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Abstract: For unstructured environment applications, the ability of self-recognition for grasping
operations should be guaranteed for manipulators. For this purpose, a grasping process, including
instance segmentation, pose estimation, and pose transformation, is proposed herein to achieve
autonomous object detection, location detection, and grasp planning. An inverse solution in position
form is derived for pose transformation to guarantee redundant manipulator adaption. The inverse
solution requires no default initial configuration and can obtain all feasible solutions for grasping.
Additionally, the optimal grasp can be selected by introducing an optimal factor, such as manipulability.
Besides, the process is programmed with high computational efficiency, making it a better choice for
manipulators to achieve self-recognized grasping operation. Experiments are carried out herein to
verify the necessity of instance segmentation, pose estimation, and pose transformation in achieving
self-recognized grasping operation. The inverse solution in the position form is also proven to be
efficient and adaptable for the pose transformation of redundant manipulators.

Keywords: redundant manipulator; self-recognition grasping operation; instance segmentation; pose
transformation; vision

1. Introduction

Nowadays, manipulators have an increasing degree of requirement in many fields, since grasping
operations [1,2] with manipulators can be competent for various works that substitute human
beings. A redundant manipulator which possesses more DOF (degree of freedom) and dexterity in
three-dimensional space has a better performance in self-perception and self-learning when in an
unstructured environment and amongst clutter. The ability of autonomy is increasingly becoming
more and more important for manipulators in complex scene applications. Thus, it is significant for
redundant manipulators to possess the ability of self-recognition, especially for grasping operations.

To achieve self-recognized grasping operation, redundant manipulators need to complete object
detection, object location, and grasp planning autonomously. In object detection, the target object
is distinguished from others and the environment. In terms of the object location, the 3D (three
dimensional) position and orientation angle of the target object are obtained in a pixel coordinate
system. Then, via pose transformation, a joint angle sequence is derived for manipulator control via
the pose (position and orientation) expressed in the pixel coordinate system.

Vision systems which can obtain abundant information about the present environment have
already been integrated in manipulator grasping operation [3,4]. In the industry field, templates
of objects (components or work piece) are made in advance. Features such as SIFT (scale-invariant
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feature transform) [5] and SURF (speeded-up robust features) [6] are extracted from the image to
achieve shape-matching [7]. Since the position of an object is traceable in the workbench, methods
such as the optical flow method [8] are applied for simplified location and motion tracking. However,
these methods rely on the known classification and position of objects, and they cannot be adapted
for unstructured environments and those where clutter objects with unknown information exist.
Indeed, with vision systems, target object detection and location can be achieved preferentially for
self-recognition grasping operation.

Benefit from the studies on deep learning, CNNs [9,10] (convolutional neural networks) have
been used to achieve object recognition, leading to various methods such as image classification [11,12],
object detection [13,14], semantic segmentation [15,16], and instance segmentation [17,18]. Many
frameworks of instance segmentation have been proposed, such as SDS (simultaneous detection
and segmentation) [19], CFM (convolutional feature masking) [20], MNC (multi-task network
cascades) [21], and so on. Mask R-CNN (regions with CNN features) [22], which achieves object
classification and contour description simultaneously, can accurately determine target objects from an
unstructured environment. Besides, the contour has a smaller region than the classification box for
object pose estimation.

After obtaining the contour and classification of an object by instance segmentation, the location
of the object should be determined. In traditional methods, an RGB image is used to achieve pose
estimation for the target object by matching local features [23,24]. However, this is worse in performance
when locating textureless objects. However, RGB-D images, which describe the depth information with a
point cloud, can directly obtain the 3D position objects [25–27]. The benefit from grasping databases [28–30]
and orientation estimation is converged into an classification problem [31] via discretizing orientation
angles. As a result, the pose of target object can be located in the pixel coordinate system.

Pose transformation can be divided into two steps. Firstly, the pose expressed in pixel coordinates
is transferred into Cartesian coordinates via the parameters of the camera, which is explained in [32,33].
Second, the pose is transferred into the joint space of the manipulator via inverse kinematics. The
inverse solution problem [34] is an old question for robotics, which can be solved in either the velocity
or position forms. The inverse solution in velocity form (ISVF) relies on the Jacobian matrix of the
manipulator, which represents the relationship between the joint velocity and the velocity of the
end-effector. In ISVF, an initial configuration should be set, then simulated, where planning is carried
out from the initial configuration to the pose of the object. The angles of each joint are converged by an
integral of joint velocity at each motion interval. The process is fussy and costly in time, making ISVF
suitable for offline trajectory planning.

The inverse solution in position form (ISPF) can obtain joint angles directly, and can generally be
divided into numerical [35] and geometric methods [36]. However, the numerical method presents an
abundant computation cost, leading to poor real-time adaption. Additionally, it often falls into a local
optimum. The geometric method is only effective for low DOF manipulators (i.e., those not exceeding
6-DOF). For manipulators with a spatial redundancy (i.e., those with at least 7-DOF), this method is
not compatible. Indeed, there are infinite solutions for a particular pose with redundant manipulators
(DOF > 6). Less methods can achieve the expression of all feasible solutions, rapid calculation,
and optimal solution selection simultaneously, which are imperative for pose transformation in
self-recognized grasping operation. Thus, a method of ISPF, which can express the whole solution
set rapidly and build up a rule selecting the global optimal solution, is significant for redundant
manipulator application in unstructured environments and environments with clutter.

The contribution of the paper is exposing the process of self-recognition grasping operation with a
vision-based spatially redundant manipulator. Instance segmentation is used to distinguish the object
and describe the contour. Within the contour, pose estimation is carried out via a grasping network.
On this basis, a method is proposed to calculate the inverse solution in position form to transfer the
pose into the joint space of the manipulator for direct motion control.
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The Section 2 shows the process of the vision-based self-recognized grasping operation, including
the framework of instance segmentation, the grasping network of pose estimation, and the methods of
pose transformation. In the Section 3, the inverse method of ISPF is described in detail. In the Section 4,
experiments on self-recognition grasping operation are carried out. The process of self-recognition is
verified and the method of ISPF is proven to be effective for real-time calculation and global optimal
solution selection. The Section 5 presents our conclusion.

2. Self-Recognized Grasping Operation

For self-recognized grasping operation, the core problem is achieving object detection, pose
estimation, and pose transformation autonomously. In this section, the process of the self-recognized
grasping operation is described. Instance segmentation is used to classify the target object and describe
the contour via a RGB-D image. During the region of the contour, pose estimation is used to locate the
pose of target object in pixel coordinate system. Then, pose transformation is applied to transfer the
pose, expressed in pixel coordinates, into joint angles of the manipulator. Considering the internal
parameters of camera, the pose is preferentially transferred from pixel coordinates into Cartesian
coordinates, then transferred into the joint space of the manipulator for direct motion control. The
process of the self-recognized grasping operation is shown in Figure 1.
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Figure 1. Process of the vision-based self-recognized grasping operation. 

In the self-recognized grasping operation, instance segmentation and pose estimation rely on 
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Figure 1. Process of the vision-based self-recognized grasping operation.

In the self-recognized grasping operation, instance segmentation and pose estimation rely on the
RGB-D image obtained by the vision system, using CNN frameworks to achieve self-recognition. The
frameworks are described in detail in Figure 2.
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Figure 2. Framework of instance segmentation and pose estimation.

2.1. Framework of Instance Segmentation

In the framework of instance segmentation, the Fast R-CNN network is referenced. In order
to improve the feature extraction and information mining, ResNet-101 [19] and feature pyramid
networks [37] (FPN) are introduced as convolutional backbones to guarantee feature detection in
multi-scales, where the feature map is then extracted. A region proposal network (RPN) is applied to
propose candidate object bounding boxes, and a region of interest (RoI) align layer (herein RoI Align)
is used, which is designed to extract features from proposal boxes from the feature map and regress
the classification and bounding box. RoI Align can efficiently decrease the misalignments between the
RoI and the extracted feature. Simultaneously, a branch for contour prediction is added to describe
the contour of object. The loss function is defined as the sum of the loss of classification, bounding
box and contour. When the loss function is converged, the classification and contour of target object
are achieved.

2.2. Grasping Network for Pose Estimation

The pose of the target object is estimated in the region of the contour. Consequently, the z-axis of
the end-effector is vertical to the object when grasping. RGB-D images are taken along the viewing
angle, thus, the distance between the object and the end-effector is equal to the depth information of
the image. With the image, the position of the target object (u, v) can be obtained in a pixel coordinate
system, while the orientation is expressed as an angle (q) around the geometric center of the contour.
By dividing the contour into k-parts around the circle, where each part of the angle is equal to 360/k,
then the grasping orientation estimation is turned into an k-way binary classification problem. The
region of the contour is input into the grasping network, which uses AlexNet [10] as a backbone. Here,
via convolutional layers, the feature map is obtained, and fully-connected layers are used to converge
for the classification of grasping orientation. A more detailed description is outlined in our former
work [38].

2.3. Steps of Pose Transformation

With instance segmentation and pose estimation, the position in pixel coordinates and the
orientation angle are obtained to locate the target object, which can be expressed as (u, v, q). For
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manipulator control, this should be transformed by two steps. Firstly, the pose expressed in pixel
coordinates is transferred into the camera coordinate, as shown in Equation (1):

zc·


u
v
1

 = K


xc

yc

zc


Rc = R(z, q)·R(y, 0)·R(x, 0)

(1)

where K expresses the internal parameters matrix of camera, zc represents the depth information of
image, R(·) represents rotation matrix operator, and Rc represents the attitude matrix.

The second step is as follows, where the pose expressed in camera coordinates is transferred into
a joint angle sequence of the manipulator, as shown in Equation (2):

[
Rc pc
0 1

]
= c

bT
[

Rb pb
0 1

]
θ = finv

([
Rb pb
0 1

]) (2)

where c
bT represents the transformation matrix between the camera coordinates and the base coordinates

of the manipulator. The position of the target object is expressed as (u, v)T in pixel coordinates,
pc = (xc, yc, zc)

T in camera coordinates, and pb = (xb, yb, zb)
T in the base coordinates of the manipulator.

θ = {θi}, i = 1, . . . , 7 represents the joint angle sequence, and finv represents the inverse kinematics
function of the manipulator.

3. The Method of ISPF for Pose Transformation

The process of the self-recognized grasping operation is presented above. Instance segmentation,
pose estimation, and pose transformation, are all indispensable in achieving self-recognition. However,
the traditional method of inverse kinematics in Equation (2) is not adaptable. A new method is required
to achieve the expression of all feasible solutions, rapid calculation, and optimal solution selection. In
this section, a method of ISPF which relies on manipulator configuration simplification is proposed.
The configuration of the redundant manipulator is simplified based on the possible locus circle of the
elbow node. Then, the relationship of joint angles is derived analytically, and all the feasible solutions
can be calculated. By introducing an optimal factor, the corresponding optimal solution can be selected.

3.1. Manipulator Simplification and Parameters Definition

Considering the configuration of a 7-DOF manipulator, it can be simplified into four parts
according to three nodes, namely, the wrist, elbow, and shoulder, which are labeled as P1, P2, P3. The
node of the base and the node of the end-effector are labeled as P0, PT respectively. The simplified
configuration is shown in Figure 3. In the figure, the possible position of P2 forms a circle, which is
named as the locus circle of P2. The locus circle has the following properties:

a. The center of the locus circle is located on the line between nodes P1 and P3.
b. The line between P1 and P3 is normal to the plane of locus circle.
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After simplification, the parameters of manipulator can be defined as follows:

Pe: The position of the end-effector of the manipulator.
Re: The attitude matrix of the end-effector of the manipulator.∑

m: The mth joint coordinate system, m = 0, 1, 2, . . . , 7,T, Pi, where
∑

0 represents the base
coordinate system,

∑
T represents the coordinate system of the end-effector, and

∑
Pi

represents the
coordinate system at node Pi, i = 0, 1, 2, 3, 4, e.

j
i T: Transformation matrix between the jth and ith coordinate system.

Pi = (xi, yi, zi)
T: The position coordinate of the ith node, i = 0, 1, 2, 3, 4, e.

o = (o1, o2, o3)
T: The center of locus circle of P2.

a = (a1, a2, a3)
T: Arbitrary vector in the plane of locus circle.

b = (b1, b2, b3)
T: Vector in the plane of locus circle, fulfilling a⊥b.

n = (n1, n2, n3)
T: Normal vector of the plane of locus circle.

d1,o: The distance between node P1 and the center of circle O.
di, j: The distance between the ith and jth node.
li, j: The vector between the ith and jth node.

According to the configuration of manipulator shown in Figure 3, the joint angles are divided into
three groups, which are respectively derived in the following section.

3.2. Feasible Solutions Expression

Since nodes P3 and Pe are located on a rigid link, the attitude of the two nodes are consistent.
However, the positions of the two nodes are different. According to P3

0 T·TP3
T = T

0 T, they can be obtained
as follows: [

Re P3

0 1

][
I e

3P
0 1

]
=

[
Re Pe

0 1

]
. (3)

Then, the position of P3 can be obtained as follows:

P3 = Pe −Re·
e
3P (4)
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where e
3P = (0, 0, d4)

T. Here, we define the locus circle of node P2 = (x2, y2, z2)
T as follows:

x2 = o1 + r·a1 cosϕ+ r·b1 sinϕ
y2 = o2 + r·a2 cosϕ+ r·b2 sinϕ
z2 = o3 + r·a3 cosϕ+ r·b3 sinϕ

. (5)

where r represents the radius of the circle and ϕ ∈ (0, 2π) represents the phase of circle. In order to
solve Equation (5), the coordinate of the center, O, should be firstly obtained. Geometrically,

d2
2 − d2

1,o = d2
3 − (d1,3 − d1,o)

2. (6)

Now, the distance between node P1 and P3 can be obtained as follows:

d1,3 = (x2
3 + y2

3 + (z3 − d1)
2)

1/2
. (7)

Then,

d1,o =
d2

1,3 + d2
2 − d2

3

2d1,3
. (8)

Since the radius of circle r = d1,o, according to Equation (8), the coordinate value of the center
is obtained.

o =
d1,o·l1,3

d1,3
(9)

Meanwhile, a, b can be calculated as follows:

a =
l1,3×(l0,1×l1,3)
‖l1,3×(l0,1×l1,3)‖

b =
l1,5×a
‖l1,5×a‖

(10)

By substituting Equations (9) and (10) into Equation (5), P2 can be calculated. Accordingly, the
coordinate values of nodes P0, P1, P2, P3, Pe are solved, and the joint angles of θ1,θ2,θ4 can be expressed
as follows:

θ1 = arctan(y2, x2)

θ2 = arc cos l0,1·l1,2

|l0,1·l1,2|

θ4 = arc cos l1,2·l2,3

|l1,2·l2,3|

(11)

Here, we define the plane as γ =
{
γ
∣∣∣P1 ∈ γ, P2 ∈ γ, P3 ∈ γ

}
. Since θ1,θ2 can be calculated, P3 is

determined by θ3 and the plane γ changes with θ3. Here, θ3 can be treated as the dihedral angle

between γ and the plane γ′ = γ(θ3 = 0). When θ3 = 0, 4
0T′ =

[ 4
0R′ 4

0P′

0 1

]
can be obtained according

to Equation (11). Here, P3
′ = P3(θ3 = 0) = (x3

′, y3
′, z3

′)T can be calculated.

P3
′ = 4

0P′ + 4
0R′·32P (12)
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where 3
2P = (0, 0, d3)

T. The normal vector n123 of plane γ and normal vector n123
′ of plane γ′ can be

expressed as follows: {
n123 = l1,2 × l2,3

n123
′ = l1,2 × l2,3

′
. (13)

Then, the dihedral angle, namely, θ3, can be calculated:

θ3 = arccos
n123·n123

′

|n123||n123
′|

. (14)

After obtaining θ1 ∼ θ4, 4
0T can be calculated. According to 4

0T5
4T6

5T7
6TT

7 T = T
0 T, we define

4
0T−1
·
T
0 T = T ∈ R4×4, where Ti j represents the element of ith row and jth column. θ5 ∼ θ7 can be

calculated as follows: 
θ5 = a tan T23

T13

θ6 = a cos T33

θ7 = a tan −T32
T31

. (15)

So far, θ = {θi} is derived by Equations (11), (14), and (15), with which all the feasible solutions
for a particular grasping pose can be obtained.

3.3. The Optimization of ISPF

In Section 3.2, the joint angle sequence θ varies with the phase angle ϕ of the locus circle. In other
words, θ can be expressed as the function of phase angle ϕ of the locus circle:

θ = finv(ϕ). (16)

The relationship between θ and ϕ is implicitly represented by the function finv(·). When given the
pose of the target object, all feasible solutions in the position form can be calculated. For direct control,
the optimal solution should be selected, which can be treated as an optimization problem with a single
objective. The optimal solution selection is discussed during grasping experiments in the next section.

4. Simulation and Experiments

The redundant manipulator used in the paper is a 7-DOF serial manipulator made by SCHUNK,
whose joint coordinates and configuration are shown in Figure 4. The DH (Denavit-Hartenberg)
parameters are listed in Table 1. A ZED camera is set on the end-effector of the manipulator to obtain a
RGB-D image. With the manipulator, we used five experiments to validate the proposed methodology
and system. Two experiments of instance segmentation and pose estimation based on vision system
were carried out to obtain the pose of the target object. Three experiments of pose transformation were
carried out to verify the method of ISPF in achieving efficient feasible solution calculation, selecting
the optimal solution and showing advantages compared to solutions obtained by the iteration method.
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Figure 4. (a) The joint coordinates of 7-DOF redundant manipulator, (b) the configuration of the 7-DOF
redundant manipulator.

Table 1. DH (Denavit-Hartenberg) parameters of 7-DOF serial manipulator.

Number α(◦) a(mm) θ(◦) d(mm)

1 90 0 −90 d1 = 380
2 −90 0 0 0
3 90 0 0 d2 = 328
4 −90 0 0 0
5 90 0 0 d3 = 323
6 −90 0 0 0
7 0 0 90 0
T 0 0 0 d4 = 190

4.1. Experiment on Finding and Locating Target Object

For the self-recognized grasping operation, the primary step is to the distinguish target object
from the unstructured environment. Here, we set some fruit on the shelf shown in Figure 5a. There are
two kinds of fruit (an apple and orange), and two apples were placed on different layers. We would
like the manipulator to distinguish the three objects and grasp the upper apple by itself.
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(c) the result of instance segmentation, (d) and the result of pose estimation.

The experimental scene obtained via a camera is shown in Figure 5b. The shelf was set as an
obstacle and limitation to the workspace of the robot in its grasping operation. Different objects
belonging to the same category (apple) were set to confuse the recognition of the target object. The
background is a common lab, which is considered as clutter, confusing the feature detection and pose
estimation. The experimental scene can be treated as a typical unstructured environment.

The instance segmentation algorithm is devoted to mark the object and provide a result, as shown
in Figure 5c. The fruit on the shelf can be clearly marked by category, and the two apples are also
distinguished with different colors. The confidence coefficient of each object is labeled in the figure,
and the target apple had the highest confidence coefficient, which was 0.90. Besides, the confused
background can be almost eliminated via instance segmentation. As a result, the target apple is clearly
recognized for further operation.

After finding the target apple, the position was detected as the center of the contour shown in
Figure 5c. The orientation for grasping was treated as a classification problem, based on the grasping
network described in Section 2. The contour was divided into 36 parts around the circumference, where
each part is equal to a 10◦ angle, turning the orientation estimation into a 36-way binary classification
problem. The orientation estimation result is shown in Figure 5d. The orientation angle of the target
apple was classified as 10◦.

By taking a photo via the vision system, the manipulator can find the target object from the
unstructured environment and obtain the contour of the target object, then obtain the position and
orientation angle autonomously. According to the experiment, the efficiency of instance segmentation
and grasping network is verified via self-recognized grasping. The benefit from instance segmentation
and grasping orientation estimation was used, concerning the contour of the target object. The contour
marked by instance segmentation is more accurate than bounding box classification, which greatly
reduces the range and time cost for the grasping network to estimate the grasping orientation.
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4.2. Feasible Solutions Based on the ISPF Method

By the experiments in Section 4.1, the position of target object and grasping orientation angle were
obtained. The pose of the end-effector, namely, [0.78m,−0.10m, 0.40m,−1.57rad,−0.17rad,−1.57rad],
could be obtained according to Equation (1). With the method of ISPF, kinematics and transformation
matrices between joint coordinates were calculated by the DH parameters listed in Table 1. Then,
solutions for successful grasping could be obtained by changing the value of phase angle ϕ in [0, 2π].
In Figure 6, four representative solutions (obtained at ϕ = 0◦, ϕ = 90◦, ϕ = 180◦, and ϕ = 260◦) are
shown to achieve grasping operation.
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Figure 7. Simplified manipulator configurations of multiple groups of solution. (a) A general view. 
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4.3. The Optimal Solution with ISPF 

Figure 6. Grasping operation under different phase angles of ϕ. (a) ϕ = 0◦, (b) ϕ = 90◦, (c) ϕ = 180◦,
(d) ϕ = 260◦.

From Figure 6, all four configurations of the redundant manipulator could successfully achieve
grasping operation. Different joint angles correspond to different joint positions and manipulator
configurations. By varyingϕ, which varies in [0, 2π], at an interval of 20◦, 18 groups of inverse solutions
were calculated, and the corresponding configurations are shown in Figure 7. Figure 7a is a general
view of the solutions, and Figure 7b is viewed from the Y-Z plane. It clearly shows that the possible
positions of P2 form a circle. When ϕ varies, all the feasible solutions can be obtained and represented,
as shown in Figure 7a. This verifies with the method of ISPF, where the manipulator can efficiently
calculate the entire feasible solution set. Besides, the shape formed by the possible solutions confirms
the validation of manipulator simplification and the locus circle application outlined in Section 2.
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4.3. The Optimal Solution with ISPF 

Figure 7. Simplified manipulator configurations of multiple groups of solution. (a) A general view.
(b) View from Y-Z plane.

4.3. The Optimal Solution with ISPF

During ϕ ∈ [0, 2π], countless solutions exist which can achieve the same pose at the end-effector
of the redundant manipulator. However, for grasping operation, only one group of solutions are
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needed. In order to find the optimal solution, an optimizing factor can be introduced. Manipulability
is an important and common factor representing the dexterity of robots. The optimal solution, when
determined by manipulability, has a better adaption for the unstructured environment, especially in
terms of humanoid control and dexterous manipulation.

ω =

√
J(θ)·J(θ)T (17)

In Equation (17), J(θ) represents the Jacobian matrix of the manipulator at joint angles θ, where
θ = [θ1,θ2, . . . ,θ7]

T
∈ R7×1. It can be calculated by the DH parameters of the robot and joint angles

θ. ω represents the manipulability of manipulator. Since θ has been derived by the ISPF method,
corresponding manipulability can be obtained during ϕ ∈ [0, 2π], according to Equation (17). The
variation of manipulability related to ϕ is shown in Figure 8.

From Figure 8, the maximum value of manipulability can be found at ϕ = 260◦, and the
corresponding solution is θmax = [−77.0459 92.1113 −99.9610 46.2262 −0.3588 −33.1059 90.4780](◦) .
The minimal value of manipulability is at ϕ = 40◦, where the corresponding solution is
θmin = [−114.9950 70.7922 42.8671 46.2262 −21.7377 −16.7663 −19.3553](◦) . The configurations at
the minimum and maximum of manipulability are shown in Figure 9. Although the numerical
difference of manipulability is not obvious, the configurations have a wide difference at the minimum
and maximum of manipulability. Through the introduction of manipulability, the most dexterous
grasping configuration can be selected from all the feasible solutions, with which dexterous grasping
manipulation can be achieved.
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Via the introduction of manipulability, manipulation can be expressed as a single object
optimization problem of obtaining the optimal solution for self-recognized grasping operation.

f ind : ϕ

max : ω =

√
J(θ)·J(θ)T

θ = finv(ϕ)

(18)

With Equation (18), a unique θ value can be obtained to achieve dexterous self-recognized
grasping operation with a redundant manipulator. Additionally, other optimal factors, such as the
optimal torque, least time cost, and so on, can be introduced to replace manipulability in Equation (18),
which will greatly expand the ISPF method in achieving various optimizations for various grasping
operation requirements.

4.4. Comparison with the Iteration Method

The iteration method can also achieve pose transformation from the end-effector of the manipulator
to joint angles and obtain a group of θ values for grasping operation. However, it requires a proper
initial configuration. If the initial configuration is not reasonable, no feasible solution can be reached.
When the initial configuration is proper, a group of joint angles can be iterated and converged. In this
part, the inverse solutions obtained with iteration method are compared with ones obtained with the
ISPF method.

In Table 2, 6 groups of initial configurations are listed to calculated joint angles with the iteration
method. For the 1st group, the inverse solution cannot be obtained due to an unreasonable initial
configuration. For the other groups, inverse solutions can be converged. The manipulability of these
solutions were calculated to compare the solution calculated by the ISPF method, which is shown in
Figure 10.

Table 2. Inverse solution with iteration method under different initial configurations.

No. Initial Configuration (◦) Iteration Method

Reachable Inverse Solution (◦)

1 [−20,−20, 0, 0, 0, 0, 0] No ——
2 [0, 60, 0, 30, 0, 0, 0] Yes [−86.68, 69.02,−35.71, 46.48,−19.70,−28.69, 41.19]
3 [10, 10, 10, 10, 10, 10, 10] Yes [66.19,−69.73,−141.38, 46.72,−23.00,−17.52,−24.06]
4 [−10,−10,−10,−10,−10,−10,−10] Yes [78.50,−65.03, 5.10,−46.85,−25.85, 22.71,−170.49]
5 [−20, 0, 0, 20,−20, 0− 20] Yes [−116.24, 71.07, 45.38, 47.45,−20.48,−17.05,−33.16]
6 [10, 20, 30, 40, 30, 20, 10] Yes [−84 .77, 70.29,−41.19, 46.68,−18.00,−29.38, 44 .80]Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17 
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In Figure 10, the manipulability of each solution calculated by the iteration method is smaller than
the solution calculated by the ISPF method at ϕ = 260◦. Although solutions can be obtained by the
iteration method, they can hardly be optimal. For self-recognized grasping operation in unstructured
environments, various constraints should be guaranteed. The introduction of manipulability makes
the manipulator achieve singularity avoidance and joint limit avoidance, leading to better adaption
than with the iteration method in unstructured environment applications. Besides, considering the
limit of the unstructured environment on the workspace of the manipulator, it is convenient for the
ISPF method to adjust feasible solutions achieving obstacle avoidance.

With the experiment, the efficiency of the ISPF method in obtaining the optimal solution for
self-recognition grasping operation was verified. Compared with the iteration method, the ISPF
method requires no default initial configuration. All the feasible solutions can be calculated, and
the optimal one can be selected by introducing an optimal factor. Additionally, it is conveniently
programmed with a high computational efficiency, supporting self-recognized grasping, making it a
better choice than the iteration method in achieving pose transformation.

5. Discussion and Conclusions

In order to achieve self-recognized grasping operation with a redundant manipulator in an
unstructured environment with clutter, the processes of instance segmentation, pose estimation, and
pose transformation are described in the present paper. The three processes are indispensable, with
which the manipulator can find, locate, and grasp target objects using its vision system, without any
outside help. With instance segmentation, different categories of objects can be precisely distinguished
with a high confidence coefficient, and the contours of objects can be clearly described. As a result, the
range is precisely limited for highly efficient and accurate pose estimation. Via pose estimation with a
grasping network, grasping attitude estimation is transferred into a multi-way classification problem,
and the attitude represented by the orientation angle is conveniently transferred to a pose in Cartesian
coordinates for grasping control. The two processes can work spontaneously once a RGB-D image is
obtained by the vision system.

For pose transformation, we propose an inverse solution method at the position form to make
it adaptable for self-recognition. The ISPF method requires no default initial configuration and can
represent all of the feasible solutions. Besides, by introducing an optimal factor of manipulability, the
optimal solution can be selected, achieving humanoid control and dexterous manipulation. Besides,
the optimal factor can be replaced according to requirement of optimal control. The ISPF method
can be expanded for various optimizations, such as optimal torque, least time cost, and so on. This
validates the universality and extendibility of the ISPF method in the optimal control of robots. Further,
the characteristic of being conveniently programmed with high computational efficiency makes it quite
suitable for self-recognized grasping and real-time manipulator control.
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