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Abstract: Air turbulence (AT) is a typical risk that seriously threatens civil aviation safety. It is
typically measured via vertical overload, derived equivalent vertical gust velocity (DEVG), and eddy
dissipation rate (EDR), while the last one is the most ideal index. In this study, we combined two
traditional methods of EDR estimation and proposed a new procedure to estimated EDR with quick
access recorder (QAR) data. It enables us to use the parameters only from QAR data for EDR
estimation, which fully reflects the great value of QAR data. We estimated EDR values with QAR
data collected by the Civil Aviation Administration of China (CAAC), to present the intensities of air
turbulences happened within China from 1 January 2016 to 31 December 2018. This study could also
be helpful in evaluating and analyzing causes and early warning of AT risks.

Keywords: QAR data; air turbulence; turbulence intensity; eddy dissipation rate

1. Introduction

Air turbulence (AT) is a typical risk that seriously threatens civil aviation safety. It could typically
cause sudden airplane shakes, from side to side or up and down, or trembles by itself during the
flight [1]. It generally brings about anxieties for airline passengers [2], yet severe turbulences might
result in aircrafts thrown up and down sharply and frequently, which makes it difficult for pilots
to manipulate the aircraft effectively, and even results in structural damages or casualty accidents
in extreme cases. On 11th August, 2015, strong ATs caused injuries to several passengers and crew
members. To avoid serious losses, it is rather important to explore the occurrence mechanism,
influencing factors, detection, or prediction models for ATs.

AT can be categorized into different types, including convective turbulence, clear air turbulence,
low-level thermals, and wake turbulence. It is mainly caused or affected by meteorological factors [3].
Some of them could be observed or anticipated via weather radar onboard, but some cannot be
detected intuitively, like clear air turbulence (CAT). A number of studies on AT have been conducted,
and several indices have been developed to measure clear AT, like Dutton’s index [4], an objective
index by Ellrod and Knapp [5], and a real-time estimation technique of AT severity [6]. For the civil
aviation of China, the vertical acceleration (VA), however is generally used for measuring AT [7],
empirically identifying them with regarding VA less than 0.3 g (gravity unit) or greater than 1.8 g as an
unsafe event due to AT. However, the severity of AT affecting an aircraft could be related to nature of
the turbulence, airspeed, mass of the aircraft, and altitude [8]. AT reports simply relying on the VA is,
thus, of limited application and aircraft specificity.
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In essence, turbulence refers to a fluid motion, which is characterized by nonlinearity, vorticity,
diffusivity, and energy dissipation [9]. It could be too complicated to define it precisely [10] but can be
broadly regarded as a dissipative flow state with nonlinear fluctuating three-dimensional vorticity [11].
Since the early time of aviation industry, studies on turbulence have been involved in designing
geometry parameter of an aircraft via computer simulation techniques [12,13]. Eddy is another useful
concept for discussing the mechanism of turbulence [10,14,15], and eddy viscosity is an important
property for describing turbulence [16]. In particular, eddy dissipation rate (EDR) could be an ideal
measurement for evaluating aircraft vortices due to the ambient atmospheric turbulence [17–19].
The World Meteorological Organization (WMO) started to add turbulence monitoring information in
the aircraft meteorological data relay (AMDAR) since 2002, where both EDR and derived equivalent
vertical gust velocity (DEVG) are reported as measurement indices [8]. Note that VA or DEVG
reflects more of turbulent appearances when aircraft going through an atmospheric turbulence zone.
Different types of aircrafts, however, may respond distinctively to accelerations due to different
configurations, even when they go through areas of the same atmospheric condition. Thus, measuring
AT via VA or DEVG could be sensitive to different aircrafts. This characteristic leads to a potentially
weak point in studying AT risk with them, particularly in the spatially and temporally perspectives.
On the contrary, EDR measures the physical impacts of air flows on AT intensity. It tends to be an ideal
measurement for studying AT risks, but experiences difficulty when calculating due to the complicated
information required. In particular, EDR is a parameter to determine the amount of energy lost by the
viscous forces in the turbulent flow [20]. It is the rate at which the turbulence energy is absorbed by
breaking the eddy down into smaller and smaller eddies until it is ultimately converted into heat by
viscous forces. It is expressed as the kinetic energy per unit mass per second, with units of velocity
squared per second (m2/3s−1) [21].

EDR represents the transmission rate of the disturbance energy from the larger-scale vortex to the
smaller-scale vortex. It characterizes the disturbance state of turbulence in the inertia sub-region and
is the key parameter for describing atmospheric turbulence. The larger the EDR is, the stronger the
turbulence is [22]. Therefore, EDR is often used to describe the vertical gust spectrum of turbulent air
around the aircraft [6]. According to the EDR value, the turbulence intensity is divided into different
levels, as shown in Table 1.

Table 1. Turbulence intensity scaling with respect to eddy dissipation rate (EDR) values.

Turbulence Indicator Turbulence Peak EDR (ε
1
3 unit: m2/3s−1)

<0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.8 >0.8
<0.1 0 1 3 6 10 15 21

0.1–0.2 2 4 7 11 16 22
0.2–0.3 5 8 12 17 23
0.3–0.4 9 13 18 24
0.4–0.5 14 19 25
0.5–0.8 20 26

Turbulence mean EDR
(ε

1
3 unit: m2/3s−1)

>0.8 27

Turbulence intensity steady
flight weak turbulence moderate

turbulence
strong

turbulence

Quick access recorder (QAR) is an airborne flight data recorder designed to provide quick and
easy access to raw flight data [23]. It provides environmental parameters, equipment parameters,
and operating parameters of the aircraft during the flight. The data enjoy high time accuracy and strong
sequence because of the short sampling interval. Meanwhile, QAR data have the characteristics of
being complete, high-precision, real-time, and fine-grained, thus it provides a good data foundation for
AT-related research. The Civil Aviation Administration of China (CAAC) has been collecting aircraft
QAR data from major domestic airlines since 2016, which laid a good data foundation for this research.
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In this paper, we outline a simple method for estimating EDR with QAR data. In Section 2,
we introduce the QAR data, three different methods to measure flight turbulence intensity, and present
the procedure for estimating EDR with QAR data. The EDR estimating results are given in Section 3
and the conclusion is made in Section 4.

2. Data and Methodology

2.1. QAR Data

Since 1 January 1998, CAAC mandated all aircrafts to install QAR or equivalent equipment.
QAR data have been broadly collected and widely used in the field, including flight quality monitoring,
flight process visual simulation re-emergence, aircraft maintenance, and accident investigation.
It contains thousands of parameters related to a flight process, but we only chose several of them,
including dates (Date), time (TIME_R), flight phase (FLIGHT_PHASE), standard air pressure altitude
(ALT_STD), corrected sea pressure altitude (ALT_QNH), radio altitude (RALT1), vertical overload
(VRTG), longitude (LONP), latitude (LATP), and vertical acceleration (VRTG).

In this study, we used the QAR data provided by China Academy of Civil Aviation Science and
Technology ranging from 1 January 2016 to 31 December 2018. QAR data of each flight are recorded
in individual data tables. Two types of aircrafts, Airbus and Boeing airplanes, achieved these flights.
They are featured with distinctive configurations, even QAR data of different items. Within the raw
QAR data, more than 1000 properties related to flight and aircraft are recorded. However, we picked
14 of them for the following calculations. The QAR samples are as presented in Table 2, and the
attributes are explained in Table 3.

Table 2. Quick access recorder (QAR) samples for EDR estimation.

UTC_MIN_SEC IAS VRTG RALT PITCH IVV ROLL AOAL AOAR MACH LATP LONP WIN_SPD WIN_DIR

0:20:24 142 1.004 1139 3.9 −921 0 19.3 0 0.285 29.3847 100.034 15 198.3

0:20:25 142 0.984 1133 3.9 −892 0 19.3 0 0.284 29.384 100.0346 16 197.6

0:20:26 142 0.984 1120 3.9 −864 0 19.3 0 0.283 29.3833 100.0346 16 197.6

0:20:27 142 0.977 1112 3.9 −870 −0.35 19 0 0.284 29.3826 100.0346 16 197.6

0:20:28 142 0.949 1102 3.9 −896 −0.35 18.6 0 0.284 29.3819 100.0353 16 197.6

0:20:29 142 0.957 1097 3.9 −917 −0.35 19 0 0.283 29.3812 100.0353 17 199.7

0:20:30 141 0.965 1081 4.2 −919 0 19.3 0 0.282 29.3802 100.0353 17 199.7

0:20:31 140 0.984 1038 4.2 −909 0.35 19.3 0 0.281 29.3795 100.036 17 199.7

0:20:32 140 0.984 1012 4.2 −901 0.35 19.7 0 0.28 29.3788 100.036 17 199.7

Table 3. Parameters in the QAR data used for EDR estimation.

Field Name Interpretation Unit

IAS Indicated Airspeed m/s
VRTG Vertical acceleration g
RALT Radio altitude feet
PITCH Control column position degree

IVV Instantaneous lifting velocity feet/min
ROLL Control wheel position degree
AOAL Angle of attack left degree
AOAR Angle of attack right degree

HEIGHT Height feet
MACH Mach Number -
LATP Present Positon Latitude degree
LONP Present Position Longitude degree

WIN_SPDR Wind speed FMC knot
WIN_DIR Wind Direction computed knot
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2.2. Air Turbulence Measurement

2.2.1. Vertical Overload

In China’s civil aviation industry, vertical overload increment is often used as a basis for diagnosis
of air turbulence. Since the overload coefficients of the x direction (longitudinal acceleration of the
aircraft) and the z direction (lateral acceleration of the aircraft) are generally small, they are often ignored,
and only the overload of the y direction (aircraft vertical acceleration) is considered. The overload
increment ∆n (expressed as a multiple of gravity acceleration g) is expressed as Equation (1):

∆n = VRTG− 1 (1)

where VRTG is the vertical acceleration of the flight path point recorded in the QAR data, and is also
expressed as a multiple of the gravity acceleration g [24]. When the overload increment |∆n| > 0.2g,
the point could be regarded as a potential air turbulence point [25]. Table 4 shows how the air
turbulence intensity corresponds to an overload increment |∆n|.

Table 4. Air turbulence intensity and the corresponding overload increments.

Turbulence Intensity Overload Increment Range (g)

steady flight |∆n| ≤ 0.2
weak turbulence 0.2 < |∆n| ≤ 0.5

moderate turbulence 0.5 < |∆n| ≤ 0.8
strong turbulence |∆n| > 0.8

VA reflects more of the turbulent response of an aircraft passing through the atmospheric
turbulence area at different speeds [26]. Different type of aircrafts may have different acceleration
responses when they pass through the same atmospheric turbulence zone, so this air turbulence
intensity measurement is not suitable for objectively describing the intensity of true atmospheric
turbulence [27,28].

2.2.2. DEVG

DEVG focuses on the nature of atmospheric turbulence itself and its impacts on aircraft flying
over it. It uses measured aircraft vertical acceleration, aircraft altitude, weight, and other factors to
characterize the physical quantities of atmospheric turbulence. It is estimated by vertical acceleration,
which takes into account information such as total aircraft weight, flight altitude, airspeed, and air
temperature, etc.

In the aircraft meteorological data relay reference manual [28], the World Meteorological
Organization (WMO) defined the DEVG estimation method based on the formulations of Truscott [29]
and Gill [30], as shown in Equation (2):

DEVG =
Am|∆n|

V
(2)

where ∆n (unit: g) is the peak value of the aircraft’s vertical acceleration deviating from 1g, m (unit:
ton) is total weight of the aircraft, V (unit: m

s ) is the air flow rate, and A is a specific parameter mainly
dependent on the aircraft type, weakly affected by its weight, altitude, and Mach number. It can be
approximated via the following equations, Equations (3) and (4),

A = A + c4
(
A− c5

)(m
m
− 1

)
, (3)

A = c1 +
c2

c3 + H
, (4)
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where parameters c1, c2, c3, c4, and c5 refer to specific values could be found in the aircraft meteorological
data relay reference manual, referring to “Table 1 Parameters used in the estimation of DEVG” on Page
31 of [28]. Their calculations depend on a specific flight profile, which could be expressed as “take-off

at speed V1, accelerate to airspeed Vc by height h1, and maintain the lesser of Vc or Mach Mc to cruise
altitude hc. Reverse the procedure in the approaching phase” [28] (Page 28); m refers to the reference
aircraft weight in tons; H (unit: thousand feet) is the flight altitude.

DEVG provides another effective measurement of AT, and the relationship between the AT
intensity and DEVG range is shown in Table 5. Although DEVG is roughly related to EDR, it does
not represent a true measure of atmospheric turbulence intensity; thus, it is not as widely used in
atmospheric turbulence measurement applications as EDR.

Table 5. Air turbulence intensity and the corresponding derived equivalent vertical gust
velocity (DEVG).

Turbulence Intensity DEVG

steady flight DEVG < 2.0 m/s
weak turbulence 2.0 m/s ≤ DEVG < 4.5 m/s

moderate turbulence 4.5 m/s ≤ DEVG < 9.0 m/s
strong turbulence DEVG > 9.0 m/s

2.3. EDR Estimation

Traditionally, EDR can be estimated by the following two alternative methods [31]:
(1) Estimation based on the proportional relationship between the EDR and the RMS (root mean

square) vertical acceleration estimated from the aircraft accelerometer data [20]. Since the relationship
between them is a function of the response characteristics of the aircraft, it varies with flight altitude,
aircraft weight, and airspeed. This method largely relies on detailed and precise airborne data, which
are not always easy for its accessibility.

(2) Estimation directly from vertical wind speed [32]. This approach relies less on the information
collected on the aircraft. There are two estimation ideas:

• Estimate EDR based on the power spectrum of vertical wind estimates over a discrete frequency
range [33].

• Similar to the previous one but using different sampling frequencies and aircraft angle of attack
correction [26].

2.3.1. The First Estimation Method

Record the power spectral density of the input vertical gust velocity as φwg(ω), the vertical
acceleration of the aircraft as

..
z(ω), input gust as wg(ω), then the power spectral density of the

acceleration response can be estimated by analyzing the power spectrum and frequency response
linear system of the aircraft’s response to turbulence. As shown in Equation (5):

φ..
z(ω) =

∣∣∣∣∣∣
..
z(iω)

wg(iω)

∣∣∣∣∣∣2φwg(ω). (5)

The estimation is conducted in the frequency domain, and the above equation is integrated
between the frequency segments ω1 and ω2 to obtain the acceleration response energy between the
frequency segments σ̂..

z
2. As shown in Equation (6):

σ̂..
z

2 =

∫ ω2

ω1

φ..
z(ω)dω =

∫ ω2

ω1

∣∣∣∣∣∣
..
z(iω)

wg(iω)

∣∣∣∣∣∣2φwg(ω)dω. (6)
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Introduce band pass filter Hbp(ω1,ω2,ω), and Equation (6) can be approximated as Equation (7):

σ̂..
z

2
≈

∫
∞

0

∣∣∣Hbp(ω1,ω2,ω) |2
∣∣∣∣∣∣

..
z(iω)

wg(iω)

∣∣∣∣∣∣2φwg(ω)dω. (7)

For the flight conditions of commercial transport aircraft, the frequency band in which the
vertical acceleration response of most rigid-body aircraft occurs corresponds to the inertia sub-range of
atmospheric turbulence. Therefore, according to Von Kármán’s energy spectrum theory [6], Equation (8)
can be derived:

φ̂wg(ω) = 0.7V
2
3 ε

2
3ω−

5
3 (8)

where V is true airspeed of the aircraft through the atmospheric turbulence, and ε1/3 is the EDR.
Substituting Equation (8) into Equation (7), Equation (9) is derived:

σ̂..
z

2 = 0.7V
2
3 ε

2
3

∫
∞

0

∣∣∣Hbp(ω1,ω2,ω)
∣∣∣2∣∣∣∣∣∣

..
z(iω)

wg(iω)

∣∣∣∣∣∣2ω− 5
3 dω. (9)

Seen from Equation (9), the EDR value can be estimated when the aircraft response function and
the acceleration response energy are known.

The estimation of the aircraft response function can be obtained by constructing an equation of
motion for the aircraft. However, parameters such as the wing and tail reference surface area, which
are needed in the solution process, are not provided by QAR data.

Estimating the acceleration response energy requires the following two steps:

• Inverse Fourier transform of bandpass filter function, as show in Equation (10):

hbp(t) =
1

2π

∫
∞

−∞

Hbp(ω1,ω2,ω)eiωtdω. (10)

• Use the Parseval theorem (assuming local stationary) and then use the convolution theorem to get
its approximation, as show in Equation (11):

σ̂..
z

2(t) ≈
1

2T

∫ t+T

t−T

[∫ τ1

0
hbp(t1, t2, τ2)

..
z(τ1 − τ2)dτ2

]2

dτ1. (11)

2.3.2. The Second Estimation Method

As the second method, the EDR estimation formula is shown in Equation (12):

ε̂
1
3 =

 γ2

kh − kl + 1

kh∑
k=kl

Ŝw
k

Smodel
k


1
2

(12)

where ε̂1/3 is the EDR to be estimated, γ is the correction factor, kh and kl are the coefficients k
corresponding to the high frequency and low frequency, respectively, of the selected frequency interval,
and Ŝw

k and Smodel
k are the measured energy spectrum functions and theoretical energy spectrum

functions of turbulent flow, respectively.
The specific estimation steps are as follows:
(1) Estimate the true airspeed (TAS) by indicating airspeed and flight altitude.
(2) Estimate the angle of attack (AOA). Firstly, the average angle of attack is estimated according to

the left and right angles of attack of the aircraft. Then, the average angle of attack is corrected according
to the correction value estimated by the length of the sensor arm, the pitch rate, and the true airspeed.
Finally, the angle of attack based on the body axis is estimated by the angle transformation [34]. In this
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process, parameters such as the left and right angles of attack of the aircraft and the length of the sensor
arm are not provided by the QAR data.

(3) Estimate vertical wind, w based on the body axis, as shown in Equation (13):

w = −TAS(cosθ sinαb cos∅− cosαb sinθ) − IVV (13)

where θ is the pitch angle, ∅ is the roll angle, αb is the aircraft angle of attack estimated in Step (2),
and IVV is the inertial vertical speed of the aircraft.

(4) Estimate the vertical wind of the trend wind and windowing function. The vertical wind is
transformed based on the estimated matrix.

(5) The vertical wind obtained in Step (4) is subjected to discrete Fourier transform to obtain the
turbulent measured energy spectrum, and the theoretical energy spectrum of the turbulent flow is
obtained by looking up the “Table 1 Parameters used in the estimation of DEVG” on Page 31 of [28].

In summary, both estimation methods involve parameters that are not provided in the QAR data.
It is impossible to estimate the EDR by directly applying the two methods. Therefore, this paper
provides a method to approximate the EDR estimation by concerning both methods.

2.3.3. Estimating EDR with QAR Data

As shown in Figure 1, the key to estimate EDR with QAR data is to utilize the QAR records for all
the parameter calculations. In this study, we designed a procedure for this calculation, and it is shown
in Figure 1 as the following steps:

1. Estimate the basic parameter vertical wind wg.
2. Build the aircraft response function.
3. Estimate the acceleration response energy.
4. Estimate EDR.
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(1) Estimate Basic Parameters

In order to obtain EDR value, the first basic parameter, vertical wind wg, must be estimated.
Vertical wind can be estimated from the above parameters, as shown in Equation (14):

wg = −TAS ∗ (cosθ sin AOA cosφ− cos AOA sinθ) − IVV (14)

where θ is the pitch angle PITCH of the QAR data and ∅ is the roll angle ROLL of the QAR data.
AOA (angle of attack, unit: Radians) refers to the angle between the velocity vector and the aircraft’s
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string, PITCH (unit: Radians) is the airplane’s pitch angle, IVV (unit: m/s) is the instantaneous hoisting
rate, and TAS (unit: m/s) is the true airspeed. Figure 2 exemplifies these attitude angles geometrically.
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As shown in Figure 2, the angles of attack recorded by QAR cannot be used directly. They need to
be converted into an angle of attack based on the body axis before being used in the calculation of
vertical wind. The conversion method can be expressed as follows:

AOA = a0 + a1

 (AOAL + AOAR)

2
+

L
.
θ

TAS

 (15)

where AOAL is the left angle of attack and AOAR is the right angle recorded in QAR. L is the length of
the sensor arm, taking half of the fuselage length.

.
θ is the pitch rate. Constants a0 and a1 are estimated

using a linear least squares fit of θ = a0 + a1
(AOAL+AOAR)

2 in the preprocessing step, i.e., a0 = 3.19957,
a1 = 0.602594.

(2) Build the Aircraft Response Function

(1) Estimate the acceleration response coefficient
The Fourier transform is performed on the vertical acceleration VRTG and the vertical wind wg

in the time T (takes 10 s, and recording frequency is 8 Hz), and converts it from the time domain
to the frequency domain to obtain

..
z(iω) and wg(iω) of the nine recorded points in the current

estimation window. Taking the value of
..
z(iω)

wg(iω)
constitutes a new sequence of points. Since the equation

form of
..
z(iω)

wg(iω)
is unknown and indeterminate, we fit it here via a polynomial curve fitting method.

Results show that the cubic polynomial fitting performs the best in terms of both accuracy and efficiency,
in comparison to the linear, quadratic, and fourth-order polynomial fitting methods. It can be expressed
as Equation (16):

..
z(iω)

wg(iω)
≈ c0 + c1·ω+ c2·ω

2 + c3·ω
3. (16)

(2) Build the acceleration response function
The integral of the acceleration response function I(ω) can be written as Equation (17):

I(ω) =
∫ ω2

ω1

∣∣∣∣∣∣
..
z(iω)

wg(iω)

∣∣∣∣∣∣2ω− 5
3 dω =

∫ ω2

ω1

(
c0 + c1·ω+ c2·ω

2 + c3·ω
3
)2
ω−

5
3 dω. (17)

Usually, take ω1 = 0.1 HZ, ω2 = 0.8 HZ to shield high-frequency and low-frequency noise.
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(3) Estimate the Acceleration Response Energy

First of all, perform an inverse Fourier transform on the band pass filter function hbp(t), as shown
in Equation (18):

hbp(t) =
1

2π

∫
∞

−∞

Hbp(ω1,ω2,ω)eiωtdω. (18)

Then, according to the Parseval theorem (assuming local stationarity), an approximation of the
acceleration response energy σ̂..

z can be obtained by convolution, as shown in Equation (19):

σ̂..
z

2(t) ≈
1

2T

∫ t+T

t−T

[∫ τ1

0
hbp(τ2)VRTG(τ1 − τ2)dτ2

]2

dτ1 (19)

where T takes 10 s, and VRTG(t) is a curve equation obtained by fitting the VRTG value of the recorded
points in 2T.

(4) Estimate EDR

Finally, EDR ε
1
3 can be estimated via the Equation (20) [32]:

ε
1
3 =

√
σ̂..

z
2

0.7TAS2/3I(ω)
. (20)

In this way, EDR could be estimated with the QAR data, where all the parameters are calculated
accordingly. In the next section, this procedure will be exemplified with QAR data collected from
1 January 2016 to 31 December 2018.

3. Results and Discussion

According to the estimation method described in Section 2, we achieved the vertical overload
(|∆n|), DEVG and EDR estimations via the Python programming language. First of all, we picked up
the QAR data from a flight from Kunming Changshui International Airport to Ninglang Lake Airport
on 6 October 2016. Results of the vertical overload (|∆n|), DEVG and EDR estimations are as shown
in Figure 3a–c. Results show that the estimated |∆n| and DEVG are of similar patterns due to their
linearly correlated calculations, while EDR estimations provide a very different perspective on AT risks.
The former two indicators report physical bumps happening during the flight, and pointy and discrete
AT events can be detected in Figure 3a,b. These results, however, could vary for a different aircraft,
even under all the same atmospheric conditions outside. The EDR estimates in Figure 3c present
segmented and continuous patterns, which conform with the general perceptions of atmospheric flow.
Moreover, the segments of large EDR values match with the bumps presented in Figure 3a,b. All in
all, EDR provides a more scientific indicator for evaluating AT risks during a flight than the former
two indicators.
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EDR provides a measurement of AT risk from outside atmospheric conditions. It is meaningful to
visualize the EDR estimates from historical QAR data for exploring AT risks. We thus visualized the
EDR estimates with the QAR data collected from 1 January 2016 to 31 December 2018. Note that EDR
for the Airbus and Boeing aircrafts are estimated individually due different parameter settings, and we
present them in Figures 4 and 5, respectively. The black arrow indicates the approximate location of the
departure airport and the black asterisk indicates the approximate location of the destination airport.
In this study, we only utilized QAR data of the aircraft flying phrase in the air; the location of departure
airports and destination airports is estimated based on the coordinates within the in-air trajectory.
For each airline, the darker and bigger the point is, the greater the turbulent strength is anticipated.
As seen from Figure 4, the severity of AT for Airbus aircrafts in the northwest region and areas around
Beijing is apparently higher than in other areas. In Figure 5, the occurrence of AT for Boeing aircrafts
in the southeastern coastal areas is more frequent than in the other areas, and the severity of AT is
slightly higher than in other areas. The results provide a good overview on the spatial patterns of AT
intensities; particularly, clusters appearing in both Figures 4 and 5 may indicate areas of high AT risks.
These hotspots could be related to potential factors for further analysis, for example meteorological,
environmental, and terrain factors. This forms a good topic for future studies, particularly fundamental
for early-warning studies. Moreover, note that these EDR results are calculated with QAR data collected
within three years. The temporal dimension could be incorporated to explore their spatio-temporal
patterns, which could provide richer information for specific applications, like flight route planning.
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4. Conclusions

On the one hand, AT is a typical risk in the civil aviation industry, and EDR is an ideal physical
indicator for measuring its intensity. On the other hand, the collection of QAR data by CAAC provides
a super data source for studying such topics, including aviation safety and flight operations quality
assurance (FOQA). However, there is no straightforward strategy to calculate EDR with QAR data.
Two traditional methods of EDR estimation both involve parameters that could be not provided by the
QAR data. In this study, we proposed a practical step-wise procedure to bridge them up, effectively
and efficiently. We compared EDR estimations with the corresponding vertical overload and DEVG,
and results show that EDR provides a reasonable indicator for evaluating AT risks during a flight.
Moreover, with the trillions of pieces of QAR records collected from 1 January 2016 to 31 December
2018, the EDR values for the Airbus and Boeing aircrafts are calculated within an acceptable time cost
and visualized spatially. It is interesting for overviewing the spatial patterns, of which hotspots or
clusters possibly indicate high risks of AT.

Furthermore, this study also makes a good foundation for a number of further studies in the field
of aviation safety and FOQA, such as: (i) Analyzing spatio-temporal patterns of AT risks across China
via incorporating the temporal dimension [35]; (ii) exploring potential affecting factors on AT risks,
for example meteorological, environmental, and terrain factors via spatial statistics techniques, like
geographically weighted regression [36,37]. These future studies will be meaningful for applications in
flight route planning, early risk warning, and FOQA.
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