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Abstract: To realize the measurement and exact reconstruction of a pair of parallel profiles, a new
scanning method using four displacement sensors as probes and different probe spacings has been
invented with the advantage of preventing data processing error. The measuring device is placed
between the measured objects and moved by a scanning stage to collect measurement data of
both measured profiles. Considering many existing methods, the high lateral resolution of the
reconstruction result and the rejection of the data processing error cannot always be achieved at
the same time. When the measured profiles are in the short wavelength range, data processing
errors are often on the same order of magnitude as the height difference of the measured profiles.
The new method can eliminate both the straightness error of the measurement reference and the
data processing error. The exact reconstruction retaining the high lateral resolution and without
data processing error can be realized by rational position arrangement of sensors and corresponding
processing method of the measurement data. The new method possesses the following advantages:
(i) achievement of the exact reconstruction without data processing error; (ii) high lateral resolution
not limited by probe spacing; (iii) concise operation without zero calibration of probes; and (iv)
suitability for on-machine measurement. The feasibility and advantages of the new method were
demonstrated by theoretical analyses, simulations, and experimental results.

Keywords: exact reconstruction; different probe spacings; parallel profiles; data processing error;
high lateral resolution; zero-adjustment error

1. Introduction

Scanning methods are widely used in the measurement and reconstruction of straightness profiles.
The motion trajectory of the measuring device always plays the role of the measurement reference,
of which the error will have an impact on the final reconstruction result. Especially for the on-machine
measurement, as the machine tool spindle is used as a scanning stage, the error of the measurement
reference is at the same level as the accuracy of the measured profiles. Therefore, the errors of the
reference must be eliminated to avoid affecting the reconstruction result.

Several multi-probe methods were developed to remove the influence of reference errors.
The two-point method can eliminate the straightness error of the measurement reference [1–5].
Besides, the yaw error of the measuring device during scanning also affects the reconstruction result.
Therefore, the three-point method [6–8], four-point method (or the method using more than four
probes) [9,10], the traceable multiple sensor (TMS) method [11], etc. were invented to overcome the
influence of the straightness error and eliminate the yaw error at the same time. With more probes,
abundant information makes exact reconstruction possible. In some cases, the reconstruction error
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caused by yaw error is too small compared with that caused by straightness error, and the probe
zero-adjustment error will have a significant impact on the final result due to the cumulative effect
when using three or more probes. Therefore, the two-point method has not been replaced and still
widely used by now. Besides, other errors that impact the reconstruction result most include the
zero-adjustment error, the data processing error, and the measurement error of displacement sensors.
When using scanning methods to measure and reconstruct profiles, these errors are worth considering.

Using the height difference between adjacent measurement points, the two-point method, including
the sequential two-point method (STP), the generalized two-point method (GTP), and the combined
two-point method (CTP), can obtain the reconstruction profile by a recursive process. In the STP
method, the step distance of the measurement device is the same as the spacing between two probes,
which is equal to the interval between adjacent sampling points, and the reconstruction result is not
affected by the data processing error. However, due to the size of probes, the number of sampling
points could be small, which means the lateral resolution could not be high enough and there is a
higher probability that some key features of the measured profile will be missed. In the GTP method,
the density of the sampling points is higher, as the interval between sampling points can be smaller
than the probe spacing. Nevertheless, the reconstruction result suffers from data processing error on
account of the higher-order harmonic component distortion. The effect of the data processing error
is especially evident when there are stepwise variations in measured profiles. The CTP method [3]
combines the above two methods and achieves theoretically exact reconstruction of measured profiles.
In many cases, its accuracy is hard to meet due to the assumption of a completely smooth part of the
measured profile to obtain the relative relations of different groups of reconstruction points, which
makes it difficult to implement in practice. Different systems and methods have been developed
to improve the lateral resolution in the absence of the data processing error [12–17]. The common
methods are using additional probes or additional scanning to obtain more measurement information.
While some methods among them are affected by the zero-adjustment error of the probes placed
abreast in the system.

The above methods can be used to reconstruct a single straightness profile under different
conditions. In practical applications, the parameters of a pair of parallel profiles also need to be
monitored. As in many types of ultra-precision equipment, linear motions are orientated by guide rails
or parallel planes, whose accuracies can have a great influence on the smooth operations. On the basis
of those mentioned methods, several measuring systems and methods were designed to measure and
reconstruct a pair of parallel profiles including the cylinder workpiece and guide rails [18–20]. We also
designed a four-probe method to reconstruct a pair of profiles, which can eliminate the reference errors
and the zero-adjustment error through two scannings [21]. All four of these methods have the same
disadvantages as the methods for a single profile that, as mentioned above, the difficulty in satisfying
the exact reconstruction without data processing error and retaining a high lateral resolution at the same
time. In response to this type of problem, we propose a new four-probe system and its corresponding
method to achieve an exact reconstruction of a pair of parallel profiles with high-density sampling
points. Using the new method, in which probes are arranged at different spacings, the measured
profiles can be exactly reconstructed, and the reconstruction profiles can reflect the characteristics of
the measured objects better, especially for the profiles with stepwise variations.

2. The Four-Probe System

The device of the new method, whose purpose is to eliminate the data processing error and retain
a high lateral resolution, is shown in Figure 1. The measuring device is located between two measured
profiles and moves along x-direction by a scanning stage. Four displacement sensors used as probes
are distributed in pairs with different spacings on two sides of the measuring device and installed on
the scanning stage. The probes here could be displacement sensors that utilize different principles,
including contact type and non-contact type, to satisfy the service environment and measurement
requirements. For convenience, the figures in this text are drawn with contact sensors. P3 is opposite
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to P1. The spacing between P1 and P2 is d1 and the spacing between P3 and P4 is d2. After stepping
for s, probes collect measurement data of two profiles. What must be noted is that d1 − d2 = s, and
d1 and d2 need to be integral multiples of the step distance s. When probes collect N times of data
during one scanning, the outputs of the probe P j can be expressed as m j(xi), where i = 0, 1, 2, · · · , N − 1,
j = 1, 2, 3, 4. Assume that the profile heights of two measured profiles are f (x) and g(x); when the
y-direction straightness error, the error which affects the measurement result most, is defined as ey(xi)

and the yaw error of the device, the zero-adjustment error, and the sensor measurement error are
ignored, the outputs of probes during the scanning can be written as:

m1(xi) = f (xi) − ey(xi), (1)

m2(xi) = f (xi + d1) − ey(xi), (2)

m3(xi) = −[g(xi) − ey(xi)], (3)

m4(xi) = −[g(xi + d2) − ey(xi)]. (4)

The differential values without straightness error are defined as m f and mg and are calculated by
the following equations:

m f (xi + d2) =
m2(xi)+m4(xi)−[m1(xi+d2)+m3(xi+d2)]

s
= 1

s [ f (xi + d1) − f (xi + d2)]

= f ′s (xi + d2)

(5)

mg(xi + d2) =
m2(xi)+m4(xi)−[m1(xi+d1)+m3(xi+d1)]

s
= 1

s [g(xi + d1) − g(xi + d2)]

= g′s(xi + d2)

(6)

The reconstruction profiles are denoted Y f (xi) and Yg(xi), and using an integration process, the
values of the reconstruction points are obtained by integrating the differential values in Equations (5)
and (6):

Y f (xi) = m f (xi−1) · s + Y f (xi−1), (7)

Yg(xi) = mg(xi−1) · s + Yg(xi−1). (8)

When reconstructing the measured profiles using Equations (5)–(8), it can be summarized that the
data processing process of the new method is equivalent to an STP process in which the probe spacing
and the step distance are both equal to s. Therefore, the new method is free from the data processing
error and guarantees a high density of sampling points, as s can be chosen independently without
being limited by probe spacing. The ability of the STP method to eliminate the straightness error of the
reference is retained. When the yaw error needs to be measured to reduce the reconstruction error, an
additional autocollimator can be used with a target mirror mounted on the scanning stage. Therefore,
ignoring the measurement errors of sensors, the new method can be used to realize exact reconstruction.

3. Simulations of the Profile Reconstruction Using the Existing Method and the New Method

Compared with the existing method in [19], the most distinct advantage of the new method is the
elimination of the data processing error when retaining a high lateral resolution. To demonstrate this
advantage when the two methods have the same sampling interval, we compared the performance of
the new method with the method described in [19], which is based on the GTP method.
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Figure 1. The four-probe system for reconstruction of a pair of profiles: (a) the simulation diagram;
and (b) the schematic.

3.1. The Existing Method Based on GTP Method

The schematic of the existing method in [19] is shown in Figure 2, and, when we assumed the
method is based on the GTP method to get a high lateral resolution, we summarize the reconstruction
process of this method as follows. Different from the method shown in Section 2, this device consists
of three displacement sensors as probes: two probes (P1 and P2) are placed on one side of the stage,
and the spacing between them is d. P3 is placed on the other side of the stage and opposite to P1.
Considering the straightness error ey(xi), similar to Equations (1)–(4), the outputs of probes at each
measurement position can be expressed as:

m1(xi) = f (xi) − ey(xi), (9)

m2(xi) = f (xi + d) − ey(xi), (10)

m3(xi) = −[g(xi) − ey(xi)]. (11)

According to the two-point method, the reconstruction profiles can be calculated by:

m f (xi) =
1
d
[m2(xi) −m1(xi)] = f ′(xi), (12)

Y f (xi) = m f (xi−1) · s + Y f (xi−1), (13)

Yg(xi) = Y f (xi) − [m1(xi) + m3(xi)]. (14)

During many processes of measurement and reconstruction in practical applications, s is always
reduced to increase the density of sampling points and obtain a high lateral resolution, which makes
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it satisfy s < d (the GTP method). It is known that the result of the GTP method suffers from
data processing error, which means high-order harmonic component distortion exists (the frequency
components with periods equal to the probe spacing and its harmonics are lost) and the reconstruction
profiles will be smoothed compared with the actual profiles [3]. When there are stepwise variations,
this type of error is more harmful.
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Figure 2. Schematic of the three-probe system for reconstruction of a pair of profiles.

3.2. Comparison Between the Existing Method and the New Method

The impact of data processing error is mainly reflected in higher-order harmonic component
distortion, and the stepwise variations are more seriously and significantly affected. We define the
measured profiles as two irregular profiles ( f (x) and g(x)), which are composed of smooth profiles
and stepwise variations. fb(x) and gb(x), their smooth parts, are expressed as (unit: µm):

fb(x) = 22.446 sin(2π ·
0.94
200
· x) − 17.905 sin(2π ·

0.88
200
· x) + 50,

gb(x) = −44.662 sin(2π ·
0.09
200
· x) − 8.451 sin(2π ·

0.904
200

· x) − 50.

The coefficients of fb(x) and gb(x) are random. Adding random sized pulses and stepwise
variations into fb(x) and gb(x) at random positions, the whole measured profiles f (x) and g(x) are
shown in Figure 3. The systematic error in straightness error of the reference is defined as eys(x)
(unit: µm):

eys(x) = 5 sin(2π ·
0.2
300
· x) + 5 sin(2π ·

2
300
· x).
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Adding a Gaussian distribution, whose standard deviation is 2µm, into eys(x) as the random part
of the straightness error, the straightness error of the reference, which is defined as ey(x) and includes
the systematic part and the random part, is shown in Figure 3. When the probe spacing between P1 and
P2 is defined as 20 mm and the spacing between P3 and P4 is 18 mm, the step distance of the measuring
device is 2 mm according to Section 2. Considering such straightness error as well as zero-adjustment
errors whose absolute values are less than 0.1 µm, the outputs of probes during the scanning process
are shown in Figure 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 
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The reconstruction result calculated by Equations (12)–(14) (using measurement data of three
probes) is shown in Figure 5 (the linear trends of the original profiles and reconstruction profiles
are deprived and reconstruction profiles are translated to the positions, which assure their first
reconstruction points on the original profiles). It can be seen that this method suffers from data
processing error and some features of profiles cannot be expressed, especially for the stepwise
variations of the measured profiles. This type of disadvantage is consistent with existing analyses of the
GTP method. The reconstruction result calculated from the outputs of four probes and Equations (5)–(8)
is shown in Figure 6. In Figure 6c, it can be seen that the influence of data processing error is effectively
removed. Using the new method, the data processing error can be avoided and high lateral resolution
can be retained. Considering that the straightness error can be eliminated, the exact reconstruction with
no error can be achieved if the yaw error and sensor measurement error are obtained by other devices
or ignored. According to Figure 6b, the error curves are parallel, which means that both reconstruction
profiles are rotated the same angle compared with their original profiles. Therefore, reconstruction
profiles can be used to evaluate both straightness and parallelism.
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4. Experiment

To verify the feasibility and the advantages of the new method, especially in terms of overcoming
the data processing error and preventing high-order harmonic component distortion under the
high lateral resolution conditions, an experimental device was constructed. As shown in Figure 7,
the measuring device, which was constructed according to Figure 1, consisted of four pneumatic
displacement sensors (Solartron DP/10/P) with the measurement range of 10 mm ± 0.05 µm and
was driven by a motorized linear stage. The spacing between P1 and P2 was 16 ± 0.015 mm and
14± 0.015 mm for P3 and P4. The measured objects were a pair of grinding marble rulers. Two feeler
gauges, with thicknesses of 0.2± 0.005 mm and 0.4± 0.008 mm, were stuck to marble rulers to simulate
stepwise variations. The step distance of scanning was 2 mm± 6 µm, and, when the measuring device
stepped 39 times, probes collected measurement data for 40 times and the reconstruction length was
64 mm.
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The measured profiles were reconstructed using the measurement data obtained by the same
scanning and different data processing methods. As the main purpose of the experiment was to
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compare the ability to overcome the data processing error of the new method and the existing method,
the comparison of the reconstruction results on stepwise variation parts can reflect the advantage of
the new method in this respect. Using the measurement data of P1, P2, and P3, the reconstruction
profiles calculated from Equations (12)–(14) are shown as f1 and g1 in Figure 8, while f2 and g2 in
Figure 9 are reconstruction profiles obtained from the new method using measurement data of P1–P4.
It is obvious that the stepwise variations are smoothed in f1 and g1 because of the data processing
error and the new method can reflect the characteristics of measured profiles better. That is to say, the
new method has a better performance when the exact reconstruction is required, especially when there
are stepwise variations in measured profiles.
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Figure 9. Reconstruction profiles of the new method: (a) the profile f2; and (b) the profile g2.

5. Error Analyses of the New Method

When using multi-probe methods to measure and reconstruct profiles, existing motorized stages
often have better positioning accuracies, and the positioning error in the scanning direction is often
negligible. The main errors that affect results include the straightness error and yaw error of the
measurement reference, the data processing error, the zero-adjustment error, and the measurement
error of sensors. As shown in Equations (5) and (6), the differential of measurement data can eliminate
the straightness error of the reference. Under most circumstances, the yaw error is relatively small and
its impact on the measurement and reconstruction results is often on a smaller order of magnitude
and can be negligible. In some cases, if the yaw error is large enough to impact the measurement
result and needs to be removed, an autocollimator can be used to collect measurement data of yaw
error during the scanning. According to Section 2, the four-probe method is not affected by the data
processing error. Therefore, for the new method introduced in this article, we analyze the effects of the
zero-adjustment error and the measurement error in the following.

5.1. The Effect of the Zero-Adjustment Error

For multi-probe methods using three or more probes, the zero-adjustment error always has a
significant impact on the measurement and reconstruction results [18]. Due to the cumulative effect,
using a high precision reference surface to calibrate the zero points of probes is not good enough for
eliminating this type of error. Therefore, the influence of the zero-adjustment error in the new method
proposed in this paper is analyzed.
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Assume that the zero-adjustment errors of probes are ez j, j = 1, 2, 3, 4; the outputs of probes in
Equations (1)–(4) become:

m1(xi) = f (xi) − ey(xi) + ez1, (15)

m2(xi) = f (xi + d1) − ey(xi) + ez2, (16)

m3(xi) = −[g(xi) − ey(xi)] + ez3, (17)

m4(xi) = −[g(xi + d2) − ey(xi)] + ez4. (18)

Correspondingly, the data processing process in Equations (5) and (6) becomes:

m f (xi + d2) =
m2(xi)+m4(xi)−[m1(xi+d2)+m3(xi+d2)]

s
= 1

s [ f (xi + d1) − f (xi + d2)] +
1
s (ez2 + ez4 − ez1 − ez3)

= f ′s (xi + d2) + α

(19)

mg(xi + d2) =
m2(xi)+m4(xi)−[m1(xi+d1)+m3(xi+d1)]

s
= 1

s [g(xi + d1) − g(xi + d2)] +
1
s (ez2 + ez4 − ez1 − ez3)

= g′s(xi + d2) + α

(20)

The differential values in Equations (19) and (20) are also integrated by Equations (7) and (8).
It can be seen that there is one more component α due to the zero-adjustment error in m f and mg in
Equations (19) and (20), which cause a rotation of the reconstruction profiles compared with the actual
profiles and the tangent value of the rotation angle is α.

When we evaluate the geometric parameters of a pair of parallel profiles, it is more essential and
difficult to evaluate the straightness and the parallelism. When the straightness is evaluated using the
reconstruction profiles, the rotation of the reconstruction profiles compared with their original profiles
will not affect the evaluation result. When evaluating the parallelism of a pair of parallel profiles, if the
rotation angles of the two reconstruction profiles are equal, the rotation has no effects on the evaluation
result. It is known that the reconstruction result of this new method belongs to the situation that two
profiles rotate by the same angle, and the reconstruction errors shown in Figure 6b are also consistent
with the above analyses. Therefore, it can be concluded that the zero-adjustment error will not affect
the evaluation results of the straightness and parallelism. As a result, in most cases, it is not necessary
to calibrate the zero points of probes to obtain prior knowledge before measurements, which makes
the new method proposed in this paper simply to operate.

5.2. The Effect of the Measurement Error of Sensors

Compared with the existing method described in Section 3.1 and Figure 2, the result of each
reconstruction point in the new method needs to use more measurement data when calculating
the differential values, which means that the measurement result and the reconstruction result are
more affected by the measurement error. However, considering the advantage of the new method
in eliminating the data processing error, it is needed to analyze the extent to which the results are
affected by the measurement error. According to the calculating process of m f in Equations (5) and (6),
the combined standard uncertainty of m f (xk) can be expressed as:

u2
m =

4
s2 u2

r , (21)

where ur is the standard uncertainty of the probe output due to the measurement error. To get the
reconstruction results, the integral process in Equations (7) and (8) can be written as:

Y f (xk) =


m1(x0)

Y f (x0) +
k−1∑
i=0

m f (xi) · s
k = 0

k = 1, 2, · · · , N
. (22)
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Therefore, the combined standard uncertainty of (k + 1)th reconstruction point, which is defined
as unew(k), can be calculated by:

unew
2(k) = k · s2

· u2
m

= 4ku2
r

(23)

Similarly, the combined standard uncertainty of (k + 1)th reconstruction point, which is obtained
from the method described in Figure 2 and Equations (12)–(14), can be expressed as:

u2(k) = 2k ·
s2

d2 · u
2
r . (24)

It can be seen that, when the number of the measured points increases, the influence of the
sensor measurement error on the reconstruction result will increase. When k takes the same values,
compared with the reconstruction profiles shown in Figure 8, whose reconstruction errors caused by
data processing error are on the same magnitude as stepwise variations, the new method has better
performance, as unew(k) and u(k) are on the same magnitude.

6. Conclusions

A novel system that consists of four probes with different spacings is proposed to realize the
measurement and exact reconstruction of a pair of parallel profiles. Besides the straightness error of
the measurement reference, this system and method can also eliminate the data processing error and
retain a high lateral resolution. Using the new method, the characteristics of the measured profiles
will be retained to the maximum extent due to the controllable interval of sampling points, and the
reconstruction result of measured profiles, especially the stepwise parts, will not have data processing
error as the high-order harmonic component distortion will not exist. With a high spatial frequency
of the measured profiles, as the data processing error can reach the same magnitude as the height
difference of the profile, the advantage of the new method in improving the reconstruction accuracy
is obvious. For the reconstruction of complex profiles, prior knowledge is not needed, which means
the zero calibration of probes can be skipped in this new method and the measurement process is
simple to operate. The exact reconstruction can be realized when the yaw error of the measurement
reference and the measurement error of sensors can be obtained through other instruments or ignored.
The abilities to overcome the data processing error and zero-adjustment error have been confirmed by
the theoretical analyses and simulations. An experiment was also implemented to demonstrate the
advantages of the new method.
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