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Abstract: The detection and removal of moving object shadows is a challenging issue. In this article,
we propose a new approach for accurately removing shadows on modern buildings in the presence
of a moving object in the scene. Our approach is capable of achieving good performance when
addressing multiple shadow problems, by reducing background surface similarity and ghost artifacts.
First, a combined contrast enhancement technique is applied to the input frame sequences to produce
high-quality output images for indoor surroundings with an artificial light source. After obtaining
suitable enhanced images, segmentation and noise removal filtering are applied to create a foreground
mask of the possible candidate moving object shadow regions. Subsequently, geometry and color
information are utilized to remove detected shadow pixels that incorrectly include the foreground
mask. Here, experiments show that our method correctly detects and removes shadowed pixels in
object tracking tasks, such as in universities, department stores, or several indoor sports games.

Keywords: color information; median filter; luminance; image enhancement; moving shadow
detection; ghosting artifacts

1. Introduction

Moving shadow detection methods have been studied extensively by researchers [1]. They are
profitable in various fields of computer vision application, such as in object tracking and foreground
recognition. Currently, there are numerous frameworks and hardware systems for obtaining image
sequences without any moving shadows or ghosts [2]. However, a variety of problems exist, such as
background similarity and multiple shadows, which may make the shadow detection task difficult. We
obtained video sequences to experiment with removing shadowed images. Moving foregrounds have
become more accessible and can often show up in various positions in neighboring images, causing
multiple objects to be detected as a single foreground blob [3].

Shadow pixels are occasionally misclassified as parts of objects, causing mistakes in localization,
segmentation, and the tracking of moving objects. Often, the shadows give significant data, for example,
the relative position of an object from a source. Shadows can vary from the background surface in
luminance and gray level, like the foreground objects in the scene. Furthermore, the utilization of
picture shadow detection methods with minimally controlled equipment in real-time frameworks
is a difficult issue [4], as the vast majority of the shadow removal techniques are computationally
costly. Thus, a shadow removing method on a computer must be customized to fulfill the real-time
requirements of video surveillance, with limited computational resources. This current study aims to
address moving shadow detection problems, as mentioned above and in the following paragraph.

Appl. Sci. 2019, 9, 5165; doi:10.3390/app9235165 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5923-8695
http://dx.doi.org/10.3390/app9235165
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/23/5165?type=check_update&version=2


Appl. Sci. 2019, 9, 5165 2 of 14

The main contribution of this manuscript is that we present a simple, reliable, and automatic
shadow removal method that is robust against background surface similarity and ghost problems.
The method requires a small amount of computational time to detect the presence of moving objects for
indoor video surveillance and is based on geometry features. Existing geometry-based methods do not
adequately process shadow removal with objects having multiple shadows or where several objects are
recognized as a single foreground mask. Our suggested algorithm is comprised of the following steps:

• Enhancing input images based on combined contrast enhancement.
• Extracting moving objects using background subtraction and removing unwanted noises from the

enhanced images.
• Detecting and removing shadow pixels that are correctly included in the candidate foreground mask.
• Applying a morphological reconstruction method to eliminate small gaps and holes from the

moving object regions.
• Delivering the final result (without shadows) to the object tracking tasks.

The rest of the paper is partitioned into section as follows: Section 2 shows a survey of some related
shadow detection strategies. Section 3 provides a brief discussion of the difference between static and
dynamic shadows. Section 4 gives a definite discourse on our proposed moving shadow removing
method for dealing with moving object tracking issues. Section 5 demonstrates our test results and
provides discussion based on the most widely-used databases. Section 6 provides conclusions based
on the experimental results and future directions for study.

2. Literature Review

Moving shadow detection has been investigated for years, and many researchers and scientists
are working together in the shadow removing domain to reduce processing time and improve the
quality of the segmentation result to deliver appropriate object tracking applications. However,
shadow detection remains one of the most important and challenging issues in the areas of computer
vision, object detection, and machine learning. Detecting shadow regions by the human eye may be
a somewhat easy task, but it is a relatively challenging problem for a computer, as shadow pixels
also simultaneously move as an object region. For these reasons, most contemporary studies concern
detecting and removing shadows.

Yanli Wan et al. [5] introduced a shadow removing technique for moving objects to eliminate
ghosting artifacts. In their approach, the ghosting area is rearranged to avoid removing the moving
shadow pixels in the scene. However, this method is relatively difficult to use in urban surveillance
and in multiple noise environments. Cucchiara et al. [6] utilized shadow features in the hue, saturation,
value (HSV) color space to recognize shadow pixels where the object of interest is in motion. These
properties demonstrate that cast shadows obscure the background in the luminance component,
whereas the saturation and hue spaces change inside specific limits. The HSV color space was utilized
because it provides a superior separation of chromaticity and grey level than other color spaces. In [7],
the authors reviewed several shadow detection methods, each of which proved their efficiency in
detecting and removing shadow pixels in indoor and outdoor environments. Several other research
works were proposed for dynamic image sequences [8–10]. The scientists investigated the concept of
including a multi-frame differencing system to enhance the division in situations where the shadows
may not be effectively removed. Stauder et al. [11] suggested a new physics-based method that used
luminance and intensity values to describe physical illumination changes.

Recently published articles are different in terms of productivity and reliability [12,13]. They
try to overcome the modern problems in moving shadow detection, such as those in smart city and
intelligence-building frameworks. Today, applying computer vision tasks to machine learning and
neural networks is becoming a very important research area. Dong Seop Kim et al. [14] employed a
convolutional neural network (CNN) in their study, for shadow detection in images using a visible
light camera sensor. The researchers presented a shadow detection and removal algorithm that used
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a 21 × 21 sliding window-based visual geometry group (VGG) “Net-16” CNN and showed a high
accuracy, even in a high-definition surveillance condition. A new method for dynamic object and
shadow detection based on motion prediction was proposed by Jong Taek Lee et al. [15], solving the
shadow problem by using deep learning. In addition, applying a Markov random field enables a
system to refine shadow detection results to improve its performance. In [16], a novel approach is
presented for versatile shadow removal by consolidating four distinct filters in a neuro-fuzzy structure.
The neuro-fuzzy classifier has the capacity for real-time self-adaptation and training, and its execution
has been quantitatively surveyed with both indoor and outdoor video streams.

3. Moving Shadow Detection

Recently, various shadow identification techniques have been announced in science-related
literature. They can be divided into two areas. The first area generally concerns static images, while
the second concerns image sequences and specifically video contents [17]. Static shadows are shadows
cast by immobile objects such as buildings, parked vehicles, and trees. In that regard, moving object
identification methods do not suffer from static shadows because these shadows are classified as a
piece of background. In contrast, dynamic shadows, the subject of interest for this manuscript, are
harmful to moving object recognition algorithms. Shadows can be smoothly stitched to an object in
action or can be disconnected from it. In the first case, the shadows usually cause the shape of the original
object to look different, making the utilization of subsequent shape recognition strategies less reliable.
In the second case, the shadows might be incorrectly categorized as an object in the scene. The work
performed in this study concerns the second case, where, in this way, it addresses the issue of the detection
and removal of moving shadows cast from objects in video surveillance. This is done to improve the
process of moving object identification. Moving shadows are often recognized as foreground objects, and
this degrades the expected execution of object tracking and accurate segmentation, as depicted in Figure 1.
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Figure 1. Tracking process on indoor video surveillance: (a) Object tracking with shadow region. (b) Object
tracking without shadow region.

4. Proposed Method

In this section, we discuss our proposed method in detail. Figure 2 shows all steps of the method
for detecting and removing a moving shadow.



Appl. Sci. 2019, 9, 5165 4 of 14

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 15 

4. Proposed Method 

In this section, we discuss our proposed method in detail. Figure 2 shows all steps of the 

method for detecting and removing a moving shadow. 

In our proposed shadow removal method, a number of strategies are performed to achieve our 

goal. To make our method work in real-time, an image frame that can be read from a camera each 

second is delivered to the system. In the following subsections, we discuss all of the steps of the 

method. 

 

Figure 2. Flowchart of the proposed method: (1) Input image sequences, (2) image enhancement 

based on local and global methods, (3) object segmentation and noise elimination process, (4) 

shadow removal based on geometry features, (5) foreground mask reconstruction for object tracking. 

4.1. Combined Local and Global Contrast Enhancement 

As shown in Figure 2, we first utilize an image enhancement technique to improve the image 

quality and increment the color intensity of significant objects as compared to surrounding regions. 

In [18], we implemented a global color contrast improvement tool to upgrade shadowy scenery and 

low-level pixel intensities caused by non-natural illumination sources. In this study, we employed a 

robust and unique feature enhancement strategy, utilizing both local and global contrast 

improvement information for reducing the time consumption and generating better outcomes as 

compared to other image improvement techniques. When applying only one method, it not possible 

Figure 2. Flowchart of the proposed method: (1) Input image sequences, (2) image enhancement based
on local and global methods, (3) object segmentation and noise elimination process, (4) shadow removal
based on geometry features, (5) foreground mask reconstruction for object tracking.

In our proposed shadow removal method, a number of strategies are performed to achieve our
goal. To make our method work in real-time, an image frame that can be read from a camera each
second is delivered to the system. In the following subsections, we discuss all of the steps of the method.

4.1. Combined Local and Global Contrast Enhancement

As shown in Figure 2, we first utilize an image enhancement technique to improve the image
quality and increment the color intensity of significant objects as compared to surrounding regions.
In [18], we implemented a global color contrast improvement tool to upgrade shadowy scenery and
low-level pixel intensities caused by non-natural illumination sources. In this study, we employed a
robust and unique feature enhancement strategy, utilizing both local and global contrast improvement
information for reducing the time consumption and generating better outcomes as compared to other
image improvement techniques. When applying only one method, it not possible to enhance an input
image using its local brightness features, as gray levels having a very high frequency dominate gray
levels having a very low frequency.
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Therefore, in our proposed method, we utilized a combination of global contrast enhancement
and local contrast improvement techniques for such types of data, i.e., those that exist in the less
dynamic region of the image, as in [19]. This is done by subtracting two consequent grayscale values
of the image.

O = I +
M + Ci
σi

[mi −mi+1] (1)

in the above, O is a pixel’s intensity value in the improved image, corresponding to the I pixel′s gray
value in the original image. M is the global contrast gain control, with a range of [0–1.5]. Ci is the local
contrast control, with a range of 0–1. σi is the local standard deviation of the window. mi is the pixel’s
grayscale value present in the original image and mi+1 is the subsequent pixel’s gray scale value in the
original image. This method iterates pixel-by-pixel over the entire image.

4.2. Moving Object Extraction

In this step, we extract the foreground moving object out of the enhanced image, based on an
existing background subtraction scheme [20]. The background differences method gives a foreground
mask in each new frame. However, this approach fails to distinguish between an object and its shadow.

First, the input video is captured as image sequences. An initial frame, which contains no moving
object, is derived as a background reference image. The succeeding frames are compared with this
frame to detect the moving object. This is calculated as shown in Equation (2).

Sn(x, y) =
∣∣∣In(x, y) − Bn(x, y) (2)

where Sn(x, y) is the difference of images, In(x, y) is the current frame images, and Bn(x, y) is the
adaptive background reference images.

Most object extraction approaches calculate the difference between a reference frame and a current
frame in grayscale images [21]. A major problem with this is that pixels are incorrectly classified, and
essential data are lost. Consequently, the expected result is not obtained, effectively leading to a loss of
information of the moving object. Therefore, we compute the frame differences in the RGB color space
and achieve, to a good extent, the sought-after performance in maintaining the original image details.
Eventually, the subtracted color image is converted to a grayscale image and a threshold operator is
employed to extract the moving object regions from the image sequences, as described in the next step.

After completing the frame difference process, the next step applies a low-value thresholding
operation. If the thresholds are lowered, regions of the object that have a similar chromaticity to that of
the background will be misclassified as shadows, resulting in a high detection rate.

In the proposed method, the thresholding value is 30.

Dn(x, y) =
{

255, (Sn(x, y))2 > Th
0, otherwise

(3)

where Dn(x, y) is the new binary mask that is applied to segment out objects of interest and contains
a value of “255” for each pixel marked as foreground. Sn(x, y) is the difference of images, obtained
in the previous section. Additionally, we calculate the square of Sn. Th is a “predefined” threshold.
We obtained the threshold value based on several experiments. After checking 20 to 60 values,
we obtained the expected results for our method when employing the 30 “threshold” value. However,
in [22], the authors utilized the 40 “threshold” value to calculate the overlap regions of the current
frame image and its background frame information.

Image registration, fast moving objects, and large illumination changes may impact the precise
segmentation of moving object pixels. Prior to calculating the absolute difference of overlap regions,
the average of color differences is computed at the optimal seam, and these values are distributed to the
overlap regions to minimize the effect of illumination light source changes. Unwanted edges and noises
may come into view on the difference of images when the registration mistake is more than a pixel.
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4.3. Median Noise Removing

Sometimes, a background subtraction technique fails to yield palatable outcomes for indoor video
segmentation. Thus, we adapted background subtraction by enhancing the strategy used, by utilizing
median filtering to improve the extracted foreground mask, as in [23]. A median filter is a simple and
powerful non-linear digital filter. It is used for reducing the amount of intensity variation between two
pixels. Accordingly, we obtain the binary image (kernel) of every conceivably moving object in the
overlap region, and the kernel data can be used with a noise removal filter.

Specifically, the median filter replaces a pixel by the median, rather than the normal, for all pixels
in a neighborhood w, using Equation (4):

y[m, n] = median
{
x[i, j], (i, j) ∈ w

}
(4)

where w represents a neighborhood characterized by the client that is centered on a location [m, n] in
the image.

Moreover, regarding the noise-reducing execution of the median filter, because the median filter
is a nonlinear impulse filter, its numerical investigation is moderately complex for an image with
irregular noise. For a picture with zero mean noise under an ordinary distribution, the noise difference
of the filtering is approximately near the value from the below formula:

σ2
med =

1

4n f 2(
−
n)
≈

σ2
i

n + π
2 − 1

·
π
2

(5)

where σ2
i is the input noise power (the variance), n is the size of the median filtering mask, and n f is

the function of the noise density.

4.4. Shadow Detection and Removal

The next step of our algorithm is the detection and removal of shadow regions from the foreground
mask based on geometry feature information. The fundamental benefit of geometry features is that they
deal specifically with the current input image. For example, they do not depend on a specific estimation
of a background reference image. In our previous academic work, we applied a gradient-based texture
correlation method in this step to remove shadow pixels and obtain improved results as compared to
other state-of-the-art methods [23,24].

In general, in geometry-based applications, special attention is paid to the orientation, size,
illumination source, and shape of shadows. For these reasons, a geometry-based method is used to
distinguish shadow pixels from moving foreground objects [25]. The main hypothesis here is based on
the fact that geometry properties impose scene limitations, for example, on particular target types,
commonly walkers or animals (e.g., in an inside environment). For example, geometry properties
might require objects and shadows to have an extraordinary orientation and one might expect a unique
light source or background surface similarity.

Initially, we investigate the vertical peaks on each blob to recognize possible heads and subsequently
utilize these data to split the blobs into set of individual-shadow sets. Given an individual-shadow
area, R, its focal point of gravity, (x, y), and orientation, θ, these are found as follows:

(x, y) =

 1
|R|

∑
(x,y)∈R

x,
1
|R|

∑
(x,y)∈R

y

 (6)

θ =
1
2

arctan
(

2µ1,1

µ2,0 − µ0,2

)
(7)
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where |R| is the area of the region in pixels and µp,q are the corresponding central moments. The point
below the center of gravity with the maximum vertical change is considered to be the pixel where the
shadow begins, and a segment oriented according to θ is used to roughly split a candidate shadow
region R2. Then, the following Gaussian model is built from the pixels in R2:

G(s, t, g) = exp

−
wss2

σ2
s

+
wtt2

σ2
t

+
wg

(
g− µg

)2

σ2
g


 (8)

where s and t are the curved coordinates of each pixel, g is its gray level (g = I(s, t)), and w and σ2 are
the weight and difference of every segment in the Gaussian model, respectively. This model outlines
the brightness of the shadow regions and contains the coordinates where the shadow is estimated to be.
When the model is assembled, every pixel in the original region R is classified as an object or shadow,
as indicated by whether it concurs with the Gaussian model or not. We additionally enhanced the
shadow removal task using a combination of local and global contrast image enhancement and median
noise filtering applied to the foreground binary mask, where noise can be removed as described in the
above chapters.

4.5. Morphological Restoration

The final step of our suggested method is the process of filling small gaps or holes that arise
from the distorted foreground mask (image) caused by shadow removal. It is generally accepted that
shadow removal is a destructive process. This happens because of the similarity of the pixel intensities
in the foreground object and corresponding background. Therefore, it has some negative effects, such
as removing key parts of an object’s shape after considering them as shadows. As a result, the original
shapes of moving objects are distorted. To handle this issue, we employed a morphological operator to
the foreground binary mask for restoration after the distorting shadow removal process.

Using appropriate thresholds is necessary for the foregoing geometry-based removal process to
assure that all shadow pixels are removed [26]. As a consequence, only the regions not affected by
noise and those clearly free of shadows are subject to the shape reconstruction process performed
using Equation (9), which is represented as follows:

R = Ms ∩ (M̃⊕ SE) (9)

where Ms is the mask image, M̃ is the restored image, and SE is a structure element, whose size usually
depends on the size of the objects of interest, although a 3 × 3 square element proved to work well in
all of our tests. Furthermore, we use a manual image superimposing tool to superimpose the extracted
object on the foreground image for the performance testing of our proposal.

5. Experiment Results and Analysis

In this section, we show our experimental results to assess the performance of our method in terms
of its quality and speed. In addition, we provide comparisons between our strategy and the current
well-known approaches. To eliminate wasting time in the image segmentation and shadow removal
process, we have used techniques that are the quickest and are appropriate for low-powered equipment,
such as local-global contrast enhancement, foreground segmentation with background subtraction, and
a morphological restoration of the final shadow removed mask data. We implemented the proposed
method in Visual Studio 2015 C++ and performed all experiments on a PC with a 3.60 GHz CPU and
4 GB of RAM. To evaluate the performance of the shadow removal method, the method has been
tested in the widely used shadow detection CAVIAR and ATON datasets (hallway, lab, room and
corridor) [27,28]. Moreover, we employ indoor video sequences at a size of 320 × 240, obtained from
Gachon University and the Tashkent University of Information Technologies (TUIT). To check the
robustness and effectiveness of the shadow remover, we compare our method with popular commercial
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shadow detecting [23] software and state-of-the-art methods, such as the physical-based method
(PBM) [29], gradient-based method (GBM) [24], and color-based method (CBM) [30]. Figures 3–6 show
the results of visual comparison.
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Figure 3 shows the overall process of our proposed method in images (the video streams were
taken at Gachon University in Korea). In these steps, we utilized a number of algorithms to apply to
real practice. First, we apply a local-global contrast enhancement algorithm to the input background
reference image and the current image in which the moving object exists. Then, we segment the
foreground moving object out of the enhanced image by calculating pixel differences. The foreground
subtraction algorithm provides us with a moving object mask, but it contains both the object and
shadow pixels. A foreground subtraction approach cannot distinguish between a moving object and its
shadow region. Such an error is caused by the fact that a moving object and its moving shadow share
similar motional characteristics as demonstrated in Figure 3c. According to the above section, shadow
removal is destructive procedure, in that it generates unwanted gaps and holes in the foreground
mask. By utilizing the morphological operator, the consequences of the shadow removal process are
eliminated (see Figure 3c). In the final step, we detect the original shape and edges of the moving object.
The suggested method can be employed for smart city object tracking and security system applications.

5.1. Qualitative Results

To prove the accuracy of our framework in eliminating ghost artifacts (shadows existing on
both the wall and floor) and multiple shadows, more experiments are necessary. Figure 4 illustrates
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comparisons between the proposed method and other state-of-the-art shadow removal algorithms,
using similar foreground masks from the background subtraction section. The shadow is caused by
the indoor light source and the results show that most of the existing shadow removal methods fail to
generate a foreground mask without shadow pixels or significantly distort the object’s shape. Our
experimental results show that, in many cases, such as indoor scenes, a physical-based method faces
problems when objects have spread-out shadow regions. In contrast, the scheme easily determines
and removes monodirectional shadow pixels in moving objects. Moreover, ghost effects also make
removal a difficult task. In addition, in the area where shadow pixels removed, salt and pepper noise
occurs in PBMs. We addressed that problem by utilizing by the morphological approach in the last
step of our method.

Texture-based methods are potentially powerful methods for detecting shadows, as textures
are highly distinctive, do not depend on colors, and are robust to illumination changes [30,31].
A color-based approach fails when objects are darker and have colors similar to that of the background
surface. A texture-based shadow detector better emphasizes the moving object, because this method
also uses global contrast enhancement in the preprocessing step, as described in [23]. Furthermore,
it effectively solves the problem occurring when multiple objects have multidirectional shadow
regions. However, it has not yet been tested regarding ghost artifacts and background similarity issues.
The results of our method appear to be attractive and accurate, as compared to the results of others.
The moving shadow problems are addressed, and a seamless result is achieved using our method.

In the above experiments, we have mainly tested the performance of shadow remover frameworks
on a single object. In Figure 5, we implement all of the selected methods to examine how they work on
multiple objects. It is known that removing shadow pixels from multiple objects is a more difficult
task than removing them from one object. For example, ghost effects cause a doubling of walking
people on the foreground mask and it can appear unclear, or several objects can appear as a single
moving blob on the foreground mask (kernel). From the results, we could see that our method works
effectively, even when there are many objects in an image sequence, as shown in Figure 5. Our improved
shadow removal method delineates foreground objects more accurately in indoor (e.g., corridor) video
surveillance. In addition, in many cases, both our method and a gradient-based method (GBM) perform
well on handling multiple dynamic object problems. In contrast, physical-based method (PBM) and
color-based method (CBM) strategies fail most of the time and misclassify the moving shadow region
as an object region, or as a part of them.

5.2. Quantitative Results

The quantitative results are represented in this section. Quantitative analysis shows the average
precision and recall rates, along with F-measures. Precision and recall rates can be obtained by using
Equations (10) and (11). The results show that the proposed shadow remover accomplished the highest
precision rate, at 0.92. The CBM [30], GBM [24], and texture-based method (TBM) [31] yielded precision
rates of 0.85, 0.87 and 0.89, respectively. In addition, we computed the F-measure value which balanced
measurements between the means of the precision and recall rates. The results of the quantitative
comparison of the three algorithms are shown in Figure 6 and Table 1.

Table 1. Quantitative analysis of four shadow remover methods performed using the CAVIAR
10k dataset.

Methods Color-Based
Method (CBM)

Gradient-Based
Method (GBM)

Texture-Based
Method (TBM) Ours

Precision 0.85 0.87 0.89 0.92
Recall 0.73 0.76 0.78 0.79

F-Measure 0.82 0.85 0.88 0.90



Appl. Sci. 2019, 9, 5165 11 of 14

Precision and recall rates can be obtained as follows:

precision =
TDO∩GT

ADO
(10)

recall =
TDO∩GT

GT
(11)

where TDO denotes truly detected shadow regions, ADO denotes all detected objects, and GT denotes a
manually-labelled ground trust value. In addition, we computed the F-measure value which balanced
measurements between the mean of precision and recall rates. A higher F-measure means a higher
performance, and it is defined as follows:

Fβ =
(1 + β2)precision× recall
β2 × precision + recall

(12)

In that regard, β2 = 0.3 was suggested by many shadow detection approaches, to raise the
importance of the precision value. The point for weighting precision more than recall is that recall
can be easily obtained by setting the entire region to the foreground. We used a fixed threshold that
changed from 0 to 255. On each threshold, pair of precision and recall scores were computed and were
lastly combined to form a precision-recall (PR) curve. The resulting PR curve can be scored by its
maximal F-measure, which is a good summary of the shadow region detection performance when
using a fixed threshold.

In addition to the PR and F-measure, we can also describe the false positive rate (FPR) and true
positive rate (TPR) when binarizing the foreground mask with a series of fixed thresholds. The receiver
operating characteristics (ROC) curve is a plot of TPR against FPR and is obtained by sliding the
threshold. TPR and FPR can be defined as follows:

TPR =
|BM∩GT|
|GT|

(13)

FPR =

∣∣∣BM∩GT
∣∣∣∣∣∣GT

∣∣∣ (14)

where BM and GT denote the opposites of the binary mask, BM, and ground-truth, GT, respectively.
Figure 7 shows the PR and ROC curves of the proposed method, along with those of alternative shadow
removal algorithms.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 15 
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Moreover, we contrasted our strategy and other shadow expulsion frameworks (physical-based and
gradient-based), to determine the speed of the execution of the method. In most cases, our methodology
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and the GB method indicate relatively similar times for handling of results. In some cases, our shadow
detector takes somewhat more time with different calculations, as shown in Table 2. The reason for this
is that our method requires additional stages to improve the input current frame and compute the
geometry property points for every pixel.

Table 2. Average frame processing time (in seconds) per sequence for various shadow removal methods.

Processing Time (In Seconds)

Gradient Based Method Physical Based Method Our Result

Gachon University 0.30 0.36 0.32
TUIT University 0.25 0.29 0.26

Corridor (dataset) 0.20 0.27 0.22
Average 0.25 0.30 0.27

In that regard, we successfully solved moving object and background surface similarity problems
in inside environments. However, when our method was implemented in an outdoor environment,
it sometimes faced difficulties in detecting and removing shadowed regions. For this reason,
original object shapes might be distorted, or foreground regions might be removed as shadow
pixels, as demonstrated in Figure 8b. In contrast, if the moving object and background surface have
pixel intensities with large differences, the suggested method could remove shadow pixels without
distortion, as demonstrated in Figure 8a. In our future research, we are going to address that problem
by applying neural network and deep learning approaches. Clearly, the proposed method still works
successfully when tracking moving objects in all types of indoor environments (e.g., conference halls,
offices, or indoor sports game locations).Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 15 
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6. Conclusions and Future Work

This paper proposed a new method for detecting and extracting shadow pixels from moving
objects. We used a robust image enhancement technique to increase the contrast of image sequences
after the capturing process and a background subtraction strategy to calculate the difference between
two input images. Then, shadow regions were removed by applying a unique and fast geometry-based
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method. Following that, a median filtering approach was utilized to eliminate salt and pepper noise
in the foreground mask. Finally, gaps and holes were filled using morphological reconstruction to
generate a clear moving target mask. From the experiments, it can be seen that our method addresses
the ghosting artifacts caused by multiple objects and the background surface similarity caused by the
current image and reference image having the same intensity values.

Potential future work includes improving the quality of our method by employing a convolution
neural network (CNN) to handle strong shadows in outdoor environments. We are going to implement
our strategy for smart and safety cities, to easily realize the natural shape of moving objects and
track them.
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