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Abstract: In this study the problem of fitting shape primitives to point cloud scenes was tackled as a
parameter optimisation procedure, and solved using the popular bees algorithm. Tested on three
sets of clean and differently blurred point cloud models, the bees algorithm obtained performances
comparable to those obtained using the state-of-the-art random sample consensus (RANSAC) method,
and superior to those obtained by an evolutionary algorithm. Shape fitting times were compatible
with real-time application. The main advantage of the bees algorithm over standard methods is
that it doesn’t rely on ad hoc assumptions about the nature of the point cloud model like RANSAC
approximation tolerance.
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1. Introduction

Point clouds (PCs) are widely used in machine vision and robotics to represent 3D scenes and
objects sensed through laser scanning devices. Understanding PC models, and extracting concise and
meaningful high-level descriptions such as the shape and properties of objects, is necessary for many
industrial applications like robotic grasping and pick-and place [1,2]. This ability is naturally acquired
by humans and animals, but difficult to reliably automate [3], particularly in real-time applications
where time and hardware limitations require very efficient procedures.

This paper is concerned with the identification of the shape of objects in 3D PCs for robot
manipulation. In many industrial applications, man-made artefacts can be associated with good
approximation to a set of geometrical primitive shapes like spheres, boxes, and cylinders. The problem
becomes then to fit these primitive shapes to clusters of points in PC models (the primitive fitting
problem). Since PCs are composed of a very large number of points, the efficiency of the identification
algorithms is of primary importance. At the same time, for the sake of generality, problem-specific
assumptions should be limited.

The primitive fitting problem is well known in the literature, and many of the solutions are
based on two popular and very successful algorithms: the Hough transform (HT) [4] and random
sample consensus (RANSAC) [5]. Given a 3D scene, the HT looks for parameterisations of primitive
shapes that fit the largest number of data points. To increase the efficiency of the HT, the space of the
parameterisations may be quantised, and in that case the granularity of the quantisation becomes an
important parameter [6]. RANSAC randomly picks from the PC minimal sets of points that are used to

Appl. Sci. 2019, 9, 5198; doi:10.3390/app9235198 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2883-706X
https://orcid.org/0000-0002-5623-7491
http://www.mdpi.com/2076-3417/9/23/5198?type=check_update&version=1
http://dx.doi.org/10.3390/app9235198
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 5198 2 of 15

parameterise candidate primitive shapes. RANSAC verifies the candidate shapes against the remaining
points in the scene, and picks the instance that fits the largest number of points. An approximation
tolerance is usually set to decide whether a point is an inlier or outlier to a given shape. The main
limitations of the HT and RANSAC are their computational complexity, and the sensitivity of the
results to the algorithm parameterisation (the quantisation of parameters in the HT, the approximation
tolerance in RANSAC).

The approach proposed in this paper is to tackle primitive fitting as a parameter optimisation
problem. Similarly to the HT approach, the goal of the procedure is to manipulate the parameters of a
given type of primitive to maximise its fit to the point data. The fit is measured by a primitive-specific
fitness function which is used to guide the optimisation process. The bees algorithm (BA) [7] will be
used as the parameter optimisation routine, and the results compared with those achieved using an
evolutionary algorithm (EA) [8] and RANSAC.

The main advantage of metaheuristics like swarm (bees algorithm) and evolutionary algorithms
over standard primitive fitting techniques is the generality of the approach, which does not require
prior scene knowledge (e.g., the noise level to set the approximation tolerance in RANSAC).
These metaheuristics can be used to fit any kind of shape, as long as its goodness of fit can be
defined via a fitness function. Thank to their intelligent sampling of the solution space, swarm and
evolutionary algorithms are also computationally reasonably efficient.

Section 2 presents a critical overview of the primitive fitting literature. Section 3 describes the
bees algorithm, and the two control algorithms. Section 4 details the experimental method used,
whilst Section 5 presents the experimental results. The results are discussed in Section 6, and Section 7
concludes the paper and outlines suggestions for further work.

2. Literature Review

The HT aims to fit primitive shapes to sets of points in the scene. Primitive fitting is regarded
as a search problem in the space of the shape parameters, and sequential search algorithms are
typically used to find the instances that include the largest number of points. The HT is widely used in
machine vision [9], but is computationally demanding and becomes rapidly inefficient as the number
of parameters needed to define the shape increases. As a consequence, the HT has been mainly used to
fit elementary shapes such as lines and circles [10]. Only a few implementations of the HT transform
were proposed for 3D primitive shape recognition, either based on parameter search heuristics [11],
or customising the search to detect one particular instance of shape [12]. Alternative methods to the
HT [13] have been developed to fit geometric primitives to point data, often based on robust statistical
estimation of the shape parameters.

The RANSAC algorithm randomly picks from the scene minimal sets of points that uniquely
define a given type of geometric primitive. Candidate shapes are tested against all points, and the shape
that approximates the largest number of points is extracted. The procedure is then sequentially repeated
on the remaining data. RANSAC approaches have shown promising results for 3D scenes in terms of
accuracy and efficiency [14,15], and were shown able to fit candidate primitives in environments of
90% noise with little error [15]. Advanced subroutines can be applied to pre-emptively terminate bad
hypotheses [16]. Much effort has been dedicated to optimise RANSAC sampling (OP-RANSAC) and
shape evaluation efficiency (R-RANSAC): OP-RANSAC has shown “substantial speedup for highly
contaminated sets” with as much as 96% noise [17], whilst R-RANSAC has been shown to run 2–10
times faster than standard RANSAC [18]. By combing these optimisation strategies, some forms of
RANSAC were able to fit primitive shapes to a field of millions of points in less than one minute [15].

The success of RANSAC greatly depends on the trade-off between accuracy and computational
complexity, namely, by the number of candidate shapes evaluated. The results obtained using RANSAC
are also sensitive to the setting for the tolerance threshold used to judge whether a data point is an
inlier or an outlier to a given candidate shape. Some RANSAC implementations do not utilise
tolerance threshold and score candidate shapes based on histogram analysis [19]. However, these
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implementations were usually tested only on PCs of varying levels of background noise (henceforth
called noise, Figure 1), instead of the more deceptive case of local error (henceforth called error,
Figure 1) which may arise from granularity or low precision of sensors.

Figure 1. (Left) clean point cloud, no noise or error. (Middle) point cloud with error, no noise. (Right)
point cloud with noise, no error.

Some examples of EA methods for primitive fitting have been proposed. Lutton and Martinez [20],
Roth and Levine [21] used a population of many possible shapes. Each individual (candidate solution)
in the population represents the minimal set of points that uniquely define the primitive, whilst the
fitness function counts the number of points inside a fixed boundary around the primitive. Similarly,
Gotardo et al. [22] used an EA for tackling a sub-task of the surface extraction problem. In this case
the population of candidate solutions is composed uniquely of planes, and each individual represents
the minimum set of points (three) needed to define a plane, sampled in a sub-region of the cloud.
The optimisation strategy of the above EA approaches is clearly based on the RANSAC procedure,
and still needs a careful setting of the approximation tolerance. Ugolotti et al. [23] tested one instance of
swarm algorithm [24] and one instance of evolutionary algorithm [25] for object fitting. Each candidate
solution encoded the six parameters defining a rigid transformation (rotation+translation) of a template
PC shape. The fitness function evaluated the difference between the rotated and translated template
and the target shape. The main drawback of this approach is the computational complexity, which
required the implementation on Graphics Processing Unit (GPU).

3. Primitive Fitting Methods

In this paper primitive fitting is tackled as an optimisation problem, and solved using a biologically
inspired technique: the bees algorithm. The results obtained using the bees algorithm will be compared
to those obtained using a standard RANSAC procedure, and another popular metaheuristics, namely
an EA. This section describes the three algorithms in detail. These algorithms will be tasked to
recognise instances of three types of shape primitives in PCs: spheres, boxes, and cylinders.

The choice of which shape types to consider was made based on a trade-off between
representativeness and conciseness. The shape types used in this study present a good mix of curved
and straight surfaces and are known [26] to be an accurate abstraction of many manufactured objects.

The bees algorithm and EA encode a primitive using the same representation scheme, and use
the same fitness evaluation function to assess how a candidate solution fits the data points. Therefore,
it can be said that they operate in the same fitness landscape. The bees algorithm and EA also share
the same local search operator. They differ the kind of metaheuristics they employ, which determines
the way the results of the local search (the heuristics) are used.

In the following of the section, the representation scheme, fitness function, and local search
heuristics used in the bees algorithm and EA will be presented first. The bees algorithm, the EA,
and finally the RANSAC implementation used in this study will be then described.



Appl. Sci. 2019, 9, 5198 4 of 15

3.1. Representation Scheme

A primitive in a 3D scene is unequivocally described by a finite set of parameters that determine its
position (the geometric centre, or centroid, henceforth simply referred to as centre), rotation and other
geometrical properties. A solution I is thus naturally encoded as a vector of real values representing
the primitive parameters. The size of the vector is shape-specific:

Sphere Four parameters: three to locate the centre, and one to represent the radius;
Box Ten parameters: three to locate the centre, four to describe the orientation (rotations are described

using quaternions), and three parameters to encode the width, depth, and height;
Cylinder Nine parameters: three to locate the centre, four to describe the orientation, and two

parameters to encode the radius and height;

For the sake of clarity, henceforth a distinction will be made between pose parameters which
include the position and, when applicable, the orientation, and the size parameters, namely: the radius
of the sphere; the width, depth, and height of the box; and the radius and height of the cylinder.

3.2. Fitness Function

The term ‘fitness function’ is adopted from the EA terminology, and is widely used in the wider
metaheuristics literature. In the proposed application, the fitness function quantifies the goodness
of fit of a primitive shape I to a given point cloud PC = {p1, . . . , pN} of N elements. The evaluation
criterion for the goodness of fit takes into account two factors: the distance δ(pi, I) between each of
the individual points pi ∈ PC and the surface of the primitive I; and the concordance NC(pi, I) of
the normals, calculated at each point pi ∈ PC, and its projection π(pi, I) on the closest surface of
the primitive:

F (I,PC) = 1
N

N

∑
i=1

NC(pi, I)

1 + δ(pi ,I)
δmax

2 (1)

where the normalisation factor δmax is the distance between the centroid and the outmost element of
the PC. Given a point pi ∈ PC, the projection π(pi, I) is the closest part of the candidate primitive
surface to the point pi. The computation of π(pi, I) is easy for primitive shapes, and it can be computed
very efficiently. The calculation of NC(pi, I) necessitates of a method to calculate the normals to the
elements of a PC. If the normals are not known, the reader is referred to the literature [27,28] for a
suitable extraction method. The function in Equation (1) is the same for each type of primitive, whilst
the concordance of normals NC(pi, I) and distance δ(pi, I) are type-specific.

For a given sphere S, the distance δ(pi, S) between an arbitrary point pi and I = S is computed as:

δ(pi, S) = |d(pi, Sc)− Sr| (2)

where the function d(A, B) measures the Euclidean distance between points A and B, and Sc and Sr are
respectively the centre and radius of S. For the box and cylinder, δ(pi, I) is computed as the distance
between point pi ∈ PC and its projection π(pi, I):

δ(pi, I) = |d(pi, π(pi, I))| (3)

The concordance of normals NC(pi, I) is computed using the cosine similarity between the normal
N(pi) to point pi ∈ PC and the normal N(π(pi, I)) of its projection on the candidate primitive surface:

NC(pi, I) = max
(

N(pi) · N(π(pi, I))
‖N(pi)‖ ‖N(π(pi, I))‖ , 0

)
(4)

where · denotes the dot product between two vectors. Using Equation (4), only normals that agree in
direction contribute to the calculation of the goodness of fit.
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From Equation (1), it is easy to see that δ(pi ,I)
δmax

2
is minimum and equal to zero when the shape

fits perfectly the data. In this case, the denominator of Equation (1) is minimum and equal to 1.
The numerator is maximum and equal to 1 when the shape fits perfectly the data, and all the normals
agree. Hence, the parameter fitting problem consists of maximising the output of F (I,PC).

3.3. Local Search Operator

Mutation in the EA and the local search in the BA are performed using the same shape modification
operator. Each of the parameters gI

i describing a candidate primitive shape I may be modified in the
following way:

gI
i = gI

i + 0.1(ui − li)ρ (5)

where
ρ ∼ U(−δI , δI) (6)

is a random sample drawn with uniform probability in the [−δI , δI ] range, ui and li are respectively the
upper and lower bound of the i-th parameter, and i = {1, ..., n}. The number n of parameters is equal
to four if I is a sphere, ten if it is a box, and nine if it is a cylinder (Section 3.1). Should one parameter
gI

i be modified to a value outside the [ui, li] interval, it will be placed on the closest extreme.
The shape modification procedure works as follows. The first step is to establish which features

(centre, orientation, or size) of the shape are to be modified. If the sought primitive is a sphere, all the
features (centre and size) are modified with probability pf . If it is a cylinder or a box, only one feature
is changed: either the centre, or the orientation, or the size. The probabilities of changing each of the
features is given in the left-hand side of Table 1.

Once it has been established which features to change, the second step of the procedure is
to determine which parameters (the gI

i ) are to be changed. Each parameter gI
i is modified with a

probability pp . For each parameter, the mutation probability is given in the right-hand side of Table 1.
For example, if the centre of a box is to be changed, each of its X, Y, and Z coordinates will be changed
with probability pp = 0.7. If a change of orientation is drawn, the four values describing the orientation
are all modified with probability pp . Since orientation is expressed in the form of a unit quaternion,
the modified quaternion vector is then normalised.

Table 1. Shape modification probabilities. Probabilities marked with an asterisk are mutually exclusive
(e.g., either the centre, or the orientation, or the size of a cylinder is changed).

Feature p f
gI

i
pp

Sphere Box Cylinder Sphere Box Cylinder

Centre 1 0.3 * 0.33 *
X 1 0.7 0.7
Y 1 0.7 0.7
Z 1 0.7 0.7

Rotation - 0.3 * 0.33 *

w1i - 0.7 0.7
w2 j - 0.7 0.7
w3k - 0.7 0.7
w4 - 0.7 0.7

Size 1 0.4 * 0.33 *

height - 0.33 * 0.7
width - 0.33 * -
depth - 0.33 * -
radius 1 - 0.7

Preliminary tests have shown that in many cases the optimisation process tended first to fit some
surfaces of the candidate primitive to the PC (e.g., the four lateral faces of a box), and then to adjust
the remaining ones (e.g., the top and bottom faces). This often led the algorithm to become stuck in
shape configurations (i.e., local fitness optima) that could not be further optimised with one single
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modification event. For example, a box of width λ that fits a box-shaped PC of width λ + δ perfectly
on five faces, is short on the sixth face. One single change of width would very unlikely fit the sixth
face to the data, and at the same time would certainly destroy the alignment of the opposite face to the
data (if the width modification is applied symmetrically respect to the centre). To avoid this problem
the modification procedure keeps one face of the shape fixed. For example, the height of a box or
cylinder may be changed keeping the bottom or top face fixed, and modifying the height.

The differences in the way the shape modification procedure is applied to the different shapes
reflect the different levels of disruptiveness the procedure has on said shapes.

3.4. The Bees Algorithm

The bees algorithm (BA) is a popular intelligent optimisation technique that found wide
application in optimisation problems [29]. Inspired by the honeybees foraging behaviour, it performs
multiple simultaneous local searches at different sites of the solution space. The bees algorithm
considers candidate solutions as food sources, and employs artificial bees to evaluate their quality
(fitness) and exploit the most promising regions of the search space.

The algorithm begins sending ns artificial scout bees to randomly sampled locations (candidate
solutions) in the search space. The scout bees evaluate the quality of the food sources where they
landed using Equation (1). Each visited solution becomes the centre of a neighbourhood delimited by
a hypercube of side ngh = 2δI . The algorithm then enters the main loop, which consists of a number of
steps. The first step is called waggle dance, in analogy with the waggle dance behaviour of honey bees
where foragers are recruited for harvesting the richest food sources. In this step, the neighbourhoods
around the fittest nb solutions visited by the scouts are selected for local search.

The second step is where the simultaneous exploitative searches are performed, that is the
neighbourhoods are harvested (local search). Namely, nre forager bees are sent to exploit the
neighbourhood of the very best ne ≤ nb visited solutions, and nrb ≤ nre foragers are sent to
the remaining nb − ne sites. Each forager lands on a food source in the assigned neighbourhood,
and evaluates its quality. The landing site of the foragers is determined using the procedure
described in Section 3.3. That is, in the local search step the bees algorithm concurrently samples the
neighbourhoods around the most promising solutions. The forager that visited the fittest solution
within a neighbourhood becomes the new scout, and the centre of the neighbourhood is moved to
that solution.

If no forager finds a solution that is fitter than the centre of the neighbourhood, the scout remains
unchanged, and the local search is said to stagnate. In this case, the size of the neighbourhood is reduced
(neighbourhood shrinking procedure). After stlim consecutive stagnation cycles the neighbourhood is
abandoned and the scout is re-initialised at a new randomly picked location in the search space (site
abandonment procedure).

Global explorative search (third step) is performed by the remaining ns− nb scouts, which keep
on randomly sampling the solution space looking for new promising regions. At the end of one cycle
of the main loop, nb scouts mark the neighbourhoods resulting from local search, and ns− nb scouts
mark the neighbourhoods found through global search. The algorithm terminates after a given number
of iterations returning the best solution found.

For more details on the bees algorithm and its capabilities, the reader is referred to [7,30,31].

3.5. Evolutionary Algorithm

Evolutionary algorithms (EAs) are global search techniques modelled on the process of natural
selection of species as described by Darwin, and on the laws of inheritance of traits postulated by
Mendel and Wilson [32,33]. In analogy with biology, in EA terminology the vectors encoding the
solutions (Section 3.1) are called chromosomes, and their elements (the parameters) are called genes.

The optimisation process is started randomly initialising a population of p candidate solutions.
The algorithm then enters the main loop, which consists of a number of steps. In the first step,
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the fitness of the population is evaluated using Equation (1). In the second step (selection scheme),
the population is ranked in decreasing order of fitness, and sampled with replacement to select p− 1
seeds (parents). Population sampling is done allocating selection probabilities proportionally to the
position in the ranking [8]. In the third step (mutation), the p− 1 selected parents are used to generate
p − 1 offspring using Equation (5). The mutation procedure employs the parameter modification
operator described in Section 3.3. The main difference between the EA and the bees algorithm in the
use of the parameter modification operator is that the former encodes the neighbourhood size (δI) in
one extra chromosome, and lets it undergo evolution. The EA thus adapts the scope of the local search
using the same evolutionary process used to evolve the solutions. The bees algorithm progressively
shrinks δI via the neighbourhood shrinking procedure.

A new population is formed from the p− 1 offspring and the fittest individual of the current
population, according to the generational replacement with elitism procedure [8].

The EA used in this study iterates gen cycles (generations) of evaluation, selection, and mutation.
Genetic crossover [8] is not implemented; for this reason, and the fact that the mutation width δI

undergoes evolution, the EA is close to the evolutionary programming approach [8].

3.6. RANSAC

As seen in Section 2, a number of RANSAC implementations were proposed in the literature.
The main variations over the standard procedure concerned the use of heuristics for faster execution,
rather than changes in the search procedure. Often, the precise algorithmic details of these RANSAC
variants were not fully reported, and for this reason the standard procedure was implemented in this
study [5]. RANSAC is an iterative process, where one new candidate shape is created and scored every
cycle. Each iteration comprises of three primary subroutines.

The first RANSAC subroutine creates a minimal subset Pms of points, where Pms ⊂ PC =

{p1, . . . , pN} and ms < N. The subset Pms contains the minimum number of points needed to fully
define a candidate shape. Namely, four points are needed to define a sphere, five to define a cylinder
and six to define a box (Figure 2).

Figure 2. Four non coplanar points are used to define a sphere (see left). Five points are used to
define a cylinder, with one on each end face and three on the outer cylindrical surface (see top right).
Six points are used to define a box, one point for each side (see bottom right). Note that the cylinder
and box require estimated surface normals to the PC to validate the minimal set of points.
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For the sphere, all four points are randomly sampled at once, and resampled if they are coplanar.
For the cylinder and box, one point is picked from the PC at a time, and a set of tests are performed
to determine if the newly sampled point is on the same or a different shape face to the points
already populating Pms (i.e., all normals must be perpendicular or of opposite direction to each
other). The newly sampled point is added if it lies on a different face respect to all points in Pms,
otherwise is discarded. In the case of the box, the goal of the sampling procedure is to have a point on
every face. In the case of the cylinder, the goal is to have three points on the cylindrical outer surface,
and one point on each of the end faces.

The second RANSAC subroutine defines a candidate primitive shape from Pms. The parameters
required to fully define a shape are similar to those defined in Section 3.1, with the sole difference of the
use of Euler’s angles (i.e., roll, pitch, yaw) instead of quaternions to define orientation. For spherical
primitives, the parameters were found using Schmitt’s technique [34]. For cylinders and boxes,
the orientation of the shape is found using the normals to two of the points in Pms (once the orientation
of two perpendicular faces is found, the third dimension can be retrieved from the right-hand rule).
After the orientation of the candidate shape is found, the size is determined from the whole set of
points in Pms (pairs of points in Pms on opposite faces delimit the boundaries of the candidate shape).
Finally, the centre is calculated from the reconstructed shape.

The third and final step is to score the candidate primitive shape. The score is calculated as follows:

Score(I) =
N

∑
i=1

min{dist(pi, I), ε} (7)

where N is the number of points in the PC, δ(pi, I) is the shortest distance between pi and the surface
of the candidate shape I, and ε is the approximation tolerance. In the RANSAC implementation used
in this paper ε = 0.3. A perfectly fitting shape scores zero.

4. Experimental Method

The performance of the bees algorithm, the EA, and RANSAC was evaluated on three data sets,
using a purpose-built error function. This function is different from the goodness of fit function used
in the individual algorithms, and this guarantees an unbiased evaluation of the results. For each data
set, forty independent runs of each algorithm were performed, and the results statistically analysed.
The three data sets are available at the following GitHub repository: https://github.com/lucabaronti/
BA-Primitive_Fitting_Dataset.

4.1. Data Sets Used

Each data set comprised of 591 3D models of 103 data points each. Each model represented one
primitive shape (sphere, box, or cylinder) of different proportions and orientation. Namely, each data
set was composed of:

• 181 individual models of spheres. where the radius was varied from 1 to 10 units in steps of 0.05;
• 220 individual models of boxes, where the width, height and depth were varied from 1 to 10

units in steps of 1, and took all possible combinations of these levels (full factorial design).
The orientation was randomly determined;

• 190 individual models of cylinders, where the radius was varied from 0.5 to 5 units in increments
of 0.25, the height from 1 to 10 units in steps of 1, and radius and height took all possible
combinations of these levels (full factorial design). The orientation was randomly determined;

The centre of the shapes was set at the origin. Each PC was created first forming and rotating the
primitive shape, and then uniformly sampling 103 data points from its surface. The three data sets
differed for the amount of noise (error, see Figure 1) in the sampling of the points. Namely:

• Clean set: there is no error, the data points lie exactly on the surface of the primitive shape;

https://github.com/lucabaronti/BA-Primitive_Fitting_Dataset
https://github.com/lucabaronti/BA-Primitive_Fitting_Dataset
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• Error set: the position of each point was randomly perturbed with uniform probability within a
0.1 unit radius;

• Double error: the position of each point was randomly perturbed with uniform probability within
a 0.2 unit radius;

In the tests, it is assumed that the type of sought shape is known, and the goal is to find the shape
size and orientation. That is, each algorithm is run three times on each data set, each time to fit one
specific kind of shape. Each time an algorithm is run on one data set, it is shown only the subset of
shapes that needs to be fitted: for example, if the algorithm is required to find the size and orientation
of cylinders in the clean data set, only the subset of 190 cylinder models will be used.

4.2. Error Evaluation Function

The best scoring solution F found by an algorithm in a PC (i.e., the found shape) is compared
with the real shape I, namely the reference shape used to generate said PC.

A fair evaluation of the solutions needs to take into account several issues. First, it involves
the comparison of parameters of mixed units (angle degrees for orientation, linear units for size and
position), and thus standard metrics (e.g., Euclidean distance) would not be appropriate. Second,
differences in the centre or orientation have a larger impact on the matching of the two shapes (and
hence on robotic manipulation) than a comparable offset in the size parameters. Finally, the data sets
include shapes with differences in size up to one order of magnitude, and the evaluation function
should be invariant to size.

The error evaluation function considers the match and alignment of the three segments
corresponding to the height, width, and depth of the F and I shapes. Each of the three segments is
placed along one of the principal axes of symmetry of the shape (Figure 3). In the case of the box,
the lengths of the three segments correspond to the three size parameters of the solution, in case of
the cylinder the length of one segment corresponds to the height and the other two to the diameter
of the circular section, in case of the sphere they are all equal to the diameter. If the principal axes
are not unique (e.g., the three axes of the sphere), they are aligned with the Cartesian axes of the
reference frame.

Figure 3. The found shape F is compared to the real shape I projecting its height, depth, and width
onto the height, depth, and width of the real shape.

The error is measured from the overlap between the projection of each segment of F onto the three
segments of I. In case of perfect matching and alignment, each segment of F (e.g., the height of a box)
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will project exactly onto the corresponding segment of I, and on a point (i.e., zero overlapping) onto
the other two segments (the width and depth) of I. In case of misalignment or incorrect dimensions of
F, the projection of one segment (e.g., the height of a box) will not cover exactly the corresponding
segment (the height) of I (Figure 4a), and will be non-zero on the other two segments (the width and
depth).

(a) Axes Comparison

(b) Different Cases
Figure 4. Projection of the ith segment of F (Fi) onto the jth segment of I (I j); that is, the intersection of
the projections of Fi and I j onto the jth Cartesian axis. The green part of the segment marks the match
(intersection) of the two projections, the red parts the mismatch. In case of perfect match, the green part
will be equal to the length of I j, and there will be no red parts. There are six possible cases of partial or
no match between the two axes.

Given a solution F, let us denote as F1, F2 and F3 its three segments (the width, depth, and height
respectively), sorted in decreasing order of length, and as F̂i

j the projection of the ith segment of F on

the jth Cartesian axis, where j = 1 denotes the X axis, j = 2 denotes the Y axis, and j = 3 denotes the
Z axis. Likewise, for the three axes of I. Finally, let us denote henceforth as |A| the length of a given
segment A.

To simplify the calculations, a rigid transformation is applied to express F and I in a new Cartesian
frame that corresponds to the three principal axes of I. Note that now | Îi

i | = |Ii| and | Îi
k| = 0 ∀k 6= i

The error Err(F, I) in the alignment and match of F to I is calculated as follows:

Err(F, I) = min
i={1,2,3}

 min
k={1,2,3}

k 6=i

{
M(Fi, Ii)− E(Fi, Ik)

} (8)

M(Fi, Ii) denotes the matching and alignment of Fi with the corresponding segment Ii, and is
calculated as the length of the intersection F̂i

i ∩ Îi
i (green sub-segment in Figure 4a), minus the sum of

the lengths of the non-intersecting parts of F̂i
i and Îi

i (red sub-segments in Figure 4a).

M(Fi, Ii) =
|F̂i

i ∩ Îi
i | −

[
|F̂i

i | − |F̂i
i ∩ Îi

i |
]
−
[
| Îi

i | − |F̂i
i ∩ Îi

i |
]

| Îi
i |

(9)

Note that if the found shape F matches perfectly I, |F̂i
i ∩ Îi

i | = | Îi
i | (Fi is aligned with Ii), all

the other terms are equal to zero, and M(Fi, Ii) = 1. In case of total mismatch, |F̂i
i ∩ Îi

i | = 0 and

M(Fi, Ii) = − |F̂
i
i |+| Î

i
i |

| Îi
i |

< −1.
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E(Fi, Ik) denotes the mismatch and misalignment of Fi, and is measured as the length of the
intersection of its projection with the non-corresponding axes Ik of I. That is:

E(Fi, Ik) = max
k={1,2,3}

k 6=i

{
|F̂i

k ∩ Îk
k |

| Îk
k |

}
(10)

Note that if the found shape F corresponds perfectly to I, |F̂i
k ∩ Îk

k | = 0 for all i 6= k (Fi is aligned
with Ii), and E(Fi, Ik) = 0. In case Fi is perpendicular to Ii (total mismatch), Fi will be aligned with
one of the Ik and E(Fi, Ik) = 1.

Equation (9) is equal to zero in case F corresponds to I (M(Fi, Ii) = 1 and E(Fi, Ik) = 0), is greater
than zero otherwise, and is maximum in case of total mismatch (M(Fi, Ii) < −1 and E(Fi, Ik) = 1).
The maximum and minimum operations are meant to penalise the main mismatches in length and
alignment, whilst being more forgiving on minor discrepancies.

4.3. Parameters Used

The parameterization of the two metaheuristics has been optimised via extensive trial and error,
and is shown in Table 2. It is different for each shape type, but the same across the three data sets
(noisy, error, double error, Section 4.1). The two metaheuristics have been parameterized so as they
sample the same number of solutions in one complete optimisation trial.

Table 2. Parameterization of the bees algorithm and avolutionary algorithm.

Evolutionary algorithm

Parameter Sphere Box Cylinder

# Individuals 10 10 25
# Parents 3 3 8
Mutation Rate (pf ) 1 1 1
# Iterations 390 900 672
Sampling Coverage 5% 25% 25%

Bees algorithm

Parameter Sphere Box Cylinder

Scout bees (ns) 2 3 4
Elite sites (ne) 1 1 1
Best sites (nb) 2 3 4
Recruited elite (nre) 9 10 10
Recruited best (nrb) 4 4 6
Stagnation limit (stlim) 20 30 25
Initial patch neighbourhood (ngh) 0.15 0.5 1
# Iterations 300 500 600
Sampling Coverage 5% 25% 25%

5. Results

The five-number summary [35] of the primitive fitting tests is shown for each algorithm in Table 3
for the clean, error, and double error data sets. The five-number summary is a popular set of robust
descriptive statistics that provide the central tendency (median), spread (first and third quartile),
and range (minimum and maximum) of the distribution of the results.

In terms of accuracy (median value), the bees algorithm performed particularly well on spheres
and boxes, where it obtained errors that were smaller than or comparable to the errors obtained by the
EA and RANSAC. On cylinders, although the performances of the bees algorithm and RANSAC were
close, the latter obtained the best results.
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In terms of consistency (first and third quartiles), RANSAC and the bees algorithm performed
comparably on boxes and spheres, whilst RANSAC was clearly superior in the fitting of cylinders.

Overall, the EA was the least accurate and consistent of the three algorithms on all data sets and
shapes. All the three algorithms proved robust to error, as their performances on the clean data set are
indistinguishable from those obtained on the error and double error data sets.

Table 3. Five-number summary of the primitive fitting results obtained by the evolutionary
algorithm, bees algorithm and RANSAC on the three data sets.

Clean

Shape Algorithm Min First quartile Median Third quartile Max

Sphere Evolutionary algorithm 1.055× 10−3 8.898× 10−3 1.410× 10−2 2.135× 10−2 8.831× 10−2

Sphere Bees algorithm 1.270× 10−5 1.594× 10−4 2.585× 10−4 4.132× 10−4 1.625× 10−3

Sphere RANSAC 0 0 0 0 0

Box Evolutionary algorithm 8.170× 10−3 2.517 2.815 3.514 1.217× 101

Box Bees algorithm 7.828× 10−2 1.903 2.353 2.938 1.246× 101

Box RANSAC 1.490× 10−8 2.500 2.714 3.250 7.000

Cylinder Evolutionary algorithm 8.893× 10−2 1.954 4.441 8.938 1.071× 103

Cylinder Bees algorithm 2.069× 10−1 1.824 3.709 7.667 1.052× 103

Cylinder RANSAC 1.902 2.481 2.696 3.162 1.115× 102

Single Error

Shape Algorithm Min First quartile Median Third quartile Max

Sphere Evolutionary algorithm 1.075× 10−3 9.255× 10−3 1.435× 10−2 2.205× 10−2 1.013× 10−1

Sphere Bees algorithm 1.109× 10−4 1.022× 10−3 1.690× 10−3 2.885× 10−3 3.689× 10−2

Sphere RANSAC 3.061× 10−4 3.462× 10−3 5.391× 10−3 9.289× 10−3 5.755× 10−2

Box Evolutionary algorithm 7.724× 10−3 2.496 2.802 3.517 1.212× 101

Box Bees algorithm 3.498× 10−2 1.872 2.348 2.938 1.167× 101

Box RANSAC 1.175× 10−2 2.230 2.511 2.955 7.106

Cylinder Evolutionary algorithm 8.816× 10−2 1.954 4.478 9.032 1.054× 103

Cylinder Bees algorithm 1.141× 10−1 1.813 3.758 7.711 1.140× 103

Cylinder RANSAC 6.959× 10−2 2.222 2.426 2.779 1.082× 103

Double Error

Shape Algorithm Min First quartile Median Third quartile Max

Sphere Evolutionary algorithm 9.426× 10−4 9.769× 10−3 1.522× 10−2 2.319× 10−2 1.018× 10−1

Sphere Bees algorithm 2.037× 10−4 1.838× 10−3 3.140× 10−3 5.610× 10−3 7.257× 10−2

Sphere RANSAC 5.078× 10−4 6.800× 10−3 1.066× 10−2 1.776× 10−2 1.077× 10−1

Box Evolutionary algorithm 1.795× 10−2 2.482 2.768 3.471 1.210× 101

Box Bees algorithm 8.176× 10−2 1.899 2.351 2.991 1.200× 101

Box RANSAC 2.545× 10−2 2.081 2.425 2.843 7.272

Cylinder Evolutionary algorithm 8.970× 10−2 1.984 4.514 9.347 1.095× 103

Cylinder Bees algorithm 1.251× 10−1 1.880 3.884 8.076 1.170× 103

Cylinder RANSAC 1.562× 10−1 2.070 2.339 2.693 8.833× 102

6. Discussion

The state-of-the-art RANSAC algorithm is widely used because of its ability to precisely fit shapes
to PC models. The performance of RANSAC in terms of accuracy and speed strongly depends on a
number of ad hoc assumptions like the tolerance threshold. The results presented in Section 5 proved
that the bees algorithm is able to obtain results of quality (accuracy and consistency) comparable to
those obtained using RANSAC, without the need for domain-specific assumptions. Compared to
another state-of-the-art metaheuristics (EA), the bees algorithm was able to fit primitive shapes to PC
scenes with greater accuracy and consistency.

Although the bees algorithm had not been optimised for speed, single shape fitting times were
in the order of fractions of a second (on average, a single primitive was fitted to a shape in ≈ 0.6 s
on an Intel i7 2.8GHz processor.), and thus fully compatible with real-time operations. If needed,
optimisation and parallelisation would boost the efficiency of the bees algorithm.

The bees algorithm showed also considerable robustness to error, which simulated imprecision
in laser scanning devices. Overall, the tests presented in this paper offer a first indication of the
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capability of the bees algorithm to solve effectively and efficiently the primitive fitting problem,
with performances comparable to or better than the state-of-the-art. The strength of the bees algorithm
is that it does not need any assumption to be made on the model.

It should also be noted that in the comparison of Section 5 RANSAC was advantaged by the
initialisation subroutine. Candidate shapes were in fact initialised with points sampled from the PC,
making sure that these points lied on opposite sides of the shape Figure 2. It is arguable that a similar
seeding of the candidate solutions could boost the performance of the bees algorithm and the EA.

7. Conclusions

In this paper the ability of the bees algorithm to solve the primitive fitting problem was evaluated.
The performance of the bees algorithm was tested on the recognition of three kinds of primitive shapes
from artificially generated data sets, and compared to the performance of the state-of-the-art RANSAC
algorithm and the EA metaheuristics.

The tests showed that the bees algorithm is more precise and consistent than the EA, and performs
with comparable accuracy to and consistently as RANSAC. Although not optimised for speed,
the efficiency of the bees algorithm was compatible with real-time applications. Like the other two
algorithms, the bees algorithms showed considerable robustness to error in the PC models. This result
indicates the suitability of the bees algorithm to handle data from noisy and imprecise sensors.

The main advantage of the bees algorithm over techniques like RANSAC is that it doesn’t need
ad hoc assumptions to be made on the models. In particular, RANSAC is sensitive to the choice of the
error tolerance threshold, which usually requires careful optimisation for top performance. RANSAC
needs also a seeding procedure to generate the candidate shape, which is then scored on its fit to the
rest of the PC model. In its present implementation, the bees algorithm does not need any seeding of
the candidate solutions.

The tests performed in this work featured only PCs representing single objects. Further tests
will be carried out to investigate the ability of the bees algorithm to recognise multiple and possibly
different shapes in a scene. One possible scheme would be to carry out parallel searches for different
shapes, for example one kind of shape for each neighbourhood. At the end, the best fitting shapes for
each region of the scene would be retained. The performance of the bees algorithm on partial shapes
needs also to be evaluated, in order to assess its suitability to cluttered environments.

Finally, the current implementation of the bees algorithm is also extendable to other kinds of
shapes, as long as a measure of the distance of the points from the candidate shape can be expressed,
and the concordance of the normals can be evaluated. Further work should include validation of the
proposed algorithm on more shapes and less geometrically regular objects.
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