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Abstract: The networked unmanned aerial vehicle (UAV) radar system may exploit inter-UAV
cooperation for enhancing information acquisition capabilities, meanwhile its inter-UAV
communications may be interfered with by external jammers. This paper is devoted to
quantifying and optimizing the anti-jamming performance of networked UAV radar systems
in adversarial electromagnetic environments. Firstly, instead of using the conventional metric
of signal-to-interference ratio (SIR), this paper explores use of the theory of radar information
representation as the basis of evaluating the information acquisition capabilities of the networked
UAV radar systems. Secondly, this paper proposes a modified Q-Learning method based on double
greedy algorithm to optimize the anti-jamming performance of the networked UAV radar systems,
through joint programming in the frequency-motion-antenna domain. Simulation results prove the
effectiveness of the algorithm in two different networking scenarios.

Keywords: radar anti-jamming; UAV radar networking; low-bit beam synthesis; radar information
representation; double-greedy algorithm

1. Introduction

A radar countermeasure is an important part of an electronic countermeasure [1]. An effective
radar countermeasures can deal with the jamming of various electronic equipment and signal modes [2].
At present, the mainstream countermeasure methods are as follows: 1. Game theory: establish a
network model of multiple agents and use game theory to model the adjustment of policies between
jammer and radar as Stackelberg game. Through analyzing and solving the game equilibrium solution
(such as the Nash equilibrium), we can obtain the optimal transmission power and other policies
for users to realize anti-jamming [3–5]. 2. Physical layer security: this is a supplement to traditional
cryptography-based methods. Users usually generate noise signals to confuse potential eavesdroppers,
which significantly improves the quality and reliability of secure communication between legitimate
terminals [6,7]. 3. Machine learning: intelligent countermeasures represented by reinforcement
learning have been widely used in recent years. Reinforcement learning realizes the policy iteration
through the interaction between agent and environment and finally generates a reasonable policy
set [8,9]. With the progress of electronic jamming, the traditional jammer with single function and
fixed working mode is promoted to intelligent jamming of multi-function, multi-parameter and
variable working mode [10]. Therefore, the intelligent radar system becomes the focus of anti-jamming
research [11]. Because the traditional radar system often uses passive methods such as a waveform
library to identify the jamming form, this results in poor real-time policy [12]. When it deals with new
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forms of jamming, the utility of this approach is limited. Therefore, an intelligent radar system needs
to generate real-time policies under the condition of flexible jamming forms.

Radar countermeasure of an intelligent unmanned aerial vehicle (UAV) swarm is an effective
form of intelligent radar countermeasure. Unlike the mission planning of general multi-radar systems,
swarm intelligence UAV technology pays more attention to the individual UAV with a simple structure
and limited energy. Through internal interaction and swarm control, the detection capability of a
single UAV in a swarm is greatly promoted, and it is more flexible than traditional radar. A UAV has
the characteristics of good concealment, flexible motion and rapid networking. An intelligent UAV
cannot only perform common tasks such as surveillance of unknown areas, protection of key targets,
territorial investigation and so on, and more flexible operations such as radar networking can be used
to achieve radar countermeasures by airborne small radar [13]. Radar networking based on a UAV
swarm greatly improves the ability of radar information acquisition by properly distributing radar
stations with different systems, different frequency bands, different working modes, and linking them
into networks.

However, the following design considerations should be taken into account in intelligent networked
UAV radar systems:

1. Intelligent UAVs may be energy-limited. The energy modules on most UAVs may pose a major
constraint on their motion ability. Meanwhile, when the UAV carries a radar payload to perform
detection tasks, its motion and adaptation of the radar parameters may introduce considerable
energy consumption. Therefore, a UAV may need to strike a beneficial trade-off between the
motion energy and energy consumed by the radar.

2. The antenna performance of smart UAVs may be limited. Due to the limited volume and load
capacity of the UAV, the number of array elements may be limited, resulting in poor spatial
resolution. However, the beam width adopted by radar in certain tasks may demand high spatial
resolutions, e.g., when measuring angle by beam scanning method. Therefore, the networked
UAV radar system should exploit the distributed UAV cooperation to overcome the antenna
constraint of a single UAV.

3. The topology of the networked UAV radar system may be complex. In order to comprehensively
analyse the received information, the target data need to be transmitted to a data fusion center.
Therefore, secondary forwarding devices such as relays may be applied during long-range
communications. The networked UAV radar system should control complexity of information
transmission process, and control the risks of information interception and jamming.

In order to address the aforementioned design concerns, this paper proposes the use of
reinforcement learning for training the behavior of the networked UAV radar systems. Although
reinforcement learning is being adopted as an effective method in radar anti-jamming, there is a lack
of research on multi-parameter programming in the literature. Meanwhile, most researchers only
regard signal-to-interference ratio (SIR) as the criterion of the reward, which may not fully reflect the
ability of the radar system to acquire target information. Therefore, this paper applies information
representation theory to evaluate the capability of radar information acquisition.

Specifically, this paper investigates the radar countermeasures under the conditions of malicious
jamming, constrained UAV motion, fewer airborne radar elements, and complex topology of UAV
networking. We construct two radar networking methods, introduce the theory of radar information
representation, and use modified Q-Learning based on a double greedy algorithm to generate
anti-jamming policies. The simulation results will prove the effectiveness of the algorithm.

The contributions of this paper are as follows:

1. A radar countermeasure system based on intelligent networked UAV swarms is established.
Compared with the existing radar countermeasure models, our model introduces joint
programming of UAV-borne radar to make full use of various degrees of freedom, where
the policies can be generated from three dimensions of antenna, frequency and position.
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2. Two UAV radar networking modes are proposed and implemented. The simulation results show
that the proposed algorithm can realize the effective programming of radar system parameters in
both modes.

3. This paper introduces a novel reward design by the information representation method to quantify
the information received by the networked UAV radar systems.

The structure of this paper is organized as follows: Section 2 introduces the related works of UAV
networking and anti-jamming based on reinforcement learning. Section 3 is the system modeling. We
will introduce the intelligent UAV swarm networking model and the phased array beam synthesis
method with limited phase coding bits. Section 4 introduces DGQL (Double-Greedy Reinforcement
Learning) algorithm based on information representation. Section 5 gives the simulation results
and analysis, which proves the effectiveness of the DGQL. Section 6 summarizes the contribution of
this paper.

2. Related Works

UAVs have been used widely in the anti-jamming field. A UAV is designed in [14] to avoid the
jamming of the aerial jammer to the channel by differential game method. This method could generate
the optimal policy to avoid jamming. A UAV was used in [15] to send onboard units information, which
improved the communication performance of vehicular ad-hoc networks in the presence of intelligent
jammer. As for swarm UAV, Li Haitao et al. proposed a countermeasure model based on airborne
cognitive radio and used an improved energy detection method to detect jamming [16]. Li Zhiwei
et al. presented a method of using a software-defined network (SDN) to counter software-defined
radio (SDR) [17]. A new type of network using a dual-controller generation policy was proposed.
Rahmes Mark et al. designed a multi-UAV countermeasure system and used Q-Learning algorithm to
generate radar transmitting frequency [18]. Cevik Polat et al. reduced the resource allocation problem
in electronic countermeasures to an optimal allocation problem, and proposed a resource allocation
algorithm based on particle swarm optimization theory [19].

At present, there is some research on radar reinforcement learning, mainly in the field of deep
reinforcement learning. An intelligent radar countermeasure method was studied in [20] under the
condition where the number of working modes of multi-functional radar was unknown. The jamming
receiver recognized the working state of the radar by processing the information, and then generated a
new effective jamming pattern. Liu Pengfei et al. combined reinforcement learning with cognitive
radar in [21], so that transmitting and receiving could adapt to an unknown dynamic environment.
It explained how to realize spectrum allocation of automotive radar in reinforcement learning-based
cognitive radar system. You Shixun et al. simulated an electronic attacker as a UAV and a defender
as an observatory in [22], where the UAV needed to detect targets. A deep deterministic policy
gradient (DDPG) algorithm based on variational Bayesian estimation was designed to train the motion
policy of the UAV. Wang Li et al. proved that some basic reinforcement learning algorithms could
be successfully applied to dynamic detection of multiple-input-multiple-output (MIMO) radar with
unknown environment and unknown number of targets [23]. Deep learning was used in [24] to discuss
channel selection when wideband radar signals coexist with narrowband communication signals in
the communication systems.

Some progress has also been made in the research of the combination of jamming and physical
layer security. For example, Furqan Jameel et al. reviewed the latest work of cooperative relaying and
jamming in detail [6]. These technologies are used to protect wireless transmission from eavesdropping
nodes. They explained that using cooperative security can improve the physical layer security, and
proposed some methods and conclusions to improve the wireless communication performance based
on physical layer security. For example, relay positioning can be further explored, multi-cellular design
can be further studied, etc. This paper is of great significance to the design a security scheme in the 5G
communication network. At the same time, Huo Yan et al. summarized the jamming policies in the
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physical layer of wireless communication and classified the jamming policies in [25], which provided a
theoretical basis for the design of jamming policy in a wireless communication system.

From the literature, it may be concluded that frequency-domain anti-jamming techniques have
been widely adopted in the field of anti-jamming of UAV radar networking, but the degrees of freedom
exhibited in motion and antenna arrays of networked-UAV radar systems are not fully exploited.
Secondly, the radar anti-jamming techniques proposed in the literature generally adopted SIR or SNR as
the reward in reinforcement learning, while it may not fully capture the information acquisition ability
of the radar. In this paper, the beam synthesis, networking and autonomous motion in networked-UAV
radar systems are jointly optimized, with the aid of radar information representation theory and
reinforcement learning.

3. System Model

3.1. Modeling of Radar Unmanned Aerial Vehicle (UAV) Swarm Networking

Spectrum resource allocation is a common problem in radar countermeasures. In the actual
scenario, the spectrum resources are very limited because there are numerous electronic devices
working at various modes. The setting of parameters in a radar system, such as position and antenna,
needs to be tuned to avoid jamming effectively.

Traditional ground-based radar has the advantages of high power, long detection distance and
narrow beam width. However, its mobility poses a threat for real-time detection in case of jamming.
In comparison, small array radars carried by networked UAVs may realize swift position shift,
phased array element combination, relatively flexible beam scanning and conversion between multiple
detecting modes. Not only can UAVs in one single swarm cooperate with each other to synthesize
beams, but also cooperate among multiple swarms. Thus, many parameters of targets can be observed
simultaneously, which greatly improves the detection efficiency of the radar system.

However, due to the energy constraints, the power and moving range of UAVs should be
considered for effective applications. When multiple swarms work at the same time, each swarm needs
to send the data back to the control center. The multi-channel data can be analyzed synthetically by the
control center to obtain multi-dimensional information. In case the UAV performs tasks in remote
areas, communication UAV may serve as a mobile relay to assist the data transmission. As an effective
radar countermeasure, jamming systems may be used to decrease the efficiency of the radar system,
where both the UAV swarm and the relay may be jammed.

Against the above background, a radar countermeasure system composed of multi-agents is
established in this paper. The system framework is shown in Figure 1a. The system includes 5 kinds of
agents: jammer, radar UAV swarms, communication UAV, base station and target. Among them, radar
UAV swarms, communication UAV and base station form the radar systems together. The objective
of is to maximize the target information acquisition in different networking modes by adjusting the
parameters of the radar system. In Figure 1b, the internal schematic diagram of a radar UAV swarm is
given. A radar UAV swarm consists of a number of UAVs, and each UAV carries an antenna array.
Radar UAV swarms are responsible for transmitting electromagnetic waves to detect targets and
receiving signals. This process is called the transmission link of the radar UAV swarm. It is assumed
that the distance between UAVs is much smaller than the distance from the whole UAV swarm to
the target.

Specifically, the UAVs in a swarm can form a uniform linear array (ULA) or uniform plane array
(UPA) by changing their arrangement to synthesize beams. However, due to the limited array volume
of the UAV, its phase shifter cannot have a high coding bit like a large ground-based phased array
radar. Therefore, this paper explores the beam synthesis method under low-bit phase coding, which
will be introduced in Section 3.2.

The UAVs in a swarm transmit linear frequency modulation (LFM) signals with the same waveform
parameters. Therefore, the UAVs in a swarm are strictly synchronized, where each UAV swarm can
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play a similar role to a complete array radar. In order to simplify the signal modeling process, we
set up two UAV swarms in frequency division multiplexing mode. When transmitting signals, the
frequency bands occupied by two radar UAV swarms only need to be expressed by carrier frequency fc
and bandwidth b. Radar UAV swarm 1 occupies the frequency range of [ fc − b/2, fc), and radar UAV
swarm 2 occupies the frequency range of ( fc, fc + b/2]. When the mission is determined, the position
of the UAV swarm remains unchanged, and the transmitting frequency, forwarding frequency and
antenna pattern are tunable.
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Figure 1. (a) Framework of radar swarm networking system; (b) internal structure of radar unmanned
aerial vehicle (UAV) swarm.

Since the two radar UAV swarms need to transmit data back to the base station for comprehensive
analysis, after receiving the target echo the two radar UAV swarms need to convert part of the
received signal within the passband into the communication UAV using the frequency difference of ∆ f .
This process is called forwarding link of radar UAV swarm. The reason for frequency conversion is to
reduce the interference between transmission link and forwarding link. After frequency conversion, the
signal still has two main parameters: f ∗c and b∗. f ∗c is the carrier frequency after frequency conversion,
and b∗ remains unchanged. Frequency division multiplexing mode is still used for both signals.

The reason for setting up communication UAV is that due to the energy constraints of UAV, the two
radar UAV swarms need to allocate most of the power on the transmission link and minimize the energy
cost of the forwarding link. The forwarding power cannot help send data directly back to a distant
base station. Therefore, the communication UAV is responsible for collecting data from two signals
and forwarding them to the base station. In this paper, the transmission link from communication UAV
to base station is not considered. In order to avoid jamming better, the position of communication
UAV is tunable. System parameters are shown in Table 1.
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Table 1. System parameters.

Parameters Variables

Transmitting Power of Radar Unmanned Aerial Vehicle (UAV) Swarm 1 PR
Target Scattering Coefficient σ1, σ2, σ3, σ4, σ5

Antenna Gain of Radar UAV Swarm 1 for Each Scattering Point GR1, GR2, GR3, GR4, GR5
Transmission Link Path Loss of Radar UAV Swarm 1 LR1

Forwarding Gain of Radar UAV Swarm 1 FR
Forwarding Link Path Loss of Radar UAV Swarm 1 LR2

Transmitting Power of Radar UAV Swarm 2 Pr
Antenna Gain of Radar UAV Swarm 2 for Each Target Scattering Point Gr1, Gr2, Gr3, Gr4, Gr5

Transmission Link Path Loss of Radar UAV Swarm 2 Lr1
Forwarding Gain of Radar UAV Swarm 2 Fr

Forwarding Link Path Loss of Radar UAV Swarm 2 Lr2
Transmitting Power of Jammer 1 P j1

Antenna Gain of Jammer 1 G j1
Path Loss of Jamming Link 1 L j1

Transmitting Power of Jammer 2 P j2
Antenna Gain of Jammer 2 G j2

Path Loss of Jamming Link 2 L j2

3.2. Beam Synthesis Method under Low-Bit Phase Array

This section introduces the beam synthesis method used in this paper. For phased array antennas,
the phase shifter determines the precision of beam pointing. The higher the bit number of the phase
shifter, the smaller the step of the phase difference between adjacent elements and the smaller the step
of the synthesized beam pointing. Thus, the phase shifter used in most ground-based radars is large
and expensive. Due to the limited size and load capacity of UAVs, the performance of a phase shifter is
also very limited. There are many ways to achieve phased array miniaturization and beam synthesis
with low-bit phase difference. The development of metamaterial is just an example [26]. In this paper,
the antenna material of the UAV radar is not discussed. We only focus on the relatively flexible beam
synthesis method for a UAV under low bit (2–3 bit) conditions.

A phased array antenna can control the beam pointing by controlling the phase of the
array elements, which is a common method in an electric scanning antenna system. At present,
one-dimensional phased array and two-dimensional phased array are widely used. They are composed
of uniform linear array (ULA) and uniform plane array (UPA). ULA can realize beam scanning in a
certain plane, while UPA can realize beam scanning in two-dimensional space. In order to simplify
the model, without loss of generality, we first consider the low-bit beam synthesis method of ULA.
Assuming that the UAVs in a swarm are arranged to form a ULA, the elements carried by each UAV
may independently switch each element on or off.

It is assumed that the phase shifter can uniformly take values between 0◦–360◦ at intervals of
360◦/2M when the coding number of phase shifters M is determined. To facilitate the representation
of the discrete phase, we replace the phase values of 0◦–360◦ with the code values of 0, 1, 2, . . . , 2M−1,
respectively. According to [27], two methods of repetitive coding and convolution can be applied.
The repetitive coding method is performed by repeating the coded values in the ULA elements, and
the convolution method is to perform the addition of the repeated codes, which corresponds to the
convolution of the antenna pattern.

According to the convolution principle of the antenna pattern, if the beam pointings corresponding
to the two different coding modes are θ1 and θ2 respectively, then the beam pointing after the code
modular addition is pointed to θ0.

sinθ0 = sinθ1 + sinθ2 (1)

This process is shown in Figure 2.
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Figure 2. Schematic diagram of repetitive coding and convolution methods.

The spacing of array elements is d, the number of coded bits is M, the operating wavelength is
λ = 2Md, and the number of coding repetitions is p. In the real scenarios, the operating wavelength is
related to the frequency. It is only set here to facilitate the interpretation of the beamforming principle.

Consider a case of 10 UAVs in a swarm and each UAV carries five elements, the number of ULA
elements is N = 50. The spacing of array elements is d = 1cm and M = 2, Figure 3a shows the antenna
pattern when p = 2 and p = 3, respectively. Figure 3b shows the antenna pattern after the two coding
modes are added in Figure 3a. Since the beam pointing of a phased array antenna is:

sinθ =
ϕλ

2πd
(2)

where ϕ = 2π/2M, and λ = 2Md, thus:

θ = arcsin(1/p) (3)
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Figure 3. (a) Antenna pattern for p = 2 and p = 3 (b) Antenna pattern after the two coding modes
p = 2 and p = 3 are added.

The synthesized beam is now pointed to:

θ0 = arcsin(
1
2
+

1
3
) = 56.44

◦

(4)

From Figure 3b, the effectiveness of (1) can be verified. Therefore, this paper applies the antenna
pattern generated by repetitive coding and convolution method under 3-bit condition to simulate.
According to the basic theory of phased array antennas, the beam width can be controlled by the
number of elements. When a wider beam needs to be generated, the UAV swarm can choose to
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turn off some of the array elements to reduce the number of elements. There is a trade-off for the
antenna pattern policy. For a radar UAV swarm, both the antenna pointing and the mainlobe width
can be tuned. When a pattern with a wide mainlobe width is selected, its antenna gain also decreases.
Therefore, the algorithm does not always choose the policy of a wide mainlobe antenna pattern.

In order to make the beam synthesis method more universal, we continue to consider the low
bit beamforming method when the UAVs form a uniform plane array. Suppose the UAV swarm is
arranged in an equivalent UPA as shown in Figure 4.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 22 

Figure 3. (a) Antenna pattern for 2p =  and 3p =  (b) Antenna pattern after the two coding modes 

2p =  and 3p =  are added. 

In order to make the beam synthesis method more universal, we continue to consider the low 

bit beamforming method when the UAVs form a uniform plane array. Suppose the UAV swarm is 

arranged in an equivalent UPA as shown in Figure 4. 

In Figure 4, the red box represents the UPA carried by each UAV, and they constitute the 

equivalent UPA as a whole. The equivalent UPA is represented by a black box. Because the element 

number of an equivalent UPA is much more than that of a single UAV, it has better beam 

performance, such as higher gain and narrower mainlobe width. The equivalent UPA can adjust the 

azimuth and elevation of the beam independently to realize the beam synthesis in two-dimensional 

space. 

 

Figure 4. Equivalent uniform plane array (UPA) formed by 4 Sub-UAVs. 

According to [28], the low-bit beam synthesis method of ULA can be extended to UPA. We 

assume that elevation is  , azimuth is  , the equivalent UPA is of m  rows and n  columns and 

the number of coded bits is M . Thus, the two-dimensional radiation pattern can be written as: 

1

1

1

2 2
sin[ ( cos sin )]

2 2( , )
21 2

sin[ ( cos sin )]
2 2

M

M

pdn

E
pd

 
 

 
 

 


−



−

 (5) 

2

2

2

2 2
sin[ ( sin )]

2 2( )
21 2

sin[ ( sin )]
2 2

M

M

qdm

E
qd

 



 




−



−

 (6) 

We assume that 1 2[ , , , ]ap p p=p  represents the column coding (control azimuth) with the 

repetition times of 1 2, , , ap p p  respectively, and 1 2[ , , , ]bq q q=q  represents the row coding 

(control elevation) with the repetition times of 1 2, , , bq q q , respectively. According to the equivalent 

substitution theory of Figure 4 in [28], the elevation and azimuth of the beam can be designed by the 

following formula: 

0

12

1
sin

2

b

M
i iqd




=

=


  (7) 
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In Figure 4, the red box represents the UPA carried by each UAV, and they constitute the equivalent
UPA as a whole. The equivalent UPA is represented by a black box. Because the element number of
an equivalent UPA is much more than that of a single UAV, it has better beam performance, such as
higher gain and narrower mainlobe width. The equivalent UPA can adjust the azimuth and elevation
of the beam independently to realize the beam synthesis in two-dimensional space.

According to [28], the low-bit beam synthesis method of ULA can be extended to UPA. We assume
that elevation is θ, azimuth is φ, the equivalent UPA is of m rows and n columns and the number of
coded bits is M. Thus, the two-dimensional radiation pattern can be written as:

∣∣∣E1(θ,φ)
∣∣∣ ≈ sin[ n

2 (
2πpd1
λ cosθ sinϕ− 2π

2M )]

sin[ 1
2 (

2πpd1
λ cosθ sinϕ− 2π

2M )]
(5)

∣∣∣E2(θ)
∣∣∣ ≈ sin[m

2 (
2πqd2
λ sinθ− 2π

2M )]

sin[ 1
2 (

2πqd2
λ sinθ− 2π

2M )]
(6)

We assume that p = [p1, p2, · · · , pa] represents the column coding (control azimuth) with the
repetition times of p1, p2, · · · , pa respectively, and q = [q1, q2, · · · , qb] represents the row coding
(control elevation) with the repetition times of q1, q2, · · · , qb, respectively. According to the equivalent
substitution theory of Figure 4 in [28], the elevation and azimuth of the beam can be designed by the
following formula:

sinθ0 =
λ

d2 × 2M

b∑
i=1

1
qi

(7)

sinϕ0 =
λ

d1 cosθ× 2M

a∑
k=1

1
pk

(8)
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In order to show the above process more vividly, it is proved by the following simulation.
The simulation parameters are as follows: m = n = 2, p = [5], q = [3, 2], M = 2, frequency is 10 GHz,
element space d = 1 cm . Based on (7) and (8), we can get θ0 = 6.15◦, φ0 = 31.87◦. The simulated
coding scheme is shown in Figure 5a, and the two-dimensional beam is shown in Figure 5b. At this
time, the simulated beam pointing of two-dimensional beam is 5.63

◦

(elevation) and 31.13
◦

(azimuth)
which is basically in line with theoretical design. In this way, we use four phase values only to obtain
relatively high beam synthesis accuracy. It is shown that the low-bit beam synthesis method can also
be applied to the equivalent UPA.
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Figure 5. Simulation result of 2-D beam synthesis with low-bit coding. (a) Coding scheme (b) 2-D
radiation pattern.

4. Algorithm Design

Based on the modelling of Section 3, this section aims to solve the anti-jamming problem of
UAV radar networking by introducing information representation theory and a modified Q-Learning
algorithm. The objective of system optimization is to generate a reasonable multi-parameter policy of a
radar system through the algorithm, so as to achieve the maximum information acquisition capability
of a radar in any given jamming form. In the design of reinforcement learning algorithm, the rationality
of the reward model is critical to the evaluation of generated policy.

Taking the following radar angle measurement case as an example, the target has multiple
scattering points distributed in the azimuth direction, while the radar needs to measure the receiving
angle of a strong scattering point from the target. In order to improve the angle measurement accuracy,
a narrow beam should be formed, but this may result in a low SIR as the beam may not cover the
target area. Therefore, using SIR as the reward function may not capture the information acquisition
capability of the radar system. Therefore, we introduce the theory of radar information representation
to set the reward properly.

4.1. Information Representation Reward Design

The calculation of information quantity is based on SIR, which is related to the system topology
and parameter setting.

The SIR η received by the communication UAV is:

η =

[(
5∑

i=1
PRG2

Riσi − LR1)FR − LR2] + [(
5∑

j=1
PrG2

rjσ j − Lr1)Fr − Lr2]

(P j1G j1 − L j1) + (P j2G j2 − L j2)
(9)

Under different networking modes, the mapping relationship between SIR η and information
quantity has different forms. In many cases, the information quantity obtained by the radar is not only
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determined by SIR. Detailed theory will be introduced by the radar information representation method
as follows.

Target detection can be regarded as a process of information acquisition. The amount of information
directly affects the accuracy of target parameter estimation. In statistical signal processing theory,
Cramer-Rao lower bound (CRLB) is the most commonly used parameter to measure the accuracy
of parameter estimation. CRLB is related to Fisher information in data determined by unknown
parameters. It is assumed that the relationship between radar measurements x and the target parameter
vector θ is as follows:

x = h(θ) + n (10)

where h and n denote the measurement function and the measurement noise, respectively. Then its
Fisher information matrix I(θ) is defined as:

[I(θ)]i j = −E

∂2 ln p(y
∣∣∣θ)

∂xi∂x j

 (11)

where E represents the mathematical expectation of a random variable.
For radar detection, since the LFM signal occupies a much wider bandwidth than information

bandwidth, it can also obtain a large processing gain. Thus, LFM signal is the most commonly used
signal form in radar detection. Taking LFM signal as an example, this paper analyses its information
acquisition ability in “range-Doppler” measurement. LFM baseband signal has two main parameters:
pulse width T and frequency modulation rate K. The time-domain signal can be written as follows:

s(t) =
1
T
·rect

(2t
T

)
· exp

(
j2πKt2

)
(12)

where rect is a rectangular window function defined as:

rect
(

t
Tp

)
=

1 −Tp/2 ≤ t ≤ Tp/2

0 t < −Tp/2 or t > Tp/2
(13)

In general, ranging and measuring Doppler shifts are performed simultaneously. Therefore, we
consider the Fisher information under the “range-Doppler” measurement first. According to [29,30],
assuming that the delay of the echo signal is τ and the Doppler shift is v, then the ambiguity function of
the signal is represented by A(τ, v). The Fisher information matrix of the “range-Doppler” estimation is:

I = η

 −
∂2A(τ,v)
∂τ2

∣∣∣∣
τ=0,v=0

−
∂2A(τ,v)
∂τ∂v

∣∣∣∣
τ=0,v=0

−
∂2A(τ,v)
∂v∂τ

∣∣∣∣
τ=0,v=0

−
∂2A(τ,v)
∂v2

∣∣∣∣
τ=0,v=0

 (14)

If the SIR of the echo is assumed to be η, θ = [T, K]T, then the Fisher information matrix is:

I(θ) = η

 1
2T2 + 8π2K2T2 2πKT2

2πKT2 T2

2

 (15)

Finding the determinant of the Fisher information matrix, we can get the total amount of
information generated by the LFM waveform for “range-Doppler” measurement. The amount of
information Ird when measuring the “range-Doppler” by the radar swarm is:

Ird =
η2

4
(16)
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Next, the information of the radar UAV swarm in angle measurement is calculated. Beam scanning
method and equal signal method are two commonly used angle measurement methods in radar.
Due to the relatively small number of elements in the UAV swarm, it may be difficult to effectively
form the dual beam needed by the equal signal method. Thus, we mainly consider the beam scanning
method here. When the radar UAV swarm performs beam scanning, the direction corresponding to the
maximum amplitude of the pulses is the direction of the target. According to the measurement accuracy
theory of the angle gate-tracking technology, under the optimal integration processing condition,
the accuracy of angle measurement is:

σθ ≈
θ0.5

2
√
η

(17)

where θ0.5 is the half power width of the beam. According to the root mean square value of the angle
measurement error, the Fisher information of the radar angle measurement Ia can be obtained:

Ia =
1
σ2
θ

≈
4η

θ2
0.5

(18)

On this basis, we can set the reward for reinforcement learning algorithm according to different
working modes of radar networking. Information fusion theory needs to be used here, which is to
obtain a total estimate by processing the estimated value of target state of each radar. At this time,
the total Fisher information is the sum of the Fisher information of each radar. For two simultaneous
ranging radars, if their received SIRs are η1, η2 respectively, its joint reward should be:

r =
η1

2

4
+
η2

2

4
(19)

For one ranging radar and the other angle-measuring radar, its joint reward should be:

r =
η1

2

4
+

4η2

θ2
0.5

(20)

It can be seen from (20) that θ2
0.5 makes angle-measuring radar no longer pursue high SIR

completely, but seeks a balance between SIR and angular resolution. In practical applications, we take
the logarithm of reward and normalize it to avoid the value of the information being too high or too
low for observation.

4.2. DGQL (Double-Greedy Reinforcement Learning) Algorithm Based on Information Representation

This section will further improve the Q-Learning algorithm based on the information representation
theory and the greedy algorithm. The DGQL framework under the condition of networked UAV radar
systems is given.

Q-Learning is a commonly used reinforcement learning method for anti-jamming. The policy
selection for Q-Learning is based on the Q table. The Q table has two dimensions: state and action.
We consider all parameters of jammer 1, jammer 2 and target as the environment. The algorithm is
required to give the corresponding policy of a radar system when given any environment that changes
with time, so as to maximize the target information received by the UAV. Specifically, we consider
the combination of jamming parameters at each time as the state, and the combination of radar
system policies at each time is considered as an action. This process can be modelled as a Markov
decision process (MDP). Traditional Q-learning uses tables to store Q values corresponding to each
state and action, hence it has two limitations, namely scalability and continuous action. Therefore,
deep Q network (DQN) and DDPG (deep deterministic policy gradient) methods were proposed in the
reinforcement learning family.
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DQN improves the scalability of Q-learning by adopting neural network may generate Q value to
avoid tabular representations. However, the learning effect of DQN is related to the memory stored
previously in a database. Simulation experiments usually show that DQN has a better learning effect
and convergence speed when the correct actions and wrong actions account for half of each in the
memory, which is not the case in the model of this paper. DDPG is a reinforcement learning method
for continuous action by integrating a deep convolutional neural network as the simulation of policy
function and Q function, that is, policy network and Q network, and then use the method of deep
learning to train the above neural network. However, fine tuning of parameters in DDPG is important,
such as the learning rate of the actor network and critical network, regularization parameters, neural
network structure and so on. If the parameters are not adjusted properly, the algorithm convergence
behavior is poor.

Therefore, as an initial contribution to adopt reinforcement learning in UAV-networked radar
systems, we select Q-learning algorithm of ensured stability. This helps to gain more insights in
the system model, problem dimension reduction and performance analysis, rather than devoting to
fine-tuning the “black-box” in DQN and DDPG for high state-action parameter dimensions.

Firstly, the algorithm calculates the SIR received by the communication UAV. This is based on
the combination of various radar policies and jamming policies according to the network topology.
According to the radar working mode, the algorithm judges the calculation method of information,
and then stores the R value in reserve. Then the modified Q-Learning algorithm is used to iterate the
policy. Considering that the moving position of the communication UAV will cause a large energy
loss, if its action is not constrained, it will generate results that are not realistic. Therefore, we further
constrain the action selection by the double greedy algorithm.

The greedy algorithm is embedded in the Q-Learning algorithms to allow randomized action
selection. It enables the agents to take randomized actions determined by probability distribution
rather than Q table. This probability may be controlled by the threshold ε of the greedy algorithm.
In our system, most of the energy of the communication UAV is used for motion, which should be
controlled. Therefore, a soft constraint is set on the communication UAV that allows 1 or 2 moving steps
with a higher probability and only set a low probability for further movement. We set two thresholds
ξ1, ξ2, where 0 < ξ1 < ξ2 < 1. When the communication UAV chooses the action, a random number
rnd′ within the range of [0, 1] is generated. Then it is compared with ξ1, ξ2 to determine the action
within three action subsets. If 0 < rnd′ < ξ1, the UAV selects an action in the action subset a1 which
contains one motion step. If ξ1 < rnd′ < ξ2, the UAV selects within the action subset a2 containing
two motion steps. If ξ2 < rnd′ < 1, the UAV will select the action in action subset a3 of more than two
motion steps.

In this way, the probability of choosing one step, two steps and more than two steps for the
communication UAV is ξ1, ξ2 − ξ1 and 1 − ξ2 respectively. The threshold values ξ1, ξ2 may be set
according to the specific UAV setups and task requirements. When ξ2 approaches 1, the motion of the
communication UAV is strictly limited to two steps or less. This process is shown in Figure 6 and the
pseudo-code of the DGQL is shown in Algorithm 1.
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Algorithm 1. Double-Greedy Reinforcement Learning Algorithm

Initialize r table set r(i, j)
for (i, j) in M radar policies and N jamming policies do

Generate η1, η2 via network topology
if mode 1 then

r(i, j) =
η2

1+η
2
2

4
else if mode 2 then

r(i, j) =
4(η1+η2)

θ2
0.5

end if
end for
Set Q(s, a) arbitrarily
for each episode do

Initialize s
for each step of episode do

Generate random number rnd and rnd′

if rnd<ε then
Extract action subset a1, a2, a3 from a
Generate random number rnd′

if 0 ≤ rnd′ < ξ1 then
Choose a from (s, a1) using policy derived from Q

else if ξ1 < rnd′ < ξ2 then
Choose a from (s, a2) using policy derived from Q

else:
Choose a from (s, a3) using policy derived from Q

end if
else

Choose a randomly from s
end if
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′) −Q(s, a)]
s← s′

until s is terminal
end for

end for
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5. Simulation Results

5.1. Map Gridding

In order to quantify the location and beam pointing of each agent more conveniently, gridded map
modeling is introduced. As shown in Figure 7. The two radar swarms are represented by two discrete
points, which can be combined or separated according to the task requirements. The communication
UAV is represented by a discrete point, which may move on optional positions in Figure 7. The target
consists of a self-defense jammer (jammer 1) and five main scattering points, each of which is numbered.
Considering the intensity difference of each scattering on actual targets, the intensity of scattering
point 3 is set to be slightly stronger than the other four, and the other four are the same. The target
may move within a certain range. Jammer 2 is represented by a fixed point. The azimuth definition is
shown in Figure 7.

The tunable parameters of each agent are shown in Table 2. In order to show the angle more
clearly, the azimuth is calculated based on the y-axis after 1% deformation of the actual distance. That
is to say, 100m of y-axis and 1m of x-axis have the same length in Figure 7.

Table 2. Tunable parameters of agents.

Parameters Range Unit

Transmitting Frequency of Radar UAV Swarm 9–9.8 GHz
Forwarding Frequency of Radar UAV Swarm 10.2–11 GHz

Mainlobe Width of Radar UAV Swarm 5–70 degree

Position of Communication UAV [0, 18], [2, 18], [4, 18], [6, 18], [8, 18],
[10, 18], [12, 18] [x (1 m),y (100 m)]

Transmitting Frequency of Jammer 1 9–9.8 GHz
Position of Jammer 1 [2, 4], [4, 4], [6, 4], [8, 4], [10, 4] [x (1 m),y (100 m)]

Transmitting Frequency of Jammer 2 10.2–11 GHz
Beampointing of Jammer 2 60–83 degree

When the detection requirements are different, the networking topology of radar UAV swarms
is different. Considering the problem of radar target location, this section presents two scenarios to
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verify the effectiveness of the algorithm. In the simulation experiment, the algorithm will generate the
corresponding radar multi-parameter policy according to the jamming policy of 10 time steps. In order
to control the motion of the communication UAV, we set the greedy coefficient as follows: ξ1 = 0.6,
ξ2 = 0.95. Thus, let the communication UAV take one step policy with 60% probability and two steps
policy with 35% probability to prevent the communication UAV from consuming excessive energy.
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5.2. Collaborative Target Ranging

In this scenario, the radar aggregates the ranging measurements of multiple scattering points for
target localization. Range measurement is carried out by using two radar UAV swarms. Two radar
UAV swarms are separated from each other, and the target position is determined by the intersection
area of beams form by the two swarms. In this scenario, because the distance spanning from the
target to the radar is significantly larger than the horizontal size of the target, all scattering points
of the target are in the same range profile and may be treated as a whole. Therefore, the radar UAV
swarms tend to form wider beams to cover more scattering points, which results in improved SIRs and
ranging accuracy.

In the default policy of this group of experiments, the radar transmitting frequency is maintained
at 9.4 GHz. The forwarding frequency is always 10.6 GHz. The width of both mainlobe is 50◦. The relay
position is always at [6,18]. The scanning mode of beam pointing is from right to left, and then from
left to right.

In order to display the results more vividly, we give the schematic diagram of time sequence
(Figure 8), frequency chart (Figure 9) and normalized information chart (Figure 10). In the schematic
diagram of the time sequence, the dot represents the position of each agent and the line represents
the mainlobe range of each agent’s 3 dB antenna pattern. Purple represents the communication UAV.
Brown represents the radar UAV swarm (the distance between the UAV swarm is very small, so
the whole swarm is replaced by a point). Red represents the jammer 1. Blue represents the target
scattering point distribution. Pink represents the jammer 2. The legends of the schematic diagram
of the time sequence are shown in Figure 11. In order to show the results more clearly, we exclude
the base station shown in Figure 7. In order to illustrate the effectiveness of this discrete modelling
provided by Q-Learning, we will give the results of normalized information quantity after enlarging
the scale of the problem. It should be noted that the maximum and minimum information quantity of
each experiment remain unchanged while increasing the scale of the problem. Take the scenario of
collaborative target ranging for example, after taking the natural logarithm of each group’s information
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quantity, the maximum value is 6.2107, and the minimum value is −8.2248, so it is still meaningful to
compare the normalized information quantity.
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Figure 8 illustrates the policy of UAV swarm radar beam synthesis and the communication UAV
motion policy generated. According to the theory in Section 4, the ranging information is only related
to SIR, so the beams tend to cover as many scattering echoes as possible. Simulations show that the
beam pointing and mainlobe width fits the target area well. As the beam of jammer 2 scans from right
to left, the communication UAV makes effective move to avoid jamming, while restricted its motion
range to preserve energy as guided by the double greedy algorithm. Figure 9 illustrates the frequency
policies adopted by the radar UAV swarms to avoid jamming.

In order to better illustrate the effectiveness of DGQL, we introduce the information of the
stochastic policy and the default policy as benchmarks. Stochastic policy refers to the random selection
of all radar policies at each time. Default policy refers to a policy choice when the radar UAV swarm
does not have any prior information about the target. A common default policy is that the radar
keeps the beam scanning back and forth in space, keeps the transmission frequency and mainlobe
width unchanged, and does not change the position of the communication UAV (always in the center).
Figure 10 shows that DGQL generates significantly more information than stochastic policies and
default policies.

The normalized information curve shown in Figure 10 is based on 1125 actions, which is realized
by 2.5 × 105 times of iteration. In order to analyze the influence of the number of optional actions on
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information quantity, Figure 12 shows the normalized information curve when the number of actions
is 1680, 2800, 4375, 6125 and 8575, respectively. The legends shown in Figure 12 are the number of
actions in each group. Their corresponding iteration times are 3.7 × 105, 6.2 × 105, 9.7 × 105, 13.6 × 105

and 19.0 × 105, respectively. The adjusted actions are the transmitting frequency of the radar UAV
swarm, the forwarding frequency of the radar UAV swarm and the mainlobe width of radar UAV
swarm. Each parameter keeps uniform step in their own allowable range.
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By comparing the curves of 1125 actions, the results show that in this scenario, increasing the
number of actions cannot effectively improve the information acquisition ability of radar. This is
because even when there are only 1125 actions, the effective policies (refers to the policy that enables
the radar to obtain high information quantity) are still included in the action set. The algorithm can
generate some of these policies by iterations.

Thus, this proves that if the problem scene can be modeled in a reasonable discrete way and the
effective policy can be included in the action set, the computing time can be saved without losing the
amount of information obtained by the radar, which is cost-effective in our model.

5.3. Collaborative Scattering Point Localization

In this scenario, the radar needs to locate a strong scattering point on the target. Let radar UAV
swarm 1 measure angle and radar UAV swarm 2 measure range, because we assume that only radar
UAV swarm 2 has the ability to generate narrow beams of angle measurement. When measuring
distance, the target is regarded as a whole, which is the same case in collaborative target ranging.
When measuring the angle, the target is regarded as 5 discrete scattering points. The strong scattering
points are then located according to distance and angle. The angle measurement adopts a beam
scanning method. At this time, two UAV swarms need to be in close positions. In order to highlight
strong scattering points, 5 scattering points of the target are set to different intensities. The intensity of
scattering point 3 in Figure 7 is slightly stronger than that of the other four scattering points. In this
way, the angle measurement is concretized as the angle tracking of a key point on a wide azimuth
target by radar UAV swarm 2.

The default policy of this experiment is the same as that of collaborative target ranging, except
that the width of two mainlobes are 50

◦

and 10
◦

, respectively. This is because, for the default policy of
angle measuring radar, its mainlobe is relatively narrow.

In particular, since the two radar UAV swarms are relatively close at this time, we use the same
point to represent them in Figure 13. At this time, the antenna pattern of UAV swarm 2 shown in
Figure 13 does not mean that the beam always points to scattering point 3. It represents the mainlobe
width when the beam of UAV swarm 2 sweeps through scattering point 3 instead.
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In Figure 13, the mainlobe of the angle measuring UAV swarm (UAV swarm 2) is very narrow,
only 5◦. This is because for the beam scanning method, the narrower the mainlobe width, the larger
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the angle measuring information. At this point, the policy of the angle measuring UAV swarm no
longer pursues the high SIR, but seeks a balance between the SIR and the mainlobe width. In this way,
the angle-measuring UAV swarm realizes angle tracking of the key part (scattering point No. 3) of
the target.

Figure 14 also proves that the frequency policy of the radar UAV swarm and the communication
UAV can still be correctly generated when the ranging and the angle measuring modes coexist.
Figure 15 shows the effectiveness of DGQL. In particular, we show the result of the policy based on
the reward generated by SIR only. At this time, radar UAV swarm 2 adopts a mainlobe width of 20

◦

.
Although it covers more scattering points and gets higher SIR. The information quantity is still slightly
lower than the DGQL policy. Wide mainlobe policy reduces the accuracy of radar angle measurement,
which fully proves the validity of information representation theory. Figure 16 also proves that in the
scenario of collaborative scattering point localization, increasing the number of action combinations
does not significantly improve the information acquisition ability of the radar.
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6. Conclusions

In this paper, a novel Q-Learning based anti-jamming algorithm for networked UAV radar
systems is proposed for optimizing the information acquisition capabilities, which is captured by
the radar information representation. Due to the payload size and energy constraints of UAVs, the
beam synthesis method under low bit phase condition is adopted. Both the angle measurement and
range measurement scenarios are constructed to evaluate the effectiveness of the proposed algorithms.
Simulation results show that the algorithm may facilitate effective anti-jamming and adapt to different
tasks. In this paper, the Q-Learning based algorithm is selected due to its stability and interpretability,
while it also discretizes the state variables in space, frequency and antenna beamforming, which may
be continuous in general. In our future work, we will consider the reinforcement learning algorithm to
generate continuous policies, such as the deep deterministic policy gradient (DDPG).
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