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Abstract: With the development of pervasive sensing and machine learning technologies, automated
epileptic seizure detection based on electroencephalogram (EEG) signals has provided tremendous
support for the lives of epileptic patients. Discrete wavelet transform (DWT) is an effective method for
time-frequency analysis of EEG and has been used for seizure detection in daily healthcare monitoring
systems. However, the shift variance, the lack of directionality and the substantial aliasing, limit the
effects of DWT in some applications. Dual-tree discrete wavelet transform (DTDWT) can overcome
those drawbacks but may increase information redundancy. For classification tasks with small dataset
sizes, such redundancy can greatly reduce learning efficiency and model performance. In this work,
we proposed a novel redundancy removed DTDWT (RR-DTDWT) framework for automated seizure
detection. Energy and modified multi-scale entropy (MMSE) features in a dual tree wavelet domain
were extracted to construct a complete picture of mental states. To the best of our knowledge, this is
the first study to employ MMSE as an indicator of epileptic seizures. Moreover, a compact EEG
representation can be obtained after removing useless information redundancy (redundancy between
wavelet trees, adjacent channels and entropy scales) by a general auto-weighted feature selection
framework via global redundancy minimization (AGRM). Through validation on Bonn and CHB-MIT
databases, the proposed RR-DTDWT method can achieve better performance than previous studies.

Keywords: EEG monitoring; DWT; DTDWT; automated seizure detection; machine learning

1. Introduction

Epilepsy is a functional disorder caused by paroxysmal abnormal discharge of brain cells.
According to the World Health Organization, about 50 million patients worldwide of all ages are
suffering from epilepsy [1]. Conventional manual seizure inspection of long-term EEG monitors
is time-consuming. With the rapid development of pervasive sensing in daily healthcare system
and machine learning technologies, computer-aided diagnosis mechanisms, such as automated
seizure detection based on electroencephalogram (EEG), provides tremendous support for a patient’s
health and quality of life [2]. Such automated seizure detectors can trigger alarm when users are
or will possibly be in a state of seizure. So far, algorithms for automated epileptic seizure detection
proposed in most studies consist of three parts: (1) signal domain transformation, such as frequency
domain via Fourier transform [3], wavelet time-frequency domain via discrete wavelet transform
(DWT) [4,5], weighted and specific shapes via Hermite transformation [6] or original domain without
transformation [7]; (2) feature extraction in the target domain, such as energy features [8] and
complexity features [9]; and (3) machine learning based classification using a support vector machine
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(SVM) [10], k-nearest neighbor (KNN) [11] or artificial neural network (ANN) [12]. However, all the
aforementioned three parts have shown limitations in some application scenarios, which are discussed
in the following paragraphs separately.

For signal domain transformation, in spite of the many transformed domains explored
for automated epileptic seizure detection, the most discriminative information resides in the
time-frequency domain due to the evident transient characteristics and rich frequency components of
epilepsy EEG. Accordingly, discrete wavelet transform (DWT) [4,5] has been widely applied in EEG
based epileptic seizure detection applications because it can represent both the time and frequency
characteristics of EEG signals. However, some drawbacks of DWT, such as shift variance, lack of
directionality and the oscillation attribute of DWT coefficients [13], limit its effectiveness in some
applications. Moreover, the iterated downsampling operations during wavelet decomposition may
introduce severe aliasing [13]. Such aliasing can lead to information loss of original signals. Dual tree
DWT (DTDWT) [13] can overcome the aforementioned drawbacks of DWT at the cost of increasing
information redundancy (a 2d redundancy factor for d-dimensional signals). But large redundancy
may greatly reduce learning efficiency, which in turn weakens the performance of the trained models.

For feature extraction in the target domain, complexity features [9] have received a great deal
of attention in the biomedical signal processing field in recent years. To measure the complexity
property of EEG signals during epileptic seizures, entropy-based features have been widely used,
such as sample entropy [9], fuzzy entropy [10], approximate entropy [14], permutation entropy [15]
and distribution entropy [9]. All these entropy indicators listed above measure EEG complexity on
a single scale. The single scale complexity measure may fail to quantify the underlying dynamics of
the extremely complex physiological signals. Therefore, multi-scale entropy (MSE) was proposed [16].
However, the coarse-graining procedure during MSE computation can shorten the length of time
sequence but a precise entropy relies heavily on a longer sequence length.

For machine learning based classification between normal (or interictal) and ictal seizure EEG,
as mentioned earlier, large redundancy may greatly reduce the learning efficiency and increase model
complexity. Epileptic seizure detection is a pattern recognition task with a small dataset size due to
the scarcity of ictal seizure EEG. With only a small database available for model training, the large
amount of redundancy in the seizure detection scenario will especially weaken the model performance.
Due to the huge cost of data collection and data labeling, another alternative solution is to construct
a compact data representation, reducing the dependence on data volume. Therefore, redundancy
removal is crucial. Some classical redundancy reduction methods, such as principal component
analysis (PCA) [17] do not take feature separability into consideration. For a pattern recognition
problem, the high feature separability and low redundancy are both important.

To address the aforementioned issues, we propose a novel framework of redundancy removed
DTDWT (RR-DTDWT) to reduce global redundancy introduced by DTDWT and achieve a compact
signal representation through low-redundancy features in the wavelet domain. First, DTDWT was
employed to represent EEG signals in dural tree wavelet domain and at the same time, to overcome
the drawbacks of DWT at the cost of increasing information redundancy. Then, energy and complexity
features were both extracted for classification in our method. The energy features refer to the mean
absolute values and variance-like statistic metrics. To measure the complexity property of EEG
signals and reduce the influence of the short length of time sequence on entropy calculation, we used
modified multi-scale entropy (MMSE) [18] to represent the complexity of EEG signals. MMSE can
overcome the shortcoming of MSE by replacing the coarse-graining procedure with a moving-average
procedure. To the best of our knowledge, this is the first study to evaluate the effectiveness of MMSE for
seizure detection. We constructed a complete picture to represent mental electrophysiological activity
in wavelet domain with both a wealth of useful information and redundancy. The redundancy in this
work was introduced from three levels: (1) redundancy between adjacent EEG channels, (2) redundancy
between dual wavelet trees and (3) redundancy between entropy in different scales. Therefore, in the
next step, we aimed to minimize the global redundancy, and meanwhile retain the feature separability.
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In our work, auto-weighted feature selection via global redundancy minimization (AGRM) [19]
was used to reduce the information redundancy. AGRM can take both feature redundancy and
separability into account. Moreover, the optimization problem involved in AGRM is convex, so that
a global optimum instead of local optimum can be obtained. In our work, a compact representation
of the EEG signal can be obtained after removing information redundancy by AGRM. We validated
the proposed RR-DTDWT framework on two benchmark databases (Bonn database and CHB-MIT
database). The results on both databases demonstrate that RR-DTDWT can yield competitive results
compared with previous studies.

2. Methodologies

The proposed RR-DTDWT consists of four parts; namely, DTDWT-based signal domain
transformation, feature extraction, AGRM-based feature selection and SVM-based classification.
The framework of the proposed method is shown in Figure 1. The principles of the four parts are given
separately in the following subsections.
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Figure 1. Framework of RR-DTDWT.

2.1. Dual-Tree Discrete Wavelet Transform (DTDWT)

DWT employs analysis filters to decompose signals into approximation components and detail
components. Then 1/2 downsampling was applied to obtain the approximation coefficients and
detail coefficients. The downsampling procedure may introduce severe aliasing, leading to distortion
which may reduce the ability of wavelet coefficients to characterize the original signals. DTDWT is
an enhancement of DWT which can overcome the above mentioned drawbacks. The flow chart of
DTDWT is shown in Figure 2. As shown in Figure 2, DTDWT employs two wavelet trees for signal
decomposition. For the first level decomposition, if the delay between two wavelet trees equals to
the sampling interval, then the sample value discarded during the downsampling operation of the
1st wavelet tree is exactly the reserved one of the 2nd wavelet tree (equivalent to no downsampling
operation). For decomposition in a higher level, alternate odd and even-length linear phase filters are
utilized in DTDWT. However, the use of alternate odd/even filter approach is impractical in some
scenarios. Therefore, a Q-shift [20] dual tree structure was proposed so that all filters beyond level 1
decomposition were of even-length. In our work, the 10-tap Q-shift filter was selected, which has been
proven effective and is the common choice in many applications of DTDWT [21,22].

Through DTDWT (Figure 2), we can obtain 14 coefficient sets (2 sets of approximation coefficients:
AT1L6, AT2L6; 12 sets of detail coefficients: DT1L1, DT2L1, DT1L2, DT2L2, ... , DT1L6 and DT2L6) for
each EEG channel. Complexity and energy features were extracted directly from these wavelet
coefficient sets.
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Figure 2. DTDWT flow chart. LTi and HTi denote low-pass and high-pass analysis filters in the ith
wavelet tree, respectively. The operator “↓ 2” denotes the 1/2 down-sampling operation. ATiLj and
DTiLj denote the approximation and detail components of level j decomposition in the ith wavelet
tree respectively.

2.2. Feature Extraction

2.2.1. Sample Entropy

Sample Entropy [23] was introduced for time-sequence analysis, complexity measurement in
particular, which has been applied in physiological signal analysis [9]. For discrete time sequence
X = {x(1), x(2), ..., x(N)}, the sample entropy can be calculated as follows:

(1) Construct a set of m-length vector series {Xm(1), Xm(2), ... , Xm(N −m + 1)}, where Xm(i) =
{x(i), x(i + 1), ..., x(i + m− 1}, 1 ≤ i ≤ N −m + 1.

(2) Define d[Xm(i), Xm(j)] to be the distance between Xm(i) and Xm(j), which takes the
following form.

d[Xm(i), Xm(j)] = max
k=0,1,...,m−1

|x(i + k)− x(j + k)|. (1)

(3) For a given Xm(i), assign Bi to be the number of j which meets the following condition:
d[Xm(i), Xm(j)] ≤ r and j 6= i, where r is the tolerance parameter. Then, define:

Bm
i (r) =

1
N −m− 1

Bi. (2)

(4) Define B(m)(r) to be:

B(m)(r) =
1

N −m

N−m

∑
i=1

Bm
i (r). (3)

(5) Increase the length of vector series from m to m + 1. Then repeat step (1) to (4) to obtain B(m+1)(r).
(6) The sample entropy of time sequence X is:

SameEn(m, r) = lim
N→∞

−ln

(
B(m+1)(r)

B(m)(r)

)
. (4)

When N is a finite value, sample entropy can be estimated by the following formula:

SameEn(m, r) = −ln

(
B(m+1)(r)

B(m)(r)

)
. (5)
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2.2.2. Multi-Scale Entropy

Sample entropy may fail to interpret the signal complexity in multiple time scales. MSE was,
thus, proposed [16]. MSE accounts for complex dynamics of time sequence over multiple scales
by introducing the coarse-graining process directly before entropy calculation. For discrete time
sequence X = {x(1), x(2), ..., x(N)}, the coarse-grained time sequence {y(τ)} can be calculated by the
following formula:

y(τ) =
1
τ

jτ

∑
i=(j−1)τ+1

x(i), 1 ≤ j ≤ N
τ

, (6)

where τ is the scale factor. Then, we can obtain the sample entropy of the coarse-grained time sequence
{y(τ)} as MSE in scale τ.

2.2.3. Modified Multi-Scale Entropy

Although MSE can quantify complex dynamics of time sequence over multiple scales, there are
still some limitations. Considering time sequence with a length of 100 points, MSE in scale 5 is
calculated by only 20 coarse-grained points. However, a precise complexity analysis relies heavily
on time sequence with sufficient samples. MMSE was proposed for complexity measurement of
short-term time sequence [18] and has been applied for signal complexity analysis [24,25]. In this
work, entropy features were extracted directly from wavelet coefficients. The iterated downsampling
operations of DTDWT greatly reduce the lengths of coefficient sets in high level decomposition.
Accordingly, MMSE is preferred rather than MSE to estimate complexity of short wavelet coefficients.
For MMSE, the coarse-grained time sequence {y(τ)(j)} is calculated through moving-average strategy
as follows:

y(τ)(j) =
1
τ

j+τ−1

∑
i=j

x(i), 1 ≤ j ≤ N − τ + 1. (7)

Instead of utilizing disjoint time window to divide original time sequence into coarse-grained
sample points, for MMSE, an overlapping moving window was applied. Therefore, the length of
coarse-grained time sequence increases from N/τ to N − τ + 1. According to previous study [26],
m = 1 or m = 2 with r fixed at a value between 0.1 and 0.25 of the standard deviation (STD) of time
sequence was suggested. Many applications of sample entropy selected parameters following this
criterion [27]. Specifically, r = 0.15× STD was selected in [28]. In our method, m = 2, r = 0.15× STD
and τ = {1, 2, 3, 4, 5} (5 scales) were selected for MMSE calculation.

2.2.4. Energy Features

Energy features, namely, variance and mean absolute values of wavelet coefficient sets, were also
extracted for classification, as a complement of the complexity features.

2.3. Feature Selection Based on Auto-Weighted Feature Selection via Global Redundancy Minimization
(AGRM) Algorithm

The extracted features in above procedures contain huge amounts of redundant information.
For pattern recognition problems with small dataset size, epileptic seizure detection for example,
such redundancy may greatly reduce learning efficiency and model performance. In this section,
we introduce the principle of a latest redundancy removal algorithm, namely, AGRM, which
has been proven quite effective in the image processing field. Traditional redundancy removal
algorithms only focus on minimizing feature redundancy but ignore feature separability. For AGRM,
feature redundancy and separability are both taken into consideration at the same time. We denote
the feature matrix as F ∈ Rn×d, where rows of F correspond to observations and columns to
features. Each column fi (i ∈ {1, 2, ..., d}) has been normalized by Z-score. The objective function
of AGRM takes the following form,



Appl. Sci. 2019, 9, 5215 6 of 19

min
z,λ

λ2zT Az− λzTs

s.t. zT1 = 1, z ≥ 0,
(8)

where 1 = (1, 1, ..., 1)T and z ∈ Rd×1 refer to the final feature score obtained by AGRM so that the top
ranking features are selected to represent the original signals. Matrix A ∈ Rd×d in objective function (8)

denotes pair-wise feature redundancy, where Ai,j =

(
f T
i f j

‖ fi‖‖ f j‖

)2
. Besides, s ∈ Rd×1 refers to another

input feature score to be jointly taken into account. In this work, s denotes the Fisher score of original
features. We denote µi as the mean value of the ith feature of all EEG segments. Similarly, µk

i is the
mean value of the ith feature of segments in class k. Given a feature fi in c known classes, with segment
ID j in a specific class, Fisher score s can be computed as Equation (9).

s(i) =
SB
SW

=
∑c

k=1
nk
n (µk

i − µi)
2

1
n ∑c

k=1 ∑nk
j=1( fi;j − µk

i )
2

. (9)

In Equation (9), SB and SW denote feature distance between and within class respectively.
Therefore, a higher Fisher score contributes to higher feature separability. The first term zT Az in (8) is
the global redundancy of extracted features. The second term zTs in (8) denotes feature separability.
And λ acts as a trade-off parameter between the two terms, which comes to convergence automatically
in optimization procedure. Obviously, by minimizing the objective function (8), feature redundancy is
minimized while feature separability is maximized. The optimization problem of AGRM has been
proven convex [19], so a global optimum can be achieved. The optimal z and λ can be obtained
by general augmented Lagrangian multiplier (ALM) method given by [19]. Here, we give a brief
description of optimization procedure:

(1) Given input A and s, initialize z = 1
d 1, ρ > 1, µ and β.

(2) Unless λ converges, repeat step (3).
(3) Compute λ = zTs

2zT Az and update z by repeating step (4) until z converges.
(4) Update v = z + s+β−λAz

µ . Compute z by step (5). Update β = β + µ(z− v). Update µ = ρµ.

(5) Compute m = v − 1
µ (β + λATv). Compute g = m − 11T

d m + 1
d 1. Use Newton’s method to

obtain root η̄∗ of equation η̄∗ = 1
d ∑d

t=1 (η̄
∗ − g(t))+, where (x)+ = max(x, 0). For ∀i, the optimal

z∗(i) = (g(i)− η̄∗)+.

Following the optimization procedure above, feature scores z can be obtained. The leading features
with higher scores are picked out to represent original data with minimal redundancy.

2.4. Classification with the Support Vector Machine

The SVM is a machine learning algorithm based on the structural risk minimization principle [29].
SVM has achieved great performance in many pattern recognition based advanced technologies,
such as the human–machine interface based on muscle activity classification [30], the brain–computer
interface based on mental state classification [31] and the engine control system based on fault
diagnosis [32]. The principle of SVM is introduced in brief.

Given input feature vectors x = {xi, i = 1, 2, ..., N} and the corresponding labels y = {yi, i =
1, 2, ..., N}, where xi ∈ Rd×1, d is the dimensionality of the feature space, N is the dataset size and y = 1
or y = −1 refer to the two categories (normal or ictal in this work) to be classified. We define a function
f (x) taking the following form:

f (x) = wTx + b, (10)

where w ∈ Rd×1. SVM aims to find the optimal function f (x) to achieve f (xi) ≥ 0 for yi = 1 and
f (xi) < 0 for yi = −1 so that data of two classes in the high-dimensional feature space are separated by
the optimal hyper-plane wTx + b = 0. To obtain the optimal hyper-plane as the classification boundary
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with the maximal separating margin between the two classes [33], mathematically, the objective
function of SVM takes the following form:

min
w

1
2

wTw =
1
2
‖w‖2

s.t. wTxi + b ≥ 1, i f yi = 1

s.t. wTxi + b ≤ −1, i f yi = −1.

(11)

The constraints in Equation (11) can be rewritten in a compact form:

s.t. yi(wTxi + b) ≥ 1. (12)

Because the training data may not be perfectly separated by the obtained hyper-plane, the slack
variables ξi were employed to relax the constraints in Equation (12):

s.t. yi(wTxi + b) ≥ 1− ξi. (13)

The objective function (11) can be further rewritten to the following form which constitutes the
structural risk [29]:

min
w,ξ

1
2
‖w‖2 + C

N

∑
i=1

ξi. (14)

The objective function (14) takes both the model complexity (the first term) and the training error
(the second term) into consideration. The optimal solution of objective function (14) can be obtained
through Lagrange multipliers [33].

3. Databases and Results

3.1. Databases

In this section, we give a description on the two benchmark databases utilized in this study.

3.1.1. Bonn Database

Bonn database built by Andrzejak et al. at Bonn University, Germany, contains artifact-free data
collected from five healthy subjects and five epilepsy patients. The artifacts due to muscle activity and
eye movements were pre-removed through visual examination. Two classification tasks were used to
evaluate the effectiveness of our method: (1) normal EEG (set A) versus ictal EEG (set E); (2) interictal
EEG (set C) versus ictal EEG (set E). Each set contained 100 single-channel EEG segments of 23.6 s
duration. EEG data were acquired at a 173.61 Hz sampling rate using 12-bit resolution. For more
details, please refer to [34].

In the preprocessing procedure, the single-channel EEG signal was normalized by Z-score.
The normalized signals with zero-mean and one-standard deviation were prepared for subsequent
feature extraction process.

In feature extraction procedure, due to the relatively low segment duration and sampling
rate, the approximation and detail coefficient sets at the 6th decomposition level (AT1L6, DT1L6,
AT2L6 and DT2L6) were of extremely short length (64 coefficients), which cannot support a reliable
complexity analysis. MMSE features extracted from these four coefficient sets were excluded from the
feature vector. Accordingly, a 50-dimensional MMSE feature vector was constructed (the remaining
10 coefficient sets × 5 entropy scales × 1 EEG channel). As for energy features, the variance and mean
absolute value were extracted from each wavelet coefficient set, constructing a 28-dimensional energy
feature vector (14 coefficient sets × 2 indicators × 1 EEG channels). In summary, a 78-dimensional
feature vector was constructed for each EEG segment.
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In the feature selection and classification procedure, we employed the “leave-one-out”
cross-validation strategy. Because EEG data from all patients are mixed together in Bonn database, no
patient label is available. Most studies in the literature also employed the cross-validation strategy on
all data [6,35,36], which is consistent with our study. Considering that the dimensionality of original
feature space is relatively low, all features with positive feature scores were retained while discarding
those with zero scores (according to the last step of AGRM optimization procedure, the feature scores
are non-negative values). We first held out one EEG segment as test data. All remaining data were
allocated to training set, used for both AGRM-based feature score calculation and SVM model training.
A label of “normal”, “interictal” or “ictal” for the held-out test data could be given by the trained SVM.
We applied the same procedure to all EEG data so that all EEG segments were used to test algorithm
performance. We employed sensitivity, specificity, precision, accuracy and F1 score as classification
evaluation metrics.

3.1.2. CHB-MIT Database

CHB-MIT database published by Shoeb [37] contains long-term multi-channel EEG data of
24 epilepsy patients (1.5–22 years old) collected at the Children’s Hospital of Boston-Massachusetts
Institute of Technology, with a 256 sampling rate and a 16-bit resolution. Data in CHB-MIT database
were acquired continuously during long-term EEG monitoring with no signal processing performed
after acquisition. The raw EEG data can better simulate a practical application scenario. The subset
of each patient contains a varying number (between 9 and 42, 27.25 ± 9.68 on average) of .edf files.
Generally, the digitized recordings in most files are one-hour long. The beginning and end time of
each seizure ictal case has been labeled based on expert judgments. We divided the continuously
recorded data into 30 s EEG segments. There are totally 198 seizure ictal cases in the database. Due to
the non-uniform electrode distribution during data acquisition, 181 out of 198 seizures which shared
common 23 channels were utilized for method validation. For each seizure ictal case, only one 30 s
segment was used in our experiment to avoid the overestimation of algorithm performance due to
the similarity among several segments in one seizure ictal case. Because of the scarcity of epilepsy
ictal segments (181 segments), we randomly downsampled interictal EEG data to rebalance the ratio
between ictal and interictal data (a final ratio of 1:3 in our validation experiment). To take the signal
variability over time into consideration, the segmented interictal data were evenly distributed over
different periods of time with no overlap. More details can be fetched in [37].

In preprocessing procedure, the EEG signal in each channel was normalized by Z-score.
The normalized signals with zero-mean and one-standard deviation were prepared for subsequent
feature extraction process.

In feature extraction procedure, MMSE features were first extracted from each coefficient set
in each EEG channel, constructing a 1610-dimensional MMSE feature vector (14 coefficient sets ×
5 entropy scales × 23 EEG channels). As for energy features, the variance and mean absolute value
were extracted from each wavelet coefficient set, constructing a 644-dimensional energy feature vector
(14 coefficient sets × 2 indicators × 23 EEG channels). In summary, a 2254-dimensional feature vector
was constructed for each EEG segment.

In the feature selection and classification procedure, a specific classification model was developed
for each patient. The “leave-one-out” cross-validation strategy was also applied to validate the
proposed RR-DTDWT algorithm. We firstly held out one EEG segment as test data and all remaining
EEG segments of all patients were allocated to the training set. Although a total number of 181 cases
of seizure ictal EEG segments were contained in the experiment database, for each patient, very few
cases of ictal seizures were available, which could not contribute to a precise feature correlation used
for feature score calculation. Therefore, the AGRM-based feature score was pre-calculated using all
EEG data in training set. The whole procedure was independent of the testing set. Due to the high
dimensionality of original feature space, only the leading 50 features were selected. As for classification,
due to the huge individual difference of EEG characteristics, the training data of the same patient
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as test data were used for SVM model training. The model trained in our work can be viewed as
a patient-specific model, which is consistent with most automated seizure detection studies in the
literature [7,38,39]. Similarly, we employed sensitivity, specificity, precision, accuracy and F1 score as
classification evaluation metrics.

3.2. Qualitative Results

The pair-wise redundancy matrix of extracted features can help to better visualize the redundancy
in the features extracted, as is shown in Figure 3. Here, we take CHB-MIT database as an example.
According to the middle panel of Figure 3, it is obvious that energy-based features (mean absolute and
variance) are highly correlated with each other, and the same is true for complexity-based features
(MMSE). However, there is only a small amount of information redundancy between two kinds of
features (energy-based and complexity-based features). According to the left panel of Figure 3, we can
clearly see three bright diagonal lines. The middle diagonal line represents that each feature is highly
correlated with itself. The lower left and upper right diagonal lines demonstrate the high redundancy
between corresponding features extracted from two wavelet trees. According to the right panel of
Figure 3, the periodic occurrence of the bright blocks indicates the high redundancy between adjacent
EEG channels and between two wavelet trees. Moreover, the bright part of each block refers to the
high redundancy between different entropy scales. In summary, from Figure 3, features extracted by
DTDWT had high redundancy so an effective redundancy removal method was required to refine the
extracted features.

Figure 3. Pair-wise feature redundancy matrix (CHB-MIT database).

The visualization of high-dimensional features (CHB-MIT database) by t-distributed stochastic
neighbor embedding (t-SNE) [40] is shown in Figure 4. Although the epileptic seizure detector was
trained specifically for each patient, here, we visualize data of all patients at the same time. Figure 4a
represents visualization of original 2254-dimensional features with high redundancy. Obviously,
ictal and interictal data is difficult to distinguish. Figure 4b represents visualization of 50-dimensional
features after redundancy removal achieved by AGRM. Compared with scatter in Figure 4a, ictal and
interictal data in Figure 4b are easier to classify, proving the effectiveness of redundancy removal.
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(a)

(b)
Figure 4. Feature visualization by t-SNE. (a) Visualization of original features; (b) Visualization of
redundancy removed features.

3.3. Quantitative Results

3.3.1. Quantitative Results on Bonn Database

Algorithm comparisons for two different classification tasks, “normal versus ictal” and “interictal
versus ictal,” on Bonn database, are shown in Tables 1 and 2 respectively. For both classification
tasks, RR-DTDWT yielded an sensitivity and specificity of 100%. As a contrast, DTDWT, RR-DWT
and DWT achieved a relatively lower performance. To avoid the performance bias caused by feature
dimension, we also utilized Fisher score to reduce feature dimensionality (the same dimensionality
as RR-DTDWT). As shown in Tables 1 and 2, RR-DTDWT outperformed all other methods on the
Bonn database.

Table 1. Performance of different methods on Bonn database (normal versus ictal).

Metrics RR-DTDWT RR-DWT DTDWT DWT DTDWT + Fisher DWT + Fisher

Sensitivity 100% 100% 100% 100% 100% 100%
Specificity 100% 99% 99% 99% 98% 98%
F1 Score 1 0.9950 0.9950 0.9950 0.9901 0.9901

RR-DWT: redundancy removed DWT; i.e., DWT-based features + AGRM. DWDWT + Fisher: DTDWT-based features
+ feature selection according to Fisher score. DWT + Fisher: DWT-based features + feature selection according to
Fisher score.
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Table 2. Performance of different methods on Bonn database (interictal versus ictal).

Metrics RR-DTDWT RR-DWT DTDWT DWT DTDWT + Fisher DWT + Fisher

Sensitivity 100% 100% 99% 99% 100% 100%
Specificity 100% 99% 97% 97% 98% 99%
F1 Score 1 0.9950 0.9802 0.9802 0.9901 0.9950

3.3.2. Quantitative Results on CHB-MIT Database

We also present the algorithms’ performances on CHB-MIT database in Table 3. Unlike DWT,
the results of DTDWT and RR-DWT are almost the same (even slightly lower). This demonstrates that
by simply extending DWT to DTDWT, the redundancy introduced limits the learning efficiency of
model. Also, by directly applying AGRM to DWT-based features, some useful information may be
lost. However, if we first employ DTDWT to complement the missing information of DWT, and then
apply AGRM to reduce information redundancy, RR-DTDWT can achieve significantly higher results
for all evaluation metrics. Similarly, we also employed Fisher score to reduce feature dimensionality
(the same dimensionality as RR-DTDWT). RR-DTDWT still outperforms all other methods, as shown
in Table 3.

Table 3. Performance of different methods on CHB-MIT database.

Metrics RR-DTDWT RR-DWT DTDWT DWT DTDWT + Fisher DWT + Fisher

Sensitivity 96.69% 92.27% 92.82% 92.82% 93.92% 91.71%
Specificity 99.63% 98.35% 98.90% 99.27% 98.17% 98.17%
F1 Score 0.9813 0.9516 0.9573 0.9591 0.9596 0.9477

4. Discussion

In this work, we proposed a RR-DTDWT framework for automated epileptic seizure detection.
The propsed RR-DTDWT consists of four parts: (1) DTDWT-based signal domain transformation;
(2) feature extraction; (3) feature selection and (4) classification. In the signal domain transformation
part, the signal representation was obtained through DTDWT. DTDWT can reduce information
loss during the iterated downsampling operation of DWT, at the cost of introducing information
redundancy. In feature extraction part, energy and complexity features were extracted. MMSE was
employed as an indicator of epileptic seizures for the first time. Then, AGRM-based feature selection
could reduce the information redundancy and take feature separability into consideration at the same
time. Finally, the label of each EEG segment was given by a patient-specific SVM classifier. In the
following subsections, the comparison between our method and the ones from previous studies,
the computational cost analysis and the limitations of our method are presented separately.

4.1. Comparison with Previous Studies

In this subsection, method comparison between the proposed RR-DTDWT algorithm and latest
studies (after 2014) utilizing the same databases is presented.

4.1.1. Comparison with Previous Studies Based on Bonn Database

For Bonn database, method comparisons on two classification tasks, namely, “normal versus
ictal” and “interictal versus ictal,” are presented in Tables 4 and 5 respectively. Because the data
in Bonn database are balanced between each category, classification accuracy was expected to be
a good metric to characterize method performance. Obviously, the proposed RR-DTDWT method
outperformed most other latest methods, achieving an accuracy of 100% for both cases. As previously
mentioned, Bonn database contains artifact-free EEG signals. The artifacts due to muscle activity
and eye movements were pre-removed through visual examination. Accordingly, Bonn database
cannot simulate the challenging practical application scenarios, although it can be utilized for
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method comparison. Some previous studies have also reported a 100% accuracy. For example,
Battacharyya et al. [41] employed tunable-Q wavelet transform to develop a seizure detector which
also achieved an accuracy of 100% for “normal versus ictal” problem. The model of Kumar et al. [4]
can discriminate normal data from ictal data with a 100% accuracy and also discriminate interictal
data from ictal data with a very low error rate. Methods proposed by Raghu et al. [42] yielded
excellent performance for both classification tasks on Bonn database. Moreover, previous studies
also proposed wavelet-based methods [43,44] and achieved a 100% or almost 100% classification
accuracy. Akut et al. [45] proposed a wavelet-based deep learning approach in which no manual
feature extraction was required. This method can achieve a high accuracy on small EEG database.
All these studies made great contributions to the epilepsy monitoring field. Although our method
achieved a 100% classification accuracy and outperformed most previous studies on Bonn database,
its superior performance compared with other studies on the practical and challenging CHB-MIT
database is described next.

Table 4. Comparison with previous studies on Bonn database (normal versus ictal).

Paper Year Methods Sensitivity Specificity Precision Accuracy F1

[4] 2014
DWT + Fuzzy Approximate

Entropy + SVM Classifier 100% 100% 100% 100% 1

[46] 2015
Discrete Short-Time Fourier

Transform (DSTFT) + Multilayer
Perceptron (MLP)

99.9% 99.6% 99.6% 99.8% 0.9975

[47] 2016
EMD-Based Temporal and Spectral

Features + SVM 99% - - - -

[48] 2016
Weighted Permutation Entropy

(WPE) + SVM - - - 99.5% -

[43] 2016
Dual-Tree Complex Wavelet

Transformation + Normal Inverse
Gaussian Parameters

100% 100% 100% 100% 1

[42] 2017
Wavelet Packet Transform (WPT)
Based Entropy + ANN Classifier 99.40% 100% 100% 99.70% 0.9970

[41] 2017
Tunable-Q Wavelet Transform Based
Multi-scale Entropy Features + SVM 100% 100% 100% 100% 1

[11] 2017
Genetic Algorithm-Based

Frequency-Domain Feature Search
(GAFDS) + KNN Classifier

- - - 99.5% -

[49] 2018
Universum Twin Support Vector

Machine (UTSVM) - - - 99% -

[50] 2018
A Novel Signal Modeling Approach
Based on Discrete Cosine Transform

and Hurst Exponent + SVM
95.40% 94.30% 94.36% 94.85% 0.9488

[51] 2018
Local Binary Pattern (LBP) Based on

Wavelet Decomposition + SVM - - - 99.63% -

[35] 2018
Phase–Amplitude Cross-Frequency

Coupling + SVM 100% 100% 100% 100% 1

[36] 2019
A Hybrid Model with Genetic

Algorithm (GA) and Particle Swarm
Optimization (PSO)

99.5% 99.25% 99.25% 99.38% 0.9938

[44] 2019 DWT + Random Forest Classifier 100% 91.66% 92.30% 99.95% 0.9600

[6] 2019
Hermite Transform + Permutation
Entropy, Histogram Features and

Statistical Features + SVM Classifier
- - - 99.5% -

This Work -
The Proposed RR-DTDWT (DTDWT

+ AGRM) + SVM 100% 100% 100% 100% 1
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Table 5. Comparison with previous studies on Bonn database (interictal versus ictal).

Paper Year Methods Sensitivity Specificity Precision Accuracy F1

[4] 2014
DWT + Fuzzy Approximate

Entropy + SVM Classifier 99.3% 99.9% 99.9% 99.6% 0.9960

[46] 2015
Discrete Short-Time Fourier

Transform (DSTFT) + Multilayer
Perceptron (MLP)

99.3% 97.7% 97.74% 98.5% 0.9850

[43] 2016
Dual-Tree Complex Wavelet

Transformation + Normal Inverse
Gaussian Parameters

100% 100% 100% 100% 1

[42] 2017
Wavelet Packet Transform (WPT)
Based Entropy + ANN Classifier 99.70% 100% 100% 99.85% 0.9985

[41] 2017
Tunable-Q Wavelet Transform Based
Multi-scale Entropy Features + SVM 99% 100% 100% 99.5% 0.9950

[52] 2017
Weighted Complex Networks Based

Community Structure Detection 99% 95% 95.19% 97% 0.9706

[53] 2017

Analytic Time-Frequency Flexible
Wavelet Transform (ATF- FWT) +

Least-Squares Support Vector
Machine (LS-SVM) Classifier

- - - 99% -

[54] 2018
Subpattern Based PCA and

Cross-Subpattern Correlation-Based
PCA + SVM Classifier

- - - 99.5% -

[50] 2018
A Novel Signal Modeling Approach
Based on Discrete Cosine Transform

and Hurst Exponent + SVM
98% 97% 97.03% 97.50% 0.9751

[55] 2018

An Ensemble of Pyramidal
One-Dimensional Convolutional

Neural Network (P-1D-CNN)
Models

- - - 98.5% -

[35] 2018
Phase–Amplitude Cross-Frequency

Coupling + SVM 100% 100% 100% 100% 1

[6] 2019
Hermite Transform + Permutation
Entropy, Histogram Features and

Statistical Features + SVM Classifier
- - - 98.5% -

This Work -
The Proposed RR-DTDWT (DTDWT

+ AGRM) + SVM 100% 100% 100% 100% 1

4.1.2. Comparison with Previous Studies Based on CHB-MIT Database

For the CHB-MIT database, a method comparison is shown in Table 6. Different studies based on
CHB-MIT database employed a wide variety of metric combinations to evaluate algorithm performance.
For example, study [10,56] applied specificity and false positive rate (FPR) to characterize model
performance respectively. To compare all methods consistently, we converted the two metrics into
each other. For the proposed method, a specificity of 99.63% is equivalent to a false positive rate of
0.44/hour, under the assumption of 30 s EEG segments. The proposed RR-DTDWT can achieve a
higher F1 score than most latest studies validated on CHB-MIT database. Only the F1 score of the
detector developed by Xiang et al. [10] is slightly higher than ours. However, due to the long time
EEG monitoring for epileptic seizure detection and the scarcity of ictal data, the acquired EEG data
in real application scenarios characterize an extremely imbalanced ratio between ictal and interictal
segments. Therefore, a high specificity in this application scenario may be equivalent to an unacceptable
false alarm rate. For example, a detector with a seemingly high specificity of 95% is expected to
trigger six false alarms per hour, which cannot be permitted in a practical application. Compared
with the performance of [10], our detector approximately achieves a four fold reduction of FPR
(from 2.03/h to 0.44/h) only at the cost of a slight reduction in sensitivity (from 98.27% to 96.69%).
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Based on the above discussions, our RR-DTDWT based detector is more suitable for realistic application
scenarios compared with those listed in Table 6. Raghu et al. [57] also proposed an automated epileptic
seizure detection method based on DWT and complexity measure via sigmoid entropy, achieving a
sensitivity of 94.21% and an accuracy of 94.38%, which is less effective than our method. Previous
studies such as [35] evaluated the performance of their method using both Bonn and CHB-MIT
databases. Although their model has also shown a perfect performance on both of the two classification
tasks (“normal versus ictal” and “interictal versus ictal”) on the Bonn dataset (see Tables 4 and 5),
its accuracy (97.5%) on more challenging CHB-MIT database shown in Table 6 is lower than ours
(98.89%). Promisingly, our RR-DTDWT algorithm can further promote the development of automated
seizure detection technology.

Table 6. Comparison with previous studies on the CHB-MIT database.

Paper Year Methods Sensitivity Specificity FPR Precision Accuracy F1

[10] 2015
Fuzzy Entropy +

Kolmogorov-Smirnov Test + SVM. 98.27% 98.36% 2.03/h 98.36% 98.31% 0.9831

[12] 2016
Mel-Frequency Cepstral Coefficients

(MFCCs) + Artificial Neural
Network (ANN) Classifier.

98% 96% 4.8/h 96.08% 97% 0.9703

[39] 2016
Phase Space Representation +

Linear Discriminant Analysis (LDA)
+ Naive Bayesian Classifier.

88.27% 93.21% 8.15/h 92.86% 93.11% 0.9051

[58] 2018
A Multi-Context Learning

Approach by Incorporating a
Feature Fusion Strategy.

98.65% - - 96.08% 95.71% 0.9725

[56] 2018
Short-Time Fourier Transform

(STFT) + Convolutional Neural
Networks (CNN).

81.2% 99.87% 0.16/h 99.84% - 0.8956

[59] 2018

Deep CNN Using 1D and 2D
Convolutional Layers to Extract

Spatio-Temporal Correlation
Features.

80.6% 91.7% 9.96/h 90.66% 85.6% 0.8534

[35] 2018
Phase–Amplitude Cross-Frequency

Coupling + SVM - - - - 97.5% -

[38] 2019
Nonlinear Dynamics and Nullclines

+ an Ensemble of Classifiers
Network.

91.15% 95.16% 5.81/h 94.96% 95.11% 0.9301

[7] 2019
PCA + Poincare Sectioning + SVM +

Naive Bayes Classifier. 95.7% 96.55% 4.14/h 96.52% 95.63% 0.9611

[60] 2019
Fuzzy-Rules-Based Sub-Sand
Specific Features and Layered
Directed Acyclic Graph SVM

99% 96% 4.8/h 96.12% 98% 0.9754

[57] 2019 DWT + Sigmoid Entropy +SVM 94.21% - - - 94.38% -

This
Work -

The Proposed RR-DTDWT (DTDWT
+ AGRM) + SVM 96.69% 99.63% 0.44/h 99.62% 98.89% 0.9813

4.2. Computational Cost Analysis of the Proposed Redundancy Removed DTDWT (RR-DTDWT)

In this subsection, we analyze the computational cost of the proposed RR-DTDWT framework.
In signal domain transformation part, DTDWT can be calculated with a computational cost of
O(N) [61], for a EEG segment with a length of N. In the energy-based feature extraction part,
both mean absolute values and variance features can be calculated in O(N) computational time.
Complexity-based features such as sample entropy require O(N2) computation time. Using the fast
computation algorithms, the computation time can be reduced to O(N

3
2 ) [62]. Moreover, considering

that biomedical signals are normally saved as digitized integer-type data, the computation time
of sample entropy using a fast computation algorithm is only O(N), or precisely, O(Bm−1N) [62],
where B is the digital resolution (12 bits for Bonn database and 16 bits for CHB-MIT database) and
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m is the parameter used for sample entropy calculation (as aforementioned, m = 2 in this work).
Feature selection methods can be divided into two categories: filter-based and embedded-based
methods [63]. Filter-based methods rank all potential features according to a predefined feature score
based on the intrinsic property of data, which is independent of the following classification procedure.
Embedded-based feature selection methods integrate feature selection into the learning procedure,
involving more parameters to be fine-tuned. Therefore, embedded-based methods are computationally
expensive. The AGRM algorithm used in our work is a filter-based method which is computationally
efficient. Moreover, the feature score was pre-calculated using training set in our work. To develop an
online seizure detector, the AGRM-based feature selection adds no additional computational burden.
In contrast, by selecting only those features with the minimal redundancy, the computational cost is
further reduced. In the classification procedure, the computational cost of SVM model is only O(1) for
a given feature vector of a specific EEG segment. In summary, the computational cost of the proposed
RR-DTDWT is O(N), which can support its application to an online system.

4.3. Limitations of the Proposed RR-DTDWT

One limitation of the RR-DTDWT based seizure detection model is the generalization performance
when applied to a new patient. The automated seizure detection models in literature can be divided
into two categories; namely, the patient-nonspecific model [64] and the patient-specific model [7].
The former one refers to the model trained by the data of other patients with no data of the test
patient involved in model training. This kind of model can save huge costs on data collection
and data labeling because for a new patient, no further data collection is required and the model
can be used immediately. Data from the other patients can be reserved beforehand, which can be
viewed as cost-free. For example, Deng et al. [64] proposed an enhanced, transductive, transfer
learning Takagi–Sugeno–Kang fuzzy system construction method (ETTL-TSK-FS) to enhance the
generalization performance of automated seizure detection models. The ETTL-TSK-FS method
achieved a sensitivity of 91.91%, specificity of 93.16% and accuracy of 94.04% on the CHB-MIT
dataset. Although its performance is less effective than most patient-specific models, ETTL-TSK-FS
can be viewed as the current state-of-the-art patient-nonspecific model. The patient-specific models
take advantage of the useful information of the test patient. However, acquisition of data from the
test patient is required to train the seizure detection model or fine-tune the pre-trained model. Most
automated seizure detection studies in literature focus on patient-specific classification models [7,38,39].
The generalization performance is a common limitation and remains a future work of our study.

5. Conclusions

In this work, we proposed a novel RR-DTDWT framework for automated epileptic seizure
detection. First, a more complete picture of mental electrophysiological activity was constructed via
DTDWT which can complement the missing information during the iterated downsampling operations
of DWT. Then, MMSE was extracted as an indicator of epileptic seizures for the first time. Moreover,
the information redundancy was reduced through AGRM so that a compact EEG representation
could be obtained for seizure detection. This novel method yields a superior performance compared
with latest studies through validation on two benchmark databases. Due to the wide application of
wavelet-based algorithms and complexity-based features, the proposed RR-DTDWT has shown its
high potential to be applied in broader fields.
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Abbreviations

The following abbreviations are used in this manuscript:

EEG Electroencephalogram
DWT Discrete wavelet transform
DTDWT Dual tree discrete wavelet transform
RR-DTDWT Redundancy removed DTDWT
MSE Multi-scale entropy
MMSE Modified multi-scale entropy
PCA Principal component analysis
AGRM Auto-weighted feature selection via global redundancy minimization
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