, 23 = 8, 24 = 16, . . . ).

To calculate a current predicted value of m, in [17], the estimate using backward adaptation
was proposed, applying a local assumption of stationarity S(n), being the average value of modified
prediction errors. Assuming that the expected value of modified prediction errors is inversely
proportional to 1 − p, we obtain p = (S(n) − 1)/S(n), where the expected value of S(n) equals

S(n) =
1

NG

NG∑
i=1

e(n− i), (28)

where NG specifies the number of previously coded modified prediction errors. The group number m
can be calculated using formula presented in [41,42] (at δ = 0):

m =

⌈
−

log10(1 + p)
log10 p

+ δ

⌉
. (29)

An experimental correction value δ = 0.41 [17] was introduced to Formula (29) which resulted in a
slight decrease in the bit average (for the whole test base). At δ = 0, there is a linear relationship between
m and S(n) values of m = (ln 2) · S(n) [43], and after taking into account δ = 0.41, an approximated form
of the formula was determined:

m = b0.693147 · S + 0.563636c. (30)

After simplifying the Formula (28) to the iterative form and using the auxiliary sum Sγ, which is

adapted using the formula S(q)
γ (n) = e(n− 1) + γq · S

(q)
γ (n) , we obtain the value of S(q)(n) = (1− γq) ·

S(q)
γ (n). The value of γq is the experimentally determined forgetting factor, in work [17] it was set at

a compromise level of 0.952. A noticeable improvement was obtained by using two forgetting factors
(γ1 = 0.935 and γ2 = 0.992) and using them to calculate two sums of S(1)(n) and S(2)(n). In addition, we
use the weighting effect of these sums, calculating the current average costs Lcost(q) of encoding the
input data stream (for q = {1, 2}) using Golomb codes separately for parameters m1 and m2:

Lcos t(q)(n) = 0.8 · Lcos t(q)(n− 1) + length(q)(e(n)), (31)

which allows calculating weights γcos t(q)(n) = 0.7Lcos t(q)(n) necessary to calculate the final value of m:

m =

0.693147 ·
γcos t(1)(n) · S(1)(n) + γcos t(2)(n) · S(2)(n)

γcos t(1)(n) + γcos t(2)(n)
+ 0.563636

, (32)
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which is additionally scaled to best approximate one of the 40 values found in the m vector. The method
of scaling is as follows; for m < 1, we assign m = 1 and values between 1 and 6 remain unchanged,
whereas for m > 6, we calculate m := b1.65 ·mc. The last step is the approximation of the calculated m
value to the nearest of those in m vector. In this way, the index of the quantised value of m (hereinafter
referred to as bGolomb) is obtained. The bGolomb value is a fragment of the context number and is
invariable when encoding all bits of the next Golomb code word representing the number e(n + 1).

This allows for a highly flexible adaptation to the local features of the probability distribution
of currently coded prediction errors as well as the rate of change of features of this distribution.
Then, the quantisation of the m parameter to only 40 values is a compromise approach with regard
to the uninterrupted adaptation of each of the 40 probability distributions that are used in the binary
arithmetic coder, by which the bit stream coming from Golomb coder is coded.

The Golomb code word coding e(n) value consists of two elements. The first one is the
uG =

⌊
e(n)/m

⌋
number specifying the group number that is written in the unary form (sequence uG

zeros ending with one). The second element is the vG = e(n) − uG ·m number, called the number
of element in a group (remainder of division by m). It is coded using a phased-in binary code (which is
the variant of the Huffman code for sources with m equally probable symbols [42]). Specifying the
k =

⌈
log2 m

⌉
parameter means that, in each group, the first l = 2k

−m elements vG are coded using
k − 1 bits, and the remaining m − l elements are coded as number vG + l using k bits [13].

7.3. The Way of Determining the Number of Contexts

Binary streams representing uG and vG are coded using separate arithmetic coders, with separate
ways to determine the context number. The ctxu context number used to encode the uG series with
zeros terminated with one is calculated for each consecutively coded bit as follows,

ctxu = 23
·(18·bGolomb + 2·bmedium + bultra) + bunary (33)

The bunary value is a three-bit number (in the range from 0 to 7) specifying the number (counting
from the most to the least significant) of the currently coded unary bit of the uG number. When the
bit number is greater than 7 (which takes less than 1% of cases) then bunary = 7. We therefore obtain
23
·18·40 = 5760 contexts ctxu.

In the case of the second coder used to encode the vG, number, there are slightly fewer contexts,
because 24

·5·40 = 3200. The ctxv number is calculated from the dependency

ctxv = 24
·(5·bGolomb + bphased-in) + 23

·bbinary2 + 22
·bbinary1 + bunary2 (34)

where bunary2 is equal bunary2 = min{bunary, 3}. The bbinary1 is the oldest (first in coded order) bit
of value vG. The bbinary2 is the second oldest (second coded) bit of value vG. Although bphased-in

is a number (in the range from 0 to 4) specifying the number (counting from the more-significant
to less-significant bits) of currently coded bits of value vG, if the bit number is greater than 4, then
bphased-in = 4. Furthermore, when bphased-in = 0, then bbinary1 = bbinary2 = 0 is set, and if bphased-in = 1,
then bbinary2 = 0.

7.4. Long-Term Adaptation

In the case of an context adaptive binary arithmetic coder with each number of the context, a probability
distribution consisting of only two values—p(0) and p(1)—is associated. In practice, the number
of occurrences of zeros and ones denoted n(0) and n(1) respectively, then p(0) = n(0)/(n(0) + n(1)),
and p(1) = 1 − p(0). The current adaptation of the distribution consists in increasing (in a given
context) by 1 counter of occurrences of the currently encoded bit. Additionally, if the total number
of occurrences of zeros and ones in a given context exceeds the value of Nmax, then their counters n(0)
and n(1) are divided by 2, which is the equivalent of the long-term forgetfulness method. For this
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reason, the designer of such a binary coder should determine both the Nmax value and the initial values
of n(0) and n(1) within each context in such a way as to obtain the best fit to the encoded data.

In the proposed solution, in all contexts of the uG coder, Nmax = 29 was set, and the counters n(0)
and n(1) were initialised with the value 1. In the case of the vG coder, in all contexts, Nmax = 212 was
set, and the counters were initialised as n(0) = 64 and n(1) = 60.

7.5. Analysis of Practical Aspects of Prediction Error Encoder Implementation

Table 3 presents a comparison of the results for several different encoder settings, using the
example of a database containing 16 test files (the average of the whole database was bold in the
last row of Table 3). The second column contains the values of H(SDMS) unconditional entropy here
referred to as zero order entropy. The third column contain entropy values of the first-order H(S|C(1))
for prediction errors (we are talking about conditional entropy in which according to the first-order
Markov model process the context is the predicted value which was calculated using cascade prediction
(see Formula (23)). There is a significant decrease (bit average for the whole database of 16 files) from
13.813 to 9.172 bits per sample.

The fourth column takes into account the actual bit average after using our proposed adaptive
Golomb; a code described in Section 7.2. This allowed to obtain a bit average lower than H(S|C(1))
by 0.407 bits per sample, which shows that predictive modelling is not able to fully remove the
mutual information.

On the other hand, the introduction of a block in the form of an context-free arithmetic encoder
(with active default long-term adaptation, see Section 7.3), which additionally encodes the stream
of bits coming out of the Golomb encoder, allowed for a further decrease of the bit average by another
0.14 bits per sample.

After introducing context rules (medium term adaptation) to the encoder CABAC, the bit average
was reduced by 0.082 bits per sample, and after including additional contexts in CABAC (in the short
term adaptation, see Section 7.1), the result was improved by reducing the bit average by 0.004 to the
target level of 8.539 bits per sample.

8. Schematic Diagram of the Proposed Cascading Audio Data Encoder Method

In Figure 3, the diagram of the target encoder proposed in this work is presented. Although the
cascading concept was previously used [24,29] and was considered the most effective way of lossless
audio compression, our approach demonstrates that there is scope for further significant improvement
within this concept.
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In general, we can distinguish two main stages: In the first stage, the prediction value x̂(n) and
prediction error e(n) are calculated (see Formula (23), which was executed by the blocks in the border
in the form of a dashed line: OLS+, 3 stages of LMS, CDCCR). The second stage is coding prediction
error to binary stream (implemented by Golomb code and CABAC blocks).
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Introducing our proposal of OLS+ method to the initial prediction stage allows to remove
the interchannel dependencies with the highest correlation with the currently coded sample x(n).
The Formula (2) is used here and the method of adaptation of the prediction coefficients described
in Section 4.2. The resulting prediction error e1(n) and previous errors e1(n − i) contained in the
buffer become an input data stream for the next block, which is the first stage of LMS. In LMS1,
the dependencies between further samples are removed by linear prediction of the order r1 = 1000.

Because as an optimised version of adaptive linear prediction (NLMS, see Section 3) with
a relatively slow convergent coefficient adaptation procedure (Formula (5)) is used; it cannot fully
remove these dependencies. For this reason, this method is used in a cascade manner in two further
steps of prediction improvement (using descending orders r2 = 380 and r3 = 10), minimising the mean
of prediction error. These three LMS blocks use the Formula (20) to calculate consecutive predictive
values y2(n), y3(n) and y4(n) and the corresponding prediction errors e2(n), e3(n) and e4(n) obtained
from Formula (22).

The last stage in the prediction part is an attempt to remove the context dependent constant
component by using our proposal CDCCR method, which has not been widely used in lossless
audio compression before. After subtracting from e4(n), the constant component Cmix calculated from
Formula (24), we obtain the final form of the prediction error e(n), which is transmitted to the input
of the adaptive Golomb encoder (Section 7.2). This block generates a bit stream, which by use of context
dependencies between individual bits is encoded using an arithmetic encoder. In contrast to frequently
used multivalue arithmetic encoders, the binary variant of the CABAC adaptive binary encoder is
used (see Section 7.3).

The proposed solution is time symmetrical, which means the same complexity is also in case
of decoding. The decoding procedure is very similar to the coding stage. In the first two steps
(arithmetic decoder and Golomb decoder), the prediction error e(n) must be recovered from the binary
stream. This prediction error is added to the predicted value, which is calculated in the same way as
in the encoder (see the blocks in the border made by the dashed line in Figure 3), obtaining a decoded
sample of x(n). This is a simple transformation of Formula (23) into the following generalised form
of the K-step predictive cascade:

x(n) = e(n) +
⌊
y1(n) + y2(n) + . . .+ yK(n) + Cmix + 0.5

⌋
. (35)

Our implementation of the solution proposed here was done in the C language, without considering
optimisation of the code or attempts to its parallelisation. However, even with stereo and 44,100 samples
per second, it still works online, and the encoding and decoding times are linearly dependent on the
number of samples. The encoding program uses one 3.4 GHz i5 processor core in 69.07% (version
with ALCM+, see Figure 2) and 93.36% (version with OLS+ block, see Figure 3). In the latter case by
dividing the total coding time into blocks we obtain the following proportions: 32.5% − OLS+ block
with the order of predictions r = 20, 53.7% − 3 LMS blocks with the total order of predictions r = 1390,
7.5% − CDCCR block. The remaining 6.3% is devoted to the work of blocks: Golomb code, CABAC
and for input/output operations.

It is worth noting that the schema of the faster version of the codec proposed here (see Figure 2),
in which instead of the OLS+ block the our proposal of ALCM+ method was used with quick adaptation
of prediction coefficients, the bit average of 8.667 bits per sample (average for the whole test base)
was obtained. This value is lower than in the case of the MP4-ALS-RM23 model in the best mode
(8.718 bits per sample, see Table 4) using RLS block of higher implementation complexity than in the
case of ALCM+. For more comparisons with other existing publicly available codecs see Section 9.
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Table 4. The bit average of 16 encoded test files using different audio coders.

File Monkey’s
Audio 1 TAK v2.3.0 MP4 2 LA v0.4b OLS-NLMS [16] Our

Proposition

ATrain 7.441 7.571 7.232 7.204 7.199 7.134

BeautySlept 8.826 8.850 8.305 8.318 8.491 8.265

chanchan 9.938 9.971 9.886 9.782 9.746 9.711

death2 5.930 5.778 6.660 5.907 5.873 5.642

experiencia 11.029 11.153 10.992 10.908 10.911 10.874

female_spech 5.085 4.674 4.710 5.302 4.500 4.493

FloorEssence 9.750 9.841 9.509 9.362 9.355 9.267

ItCouldBeSweet 8.577 8.577 8.396 8.591 8.255 8.307

Layla 9.885 9.943 9.691 9.586 9.633 9.573

LifeShatters 10.874 10.968 10.836 10.777 10.828 10.786

macabre 9.275 9.433 9.076 9.096 9.166 9.082

MaleSpeech 5.221 4.781 4.812 5.233 4.629 4.589

SinceAlways 10.539 10.650 10.473 10.404 10.394 10.377

thear1 11.504 11.622 11.425 11.398 11.435 11.406

TomsDiner 7.423 7.341 7.268 7.153 7.116 7.114

velvet 10.508 10.314 10.212 10.248 10.029 9.999

Bit average 8.863 8.842 8.718 8.704 8.597 8.539
1 Monkey’s Audio in version 4.33, 2 MP4-ALS-RM23 in the best mode.

9. Experimental Research

Sixteen fragments of recordings (various genres of music as well as men’s and women’s speech
recordings) were used to perform efficiency analysis. The recordings are long for several seconds, and
all available in the database [44]. Comparing to the bit average of the general purpose coder RAR v5.0,
our solution achieves as much as 21.08% better result, because the bit average of compressed the same
test base using RAR equal 10.82. The result of the encoding of these recordings by the proposed method
is presented in Tables 4 and 5, where the results of other effective available audio coders are also
included (the best results for the individual files in Table 4 are underlined, the bit average of the whole
database was bold in the last row of Tables 4 and 5). The bit average obtained after coding proposed
in this work using the multistage OLS+/NLMS method was the lowest of all coders listed in the
table. The propose method had an 8.7% lower bit average than obtained using the MP4-ALS-RM23
method (default mode), and also had a 2.1% lower bit average compared to MP4-ALS-RM23 using the
best mode.

Table 5. The bit average of 16 encoded test files using different audio coders.

File Shorten
v3.6.1 TTA v3.4.1 MP4 1 FLAC v1.3.2 WavPack

v4.60.1
Nanozip

v0.09a

ATrain 8.637 8.189 7.862 7.933 7.792 7.396

BeautySlept 10.724 10.188 10.049 10.005 9.825 8.671

chanchan 10.863 10.077 10.160 10.127 10.032 9.980

death2 7.152 6.306 6.496 6.284 6.620 5.982

experiencia 12.290 11.334 11.377 11.371 11.252 11.099

female_spech 7.539 5.267 5.242 5.329 5.204 5.048
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Table 5. Cont.

File Shorten
v3.6.1 TTA v3.4.1 MP4 1 FLAC v1.3.2 WavPack

v4.60.1
Nanozip

v0.09a

FloorEssence 11.464 10.176 10.202 10.174 9.922 9.677

ItCouldBeSweet 11.587 9.186 9.016 9.004 8.858 8.776

Layla 10.871 10.300 10.377 10.344 10.202 9.859

LifeShatters 12.177 11.145 11.182 11.146 11.052 10.927

macabre 10.564 10.062 9.965 9.895 9.928 9.267

MaleSpeech 7.532 5.530 5.590 5.649 5.333 5.024

SinceAlways 12.192 11.243 11.164 11.211 10.749 10.564

thear1 12.574 11.703 11.742 11.746 11.635 11.685

TomsDiner 9.709 8.561 8.534 8.404 8.087 7.480

velvet 11.067 11.464 10.672 10.679 10.843 10.656

Bit average 10.434 9.421 9.352 9.331 9.208 8.881
1 MP4-ALS-RM23 in default mode.

10. Conclusions

This work presents an extended version of the cascading audio data encoder. In classic solutions
of lossless audio coding, adaptive versions of Rice and arithmetic encoders are used interchangeably.
The proposed solution uses an adaptive Golomb code, which is a generalised form of the Rice code
with potentially higher compression efficiency because of a better adaptation of the code to the current
probability distribution of the currently encoding data. The Golomb codec output is additionally
compressed using a context-dependent adaptive binary arithmetic encoder. In contrast to CABAC [45],
where the Exp-Golomb distribution is used, our proposition adapts better to the sequence of prediction
errors characterised by the geometric distribution.

The proposed adaptive arithmetic coder presented in this paper offers less computational complexity
compared to the coder used in the work [16]. A higher degree of compression was obtained due to a better
algorithm for selection of context numbers, and also due to the omission a multivalued arithmetic coder
in favour a binary variant (this allows increasing the dynamics adaptation to probability distributions
of individual bits of values uG and vG calculated in the Golomb encoder block). This solution is more
flexible also in comparison to classic solutions using the adaptive Rice code.

In the proposed solution, the increase in efficiency of compression compared to the most efficient
option MP4-ALS-RM23 (working in backward adaptation mode) was possible due to introducing a more
efficient OLS+ block in place of RLS, adding an additional CDCCR block in the cascaded predictive
model and introducing an efficient CABAC based on initial compression using the adaptive Golomb
code. The introduced improvements entail a disproportionately large increase in the implementation
complexity relative to the reference version, for which was adopted MP4-ALS-RM23 in the best
mode. Despite the increasing implementation complexity it has been kept at a level enabling real-time
encoding and decoding. Similar conclusions can also be drawn by comparing the reference version
(the best mode) with the MP4-ALS-RM23 in default mode. Therefore, one should be aware that
shortening the length of the result files for each subsequent percentage is paid by the increasing
costs of increasing the implementation complexity. This is similar to the nonlinear increase in energy
necessary to speed up objects that want to approach the speed of light in vacuo. The complexity of an
efficient cascade prediction system also is possible to reduce by regulation not only by modifying the
orders of predictive models in NLMS blocks. We propose using the ALCM+ block with a much lower
implementation complexity compared to RLS and OLS+ blocks.
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