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Abstract: A cellular-based evolutionary topology optimization scheme over a small curvature big
contour wing surface is proposed for the design of an ultralight surface structure. Using this
method, a ground-structure technique is first applied to obtain homogeneous mesh generation
with a predefined weight value over the design domain. Secondly, the stiffener path’s description
is guided by a modified map L system topology method that simulates the growth of the bionic
branch, and the structural components are obtained by the specified searching method according
to weights of the previous mesh vertexes. Thirdly, an optimal curved stiffener layout is achieved
using an agent-based algorithm to create individual instances of designs based on a small number of
input parameters. These parameters can then be controlled by a genetic algorithm to optimize the
final design according to goals like minimizing weight and structural weakness. A comparison is
implemented for long-span panel stiffener layout generation between an initial straight case and a
bionic optimal case via our method, thereby indicating the significant improvement of the buckling
loads by steering the stiffener’s path. Finally, this bionic method is applied to the wing box structure
design and achieves remarkable weight loss at last.

Keywords: stiffener layout; bio-inspired generative design; ground structure method; computational
geometry

1. Introduction

Solar-electrically powered fixed-wing unmanned aerial vehicles (UAVs), regarded as a substitute
for satellites, have wide applications in communication, disaster relief, supervisory control, and so on.
In order to obtain a larger lift-to-drag ratio and solar panel area, this vehicle usually has a high-aspect
ratio wing, which requires a large size and very flexible wing-structure. Because of their strict weight
limitations, these UAVs often have extreme structural optimization requirements to balance their
deformation and material distribution. With the development of solar cell packaging technology,
shown in Figure 1, these solar cell modules have become much lighter and more flexible than before,
which also means that these structures may fail before the wing achieves maximum tip displacement
owing to local buckling on its compressive side. Thus, it is challenging to both minimize the structure’s
weight and improve the performance of the structure.

Laminated composite structures with unidirectional glass or carbon fiber reinforced polymer
(GFRP/CFRP) materials are usually used as a substrate and are connected together by a resin with solar
cell modules to improve their strength and stiffness characteristics [1–3]. Generally, this laminated
structure with a large thickness may cause the weight to exceed its limits, while a thinner thickness may
reduce its stiffness. Consequently, a large number of cutouts exist in this thin-wall structure as a direct
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method to save the weight. However, the presence of cutouts will destroy the integrity of the structure,
reducing buckling resistance and also possibly generating unpredictable flaws. In order to obtain
a lighter weight structure, the traditional optimization method is to optimize the laminate stacking
sequence. As the development of automated fiber placement techniques makes curved fiber paths
affordable, the concept of variable stiffness laminates with curved fiber paths is proposed. With the
development of manufacturing technologies, more efficient structural forms have become available.
These new structures offer tremendous opportunities for combination with optimization technologies
to obtain satisfactory structural weight reduction.
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distribution, there are several novel features in this paper’s surface design. Firstly, this design offers 

a more flexible surface. Secondly, the grid-like structure is developed, with more grids added in the 
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Figure 1. Flexible solar-powered battery plate.

As illustrated in Figure 2, grid-stiffened structures or shell structures preserve a high strength
because of their exceptional mechanical properties along the fiber direction and are now widely used
in both aerospace engineering and ground transportation vehicles. On the basis of the concept of
variable stiffness laminates with curved fiber paths proposed by Gürdal [4], a new idea for arbitrarily
distributed curved stiffener layouts has inspired a new wave of research. Dan Wang made full use of
these streamlined characteristic to design a fiber path, and these non-uniform curved grid-stiffened
composite (NCGC) structures have achieved a remarkable increase in their buckling load [5,6]. Kapania
engaged in extensive research on the shape optimization of curved stiffeners for composite structures [7],
while Mohammad Rouhi proposed a variable stiffness composite cylinder by fiber steering to maximum
the buckling load under pure bending [8].
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Figure 2. Illustration of grid-stiffened composite structures. (a) Grid-stiffened panel. (b) Grid-stiffened
cylinder. (c) Curved grid-stiffened panel.

Beyond the shape or size optimization of the stiffeners or varying the path of the stiffeners’
distribution, there are several novel features in this paper’s surface design. Firstly, this design offers a
more flexible surface. Secondly, the grid-like structure is developed, with more grids added in the high
stress area to improve safety margins. Thirdly, this design features a non-uniform load distribution.
These particularities have yielded a new concept distinct from current optimization methods and also
offer an opportunity to determine new structural types with high efficiency.
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The remainder of the paper is organized as follows. In Section 2, a bionic concept for layout
generation is proposed. Next, in Section 3, the details of the bionic stiffener’s growth process are
presented. The optimization settings and discussions of efficiency, followed by FE (Finite Element)
analysis, are listed in Section 4. In Section 5, a wing structure established by this article’s method is
discussed. In Section 6, we conclude this paper with some remarks.

2. Bionic Concept of the Grid Generation Method

What seems challenging to us is very common in some natural structures, such as insect wings,
plant leaves, and diatom shells, as shown in Figure 3. These thin-wall structures simultaneously use
multiple intersected curved stiffeners to form their surfaces and achieve great enough strength to
protect themselves from outside damage.
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(c) Insect wings.

Many designers are inspired by these natural structures and have applied bionic design methods
to obtain optimal solutions. Jihong Zhu demonstrated a shape preserving topology optimization
design approach for suppressing the warping deformation of local structural domains [9]. Dimcic
Milos applied a relaxed method based on the force density method to a non-uniform Voronoi structure
and obtained a foam-like structure through the genetic algorithm [10]. Danil Nagyand and this
APworks group combined a bottom-up growth strategy based on slime mould’s behavior in nature
using a top-down genetic algorithm strategy and by minimizing weight and structural weakness to
obtain the final design [11,12]. Christian Hammand and his group have engaged in extensive research
on plankton shells and presented an ELiSE (evolutionary light structure engineering) concept that
uses pre-optimized lightweight structures to widen the design space through the development of
various new lightweight solutions to determine the best type of structure [13,14]. These studies have
established practical indirect strategies to simulate the characteristics of natural structures by changing
their parameters to produce complex design solutions that are not only high performing, but also
novel and unexpected.

To take advantage of nature’s structure and simulate growth behavior, a two-step stiffener growth
method is presented to combine the biomimetic domain partition method with the structural topology
method and insert an evolution algorithm into the design process to obtain an optimal result. As shown
in Figure 4, a rule-based algorithm is used to obtain various stiffener layouts for a given wing surface
geometry. First, a predicted topology method based on the ground structure (GS) is applied to obtain
the discrete structured data. Then, a modified Lindenmeyer systems (L-systems) algorithm based on
the homogenized structural data is executed to create the actual structure. A detailed structural model
is established by parametric modeling, and an FEM simulation is implemented to obtain the required
judgment data for the optimization algorithm.
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3. Modeling Framework

Here, we provide a brief introduction to the ground structure method and the L-systems.
A detailed process introduction is also presented for the two-step stiffeners growth method. There
are three basic points in this strategy to form a bionic structure layout; all points are separately
arranged into two-steps: (1) discretization, (2) homogenization, and (3) partitioning. With these factors,
the parameters are extracted and used to control the rules of the intermediate algorithm, which is then
executed to create the actual structure.

3.1. Ground Structure Method

The ground-structure technique, which was first introduced in the 1960s by Dorn, is usually used
for the truss topology design problem. In this approach, a large number of potential nodes and an
even larger number of potential bars are distributed over a design domain. With a continuum of
geometrically restricted conditions, this sizing reformulation ultimately generates the truss-layout by
removing unnecessary members [15].

A stable truss system that is sufficient to prevent rigid body motion should satisfy the force
equilibrium equations to obtain the minimum volume. The formulation is

min
a

V = lTa

s.t. BTn = f
−σCai ≤ ni ≤ σTaii = 1, 2 . . .Nb

, (1)

where V is the the truss’ volume; and ai, li, and σi are the cross-sectional area, length, and stress,
respectively, of the ith truss member (or all Nb members in the truss). n is internal bar forces.
The parameters Nn and Nsup are the numbers of nodes and components with supports, respectively,
and Ndo f are the free nodal components with Ndo f = n Nn −Nsup for n = 2 in a two–dimensional
ground structure. BT is the nodal equilibrium matrix of size Ndo f ×Nb, f is the force’s node, and its
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number is Ndo f ; n is a vector with an internal (axial) force for all members in the ground structure.
Stress limits in tension are σT > 0 and compression is σC < 0.

To convert the constraint into its equalities, the slack variables s+ and s− are used, and the
optimization problem in (1) becomes a linear programming problem, as follows:

min
s+,s−

V∗ = V
σT

= lT(s+ + κs−)

s.t. BT(s+-s-) = f
s+i , s−i ≥ 0

(2)

where ai = s+i /σT + s−i /σC and ni = s+i − s−i , κ = σT/σC. Only one of s+i and s−i is non–zero.
The member experiences tension if s+i > 0 and compression if s+i > 0. Using matrix notation, (2) can be
rewritten as Equation (3) and can be solved more efficiently using the interior-point algorithm [16,17]:

min
s+,s−

V∗ = V
σT

=
{

lT κlT T
}

1×2Nb

{
s+

s−

}
2Nb×1

s.t.
[

BT
−BT

]
Ndo f×2Nb

{
s+

s−

}
2Nb×1

= f
Ndo f×1

s+i , s−i ≥ 0

(3)

There are three major reasons to choose the ground-structure technique as the first topology
method to reflect the layout pattern of the given surface domain: (i) the use of a plate-like design domain
for the wing surface; (ii) the length of this columnar structure is much greater than its dimensions
(diameter or side lengths), and its prime characteristics are along the carbon fiber, which acts like a truss
structure; (iii) evenly distributed grid vertexes, which can discretize the whole structure’s information
and function as knots along the detail stiffeners’ path.

3.1.1. Discrete Strategy

In this strategy, an amount of discrete points among the design domain is needed to contain
the structural data after the topology evaluation step under the GS method, as the GS is a polygon
mesh-based method, which means a ruled partition is used for the given design domain. The usual
used grid mesh for the GS is rectangular and triangular, with polygon vertexes that are constant in
the domain. Centroidal Voronoi tessellation (CVT) is a special condition of the Voronoi diagram,
in which the generating point pi coincides with the centroid pic of the corresponding region (shown in
Figure 5) [18]. This has wide applications in data compression, cell biology, the territorial behavior of
animals, and the optimal allocation of resources. This special convex polygon has a random total edge
range from 4 to 6, and their corresponding vertexes enlarge the search range of the truss orientation in
the GS, which is advantageous for the searching strategy during the stiffener growth.
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In this strategy, in order to obtain a 3D geometric mesh, a non uniform rational basis spline
(NURBS) method is used by Rhino (3D model built software) to transform the parameters from a
two-dimension plane (x, y) to the referenced three-dimensional surface (u, v). The basic mesh for
the wing surface of the GRAND method is shown in Figure 6. After establishing the plane grid’s
relationship and setting the boundary and load conditions for the mesh, we use the optimization
function defined in Equation (3) to obtain the bar connections and the bar size, respectively.
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Figure 6. Map the location from wing surface (u, v) to the corresponding plane (x, y).

3.1.2. Homogenization Strategy

In this strategy, topological information obtained from the discrete strategy will be homogenized.
As depicted in Figure 7, The GS computed a layout configuration that also reflects the material’s
distribution over the design domain. For example, in the pre-defined points of the design domain,
a greater number of bars at the same point means more materials in this area, which also indicates a
high stress level. Therefore, this homogenization method is a size parameter homogenized process for
arranging the bar members’ materials to the corresponding point.
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As one location may belong to two or more bars’ ends, and the locations can also be influenced by
the surrounding bars, three steps are executed to homogenize the truss connections to the mass data.
Figure 8 shows a separate process for homogenizing the bar member’s materials to the corresponding
points. The corresponding points are selected by the following steps:

(1) The searching domain is established among the two ends of the bar.
(2) Calculating the distance from the corresponding point to the bar member.
(3) Allocating the size parameter associated with the respective distance.
(4) Data summation and normalization processing for every point, we:

we =

 m∑
i=1

Wi

/we
max, (4)

where we
max is the maximum computed weight data, and Wi is the weight from the ith corresponding

bar. After the above four steps, the topology data will change from the bar size data to the stress-weight
data of the points (seeds) in the domain.



Appl. Sci. 2019, 9, 5196 7 of 18
Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 17 

 

 

Figure 8. An allocation method to homogenize the size data from the bar member to the selected node. 

3.2. Map L Systems 

To generate an entire grid structure with no disconnection, an intermediate system is needed to 

guide the partition under a certain rule. Thus, a binary propagating map Lindenmeyer system, whose 

grid follows certain rules, is used here [19]. In this system, the domain partitions and cell edges are 

generated by a set of rules. One example of the production rules is presented in Equation (5), and the 

derivation process of the first four steps is given in Figure 9: 

[ ] [ ]A B A x A B

B A

x x

  



 

, (5) 

where  , ,A B x   are letters that define the class of the edges. Detailed explanations of the rules to 

this equation can be found in the literature [20–22]. The process may terminate after each cell is less 

than the required cell area, after a defined maximum number of steps, or after certain production 

rules terminate on their own volition. The layout of the final cell is finally transformed into the 

structural-design domain. In our method, in order to utilize the information from the GS step, a 

modified cellular-division methodology is proposed and detailed in the partition strategy. 

 

Figure 9. First six steps in an example cellular-division process. 

3.2.1. Partition Strategy 

In this strategy, a modified L-system based on GS is presented for a non-uniform curved stiffener 

layout design. After the homogenization strategy, every location contains the weight data. To enact 

the L-system in our design model, we first specified two types of locations, the ‘edge seeds’ and ‘body 

seeds’, respectively. As shown in Figure 10, the ‘edge seeds’ consist of the boundary locations that 

would change the initial weight value, and the ‘body seeds’ comprise the locations in the domain 

with the weight value unchanged from the homogenization strategy. Before binary partition, the 

longer coupled edges in triangle or quadrangle are analyzed to determine the partition objects. Then, 

a node is chosen, and a stiffener growth process is executed to imitate the logic of the L-system. 

Detailed implementations for the initial binary partition domain are shown in Figure 11. It should be 

noted that a decay operator is needed to decay the weight of the upper level’s chosen node weight. 

Figure 8. An allocation method to homogenize the size data from the bar member to the selected node.

3.2. Map L Systems

To generate an entire grid structure with no disconnection, an intermediate system is needed to
guide the partition under a certain rule. Thus, a binary propagating map Lindenmeyer system, whose
grid follows certain rules, is used here [19]. In this system, the domain partitions and cell edges are
generated by a set of rules. One example of the production rules is presented in Equation (5), and the
derivation process of the first four steps is given in Figure 9:

A→ B[−A]x[+A]B
B→ A
x→ x

, (5)

where
∑

= {A, B, x} are letters that define the class of the edges. Detailed explanations of the rules to this
equation can be found in the literature [20–22]. The process may terminate after each cell is less than the
required cell area, after a defined maximum number of steps, or after certain production rules terminate
on their own volition. The layout of the final cell is finally transformed into the structural-design
domain. In our method, in order to utilize the information from the GS step, a modified cellular-division
methodology is proposed and detailed in the partition strategy.
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Partition Strategy

In this strategy, a modified L-system based on GS is presented for a non-uniform curved stiffener
layout design. After the homogenization strategy, every location contains the weight data. To enact
the L-system in our design model, we first specified two types of locations, the ‘edge seeds’ and ‘body
seeds’, respectively. As shown in Figure 10, the ‘edge seeds’ consist of the boundary locations that
would change the initial weight value, and the ‘body seeds’ comprise the locations in the domain with
the weight value unchanged from the homogenization strategy. Before binary partition, the longer
coupled edges in triangle or quadrangle are analyzed to determine the partition objects. Then, a node
is chosen, and a stiffener growth process is executed to imitate the logic of the L-system. Detailed
implementations for the initial binary partition domain are shown in Figure 11. It should be noted that
a decay operator is needed to decay the weight of the upper level’s chosen node weight. In this way,
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the chosen node will not be the second selected in the next level of the L-system. Lastly, the binary
partition domain will not be split after the cell area is less than a certain value.
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4. Method Validation

4.1. Model Extraction and Finite Element Analysis Preparation

In order to illustrate the potential of this bionic stiffener growing method for the buckling design
of plate-like wing surface structures, we use long-span panel buckling optimization as the verification.
The shell model is made of a honeycomb sandwich structure with a length of 1.5 m and a width of
0.2643 m. The up and down sandwich composite’s ply thickness is 0.21 mm, and the honeycomb’s core
thickness is 1.58 mm; the total thickness is 2.0 mm. The two loading cases of uniaxial compression and
biaxial compression are illustrated in Figure 12 [23].
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Figure 12. Schematic loading diagrams of the long-span panel and the initial straight stiffener.
(a) Uniaxial compression. (b) Biaxial compression.

Each beam-like member of the curved stiffener has a uniform cross section. The stiffener’s elastic
modulus is found from the Halpin–Tsai semi-empirical relation because of its anisotropic and composite
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characteristics [24]. The engineering constants used to define the beam element are listed in Table 1,
and 45◦ and −45◦ intersected straight stiffeners are used as the initial stiffener layout (illustrated in
Figure 13). These two structure types (initial straight and bionic optimal) have the same skin layout
and the same stiffener height.

Table 1. Composite material engineering constants.

Material Properties Value

Longitudinal stiffness, E1 [N/mm2] 157,650
Transverse stiffness, E2 = E3 [N/mm2] 13,280

Shear stiffness, G12 = G13 [N/mm2] 4561
In-plane shear stiffness, G23 [N/mm2] 4538

Poisson’s ratio, ν12 = ν13 0.256
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Figure 13. Initial straight stiffener layout.

4.2. Research Model Parameters

The final plate’s structural design is defined by the boundary of the panel plus its partition edges.
The parameters of this model are the weights of the ‘boundary seeds’ (wbc) that are given as real values
in the domain [0, 1], as well as the weights of the ‘body seeds’ (winitial) that are calculated from the
homogenization strategy, the judgement of the minimum cell area (area), the highest level number of the
L-system (N), and the decay parameter (d). Here, we chose wbc as the changed parameters; the structure
will be generated under the defined rules. Because all the input parameters are continuous, the genetic
algorithm (GA) is able to ‘learn’ how to work with the growth behavior and tune it to create better
performing designs over time.

4.3. Optimization Model and Option Settings

This behavioral generative geometry model can create numerous layout patterns for a wing
surface structure based on a relatively small set of input parameters (87 boundary seeds). To find
high-performing layout patterns, a series of judgments are needed to the algorithm. In this paper,
static finite element analysis (FEA) is used to simulate the performance of each design under the given
loading conditions. This analysis gives us a set of metrics that we can use to establish the objectives
and constraints of our optimization problem:

• The total weight of the whole model must be minimum, with the first buckling loads confined to a
certain range.

• The first buckling loads, which are the objective of this design, should be maximum. These two
optimization problems are presented as follows.


Find : w = [w1, w2, . . . , wn]

T

min: Mbic

s.t. : λL ≤ λ ≤ λU

wi ∈ (0, 1)i = 1, 2 . . . , n

, (6)


Find : w = [w1, w2, . . . , wn]

T

max : λRBL

s.t. : wi ∈ (0, 1)i = 1, 2 . . . , n
, (7)
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where wi is the weight data for the boundary seeds, and Mbic is the total weight of the bionic
plane. λRBL is the relative buckling load factor related to the initial straight plane weight (λRBL =

λ·(1− ((Mbic −Minitial))/Minitial)). Using the above optimization model, we performed an optimization
using a variant of the multi-island genetic algorithm with the following settings in Table 2.

Table 2. Multi-island genetic algorithm settings.

Optimization Technique Options Value

Number of designs per generation 50
Number of generations 30

Number of islands 5
Mutation rate 0.01

Cross-over rate 1.0
Mutation rate 0.03

A parametric modeling method is established, with a detailed geometric model formed using the
RHINO software and the FE model executed in the ABAQUS software. A single model setting is used
and computed about 50 s (CUP times) under mid-fidelity. This yields perfect computational efficiency
for the GA method.

4.4. Result Analysis

Figure 14 shows the improvement process under different objects and load conditions, evidencing
a remarkable ability to develop subsequent generations of designs until the optimal design. Figure 15
illustrates the GA points under uniaxial and biaxial compression.
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where 𝑤𝑖  is the weight data for the boundary seeds, and M𝑏𝑖𝑐 is the total weight of the bionic plane. 
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Figure 14. Improvement history with the bionic curved stiffener layout generation method.
(a) Improvement history of the mass object under uniaxial compression. (b) Improvement history of
the relative buckling load object under uniaxial compression. (c) Improvement history of the relative
buckling load object under biaxial compression.
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In the uniaxial compression condition, two optimized objects, mass and relative buckling load,
corresponding to Equations (6) and (7), are applied to obtain the desired result. The final layout is
shown in Figure 16a,b. Figure 16c shows the optimized stiffener layout under biaxial compression
with a relative buckling load object corresponding to Equation (7).
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The results of both the initial straight and bionic optimized stiffeners under different situations
are given in Table 3, and their detailed finite element analysis result are given in Figures 17 and 18,
respectively. It is clearly seen that the bionic curved stiffeners increase the critical buckling loads
greatly (the highest improvements can reach 40.15%), and the different buckling modes reflect that the
bionic method in this paper may divide the global buckling area into pieces, while the local buckling
damage plays a dominant role in the buckling mode. As local buckling does not indicate a completely
broken situation, this stiffener layout also enlarges the damage tolerance to the solar panel.

Table 3. Relative buckling loads (RBLs) and mass data of the initial straight and bionic optimal curved
stiffeners under uniaxial compression and biaxial comparison.

Mode

Uniaxial Compressions Biaxial Compressions

Detailed Models Detailed Models

Initial Straight Optimal Mass Optimal RBL Initial Straight Optimal RBL

1 25.359 26.345 35.721 18.557 19.996
2 27.281 28.561 37.392 22.577 21.295
3 29.815 30.874 38.465 27.777 25.744

Mass/kg 0.663 0.557 0.630 0.663 0.624
RBL 25.359 —— 35.542 18.557 21.172

Increase (RBL) —— —— 40.15% —— 14.09%
Increase (Mass) —— 15.98% —— —— ——
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5. Wing Surface Structure Application

In this section, the proposed two-step bionic curved stiffener layout generation method is
implemented for the wing surface structural design. As illustrated in Figure 19, a simplified model
with boundary and loading conditions is presented. The optimization problem is listed in Equation (8),
and the optimization options are shown in Table 4. With the GS data, a wing box is set to simulate the
bionic grid wing’s structural properties.
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Figure 19. Boundary condition (BC) and load conditions with the ground structure (GS) method and
the topology result of the wing surface structure. (a) Model setting of the GS method. (b) Wing topology
result of the upper and bottom surface.

Table 4. Multi-island genetic algorithm setting and optimization results for the wing structure.

Optimization Technique Options Value

Number of designs per generation 40
Number of generations 25

Number of islands 5
Mutation rate 0.01

Cross-over rate 1.0
Mutation rate 0.03

Maximum stress limit 900 MPa
Maximum displacement limit 150 mm

Twist angle limit [−3◦, 3◦]
Mass ——

Here, θtwist is the wing’s maximum twist angle, Utip is the displacement of the wing tip, and
Smax is the maximum stress value of the stiffeners. The optimized process is presented in Figure 20.
In this figure, the color represents the tip displacement that corresponds to the bending stiffness; blue
indicates a low level and red indicates a high level. The detailed FEM result are shown in Figure 21.
For the upper and bottom surfaces’ optimal results in Figure 21b,c, the difference is caused by the
opposite load condition to the bottom surface suffered by the tension force, while the upper surface
resists the compression force. The layout of the upper surface revealed a large set of stiffeners towards
the wingspan, and the bottom surface revealed a chord-wise like layout, which is a twist that resists
performance to improve torsional rigidity.
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A comparison between the bionic structure and traditional structure is listed in Table 5. The three
types are under the same load conditions, and the grid structure uses the same cross section. The bionic
grid structure has a 29.1% weight loss compared with the traditional structure and a 22.8% weight
loss compared with the initial straight structure. In the table, this surface grid structure shows great
advantages in weight loss. As the traditional structure is a beam and slab structure, this weight loss
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is mainly relayed to the materials’ improvement. These remarkable reductions are caused by the
different uses of the structure’s layout, and the novel bionic design of the stiffener can further reduce
the weight. However, we must discuss the twist angle along the wing span (Figure 22). This structure
has a discontinuous torsional rigidity, which may be related to the continuity verification constraint in
the optimization.

Table 5. Property comparison between the bionic structure and traditional structure.

Design Object and
Constraint

Optimal Result

Bionic Grid Tradition Structure Initial Straight

Graphical representation
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6. Conclusions

In this paper, a new concept of bionic curved grid-stiffened composite structures is proposed
for a wing grid-shell composite structure design. Drawing on the biological structures of nature,
a stepped automated method was shown in the paper to simulate the growth mode of a stiffener for
the whole design domain. In this way, desired sparsely distributed stiffeners with more flexible skin
are proposed; these stiffeners are also more effective than traditional ones. The proposed methodology
also established a design system for a plane-like structure that can be applied to a beam-like internal
structure design, taking advantage of the formal freedom facilitated by recent advances in additive
manufacturing. Finally, this nature-based generative design system offers the possibility to be combined
with structural data and the bionic generative method to leverage the power of evolutionary computing
to derive unique, high-performing solutions for complex design challenges.
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