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Featured Application: The Shearletes-based rain removal method proposed in this paper can be
applied to the destriping of remote sensing images and removing other directional noises.

Abstract: This work focuses on the problem of rain removal from a single image. The directional
multilevel system, Shearlets, is used to describe the intrinsic directional and structure sparse priors
of rain streaks and the background layer. In this paper, a Shearlets-based convex rain removal
model is proposed, which involves three sparse regularizers: including the sparse regularizer of
rain streaks and two sparse regularizers of the Shearlets transform of background layer in the rain
drops’ direction and the Shearlets transform of rain streaks in the perpendicular direction. The split
Bregman algorithm is utilized to solve the proposed convex optimization model, which ensures the
global optimal solution. Comparison tests with three state-of-the-art methods are implemented on
synthetic and real rainy images, which suggests that the proposed method is efficient both in rain
removal and details preservation of the background layer.

Keywords: rain removal; shearlets; split Bregman algorithm

1. Introduction

Rain removal from a single image is an important issue in processing outdoor vision problems.
In fact, the outdoor images are often degraded by the rain streak and other bad weather conditions, and
these bad weather conditions can lead to the change of local or global intensities and color contrast in
real images, thus causing unclear visible scenes. Such degradation severely affects the performance of
algorithms in computer vision systems. Therefore, the removal of rain streaks is essential.

In recent years, the rain removal problem has caused more and more attention. There are many
approaches for rain removal using different modelings. They can be classified into two kinds, including
the video-based methods and the single image-based methods. In fact, there are many literatures for
the video-based methods [1–10], the main idea is taking advantage of the rich detail of multiple relative
images and the similarity of the image sequences to detect rain streaks and recover the background
layer. For instance, Garg and Nayar [1] proposed a correlation model to capture the dynamics of rain
in video, then removed rain streaks by a physics-based motion blur model. That is, once rain streaks
are detected, the corresponding pixel value of rain is obtained by averaging the rain-free temporal
neighbors. In [4], Garg and Nayar found that the video rain visibility relies heavily on the exposure
time and the depth of field, based on this fact, they introduced a self-adaption parameter model to
remove rain streaks efficiently. In addition, Zhang in [2] gives a new rain removal model, which is
based on two priors, one is rain streaks that are almost the same in RGB channels and the other is rain
streaks that do not appear everywhere in video. Recently, Jiang et al. proposed a novel tensor-based
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video rain streaks removal approach via utilizing discriminatively intrinsic priors in [10], by fully
considering the discriminatively intrinsic characteristics of rain streaks and clean videos, which needs
neither rain detection nor time-consuming dictionary learning stage. This method is based on the
following priors, including that rain streaks are sparse and smooth in the rain-drop direction and
the clean video is smooth along the rain-perpendicular direction, which are both global and local
correlation in time direction.

For the single images-based methods, it is more difficult than video-based method due to the
limited single image information, thus there are fewer works for single image rain removal. The most
successful methods are given in literatures [11–21]. For instance, in [11], based on the assumption that
a rainy image can be represented by the rain layer and the background layer, the author proposed a
dictionary learning method-based nonlinear screen blend model for rain removal from single images.
The key for this method is that by sparse coding of two layers using the sparse dictionary, by learning
sparse dictionary, the accurate layer decompositions are obtained. Moreover, in [14], Kang et al.
decomposed the rainy image into low frequency and high frequency parts, and applied an MCA-based
dictionary learning model to split the rain streaks layer in the high frequency domain. Following this
idea, the author in [16] introduced the structure information into consideration, but the estimated
background layer tends to be blurry. Then Li et al. gives another additional model in [13], which
is a linear super-imposition of the desired background layer and the rain streak layer, which is an
energy minimization model, and the Gaussian mixture model is utilized to learn the corresponding
patch-based priors for two layers. The advantage of this model is that it can detect different orientations
and scales of the rain streak, which leads to state-of-the-art rain removal results. In fact, these methods
described above do remove the rain streaks from rainy images, but the recovery of background seems
to be over-smoothed, that is, some details of the background layer are lost. The main reason for
details missing in general methods is that the directional property of two layers is out of consideration,
which is critical in edges detection. Based on this fact, the author in [21] proposed a directional global
sparse model for single image rain removal, in this work, undirectional total removal (UTV) [22] is
introduced to describe the basic directional property of single rainy images. The proposed optimization
model is based on two directional sparse priors of rain streaks and background layer respectively and a
generally sparse prior on rain streaks, that is, rain streaks are sparse in the vertical direction, while the
rain-free image (background layer) is sparse in the horizontal direction; furthermore, the rain streak is
approximately considered as sparse when the rain is not heavy. The directional characters are captured
by rotating rainy images appropriately, which ensures that rain streaks are mainly concentrated in the
vertical direction.

In addition, the deep learning-based method gives another way for single image and video rain
removal [23–26], which is totally different from the traditional image processing. The key for this approach
is the training network. By learning from lots of rainy images, the learning model can split rain streaks
from rainy images after thousands of training images, which is time-consuming, but once the training
model gets good generalization, it can deal with lots of rainy images simultaneously, with an accuracy
of at least 80 percent. With the development of deep learning, the accuracy for splitting rain streaks can
be improved further, and this approach will be widely used for other image processing and computer
vision tasks.

In this work, we consider removing rain streaks from single rainy images. This is different from
the method in [21], which removes directional rain streaks by rotating the rainy image to the direction
that rain streaks are approximately distributed in the vertical direction, then UTV is utilized to capture
the ‘vertical’ characteristics of rain streaks. This is a two-step method when the rain drops are in a
non-vertical direction. In fact, directional multilevel transform, e.g., Shearlets transform, can be used
to substitute the two-step transform above due to its multi-direction property, also the multilevel
system is suitable for detecting rain streaks as the shape of rain streaks is not necessarily rectangular.
In addition, we found that the Shearlets decomposition coefficients of rainy images in specific scale
and directional frequency bands are sparse. Some statistical analysis (see Figure 1) suggests that the
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Shearlets coefficients of rainy images in the rain drops’ direction has sparse structure, also the Shearlets
coefficients of rain-free (background) layer in the rain streaks direction is sparse. Moreover, another
sparse prior is the rain streaks itself, which can be approximately considered as sparse when the rain
is not heavy (partly sparse when the rain is heavy). Combining these three sparse priors above, we
propose a convex optimization model and the split Bregman algorithm [27] is utilized to solve the
proposed model. Numerical experiments on synthetic and real rainy images demonstrate that our
Shearlets-based method outperforms the recently widely used rain removal methods in [11,13,21].
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Figure 1. The sparse structure for rain streaks and the Shearlets coefficients of rain streaks and the
background layer in and across the rain directions.

The outline of this paper is given as follows: Section 2 gives a brief introduction of the motivation.
Section 3 reviews the Shearltes transform. In Section 4, a Shearlets-based rain streaks removal model,
and the corresponding algorithm, are proposed. Section 5 compares our model with three state-of-art
methods, some discussions of rain removal results are given in Section 6. In the end, the conclusion is
given in Section 7.

2. Motivations of the Proposed Method

In general, the rain streak removal model can be represented as follows:

o = r + b; (1)

where o ∈ RM×N is the rainy image, r ∈ RM×N represents rain streaks layer, and b ∈ RM×N is the
background layer (rain-free layer).



Appl. Sci. 2019, 9, 5137 4 of 20

Motivated by the work in [14], which decomposed rainy images into high- and low-frequency, then
the high-frequency parts can be represented by the addition of rain streaks layer and rain-free layer
by performing dictionary learning and sparse coding. This method does remove rain streaks from the
rainy image, but the rain-free layer estimated tends to be blurry, which implies that the high-frequency
decomposition leads to the loss of details in high frequency not only from rain streaks, but also from the
details of the background layer. This makes us consider splitting rain streaks in specific frequency bands,
so that more details can be preserved. Therefore, the directional multilevel transform, such as Shearlets
transform, is a good choice as it can be used to separate the frequency bands of rain streaks only.

In fact, the Shearlets transform is a powerful tool in detecting directional singularities in frequency
band [28–30]. Different from UTV, which is used to enforce the sparse prior of the gradient along
vertical and horizontal directions, the Shearlets can be utilized to describe the variation along different
directions in various scales (see Figure 2). Since the rain streaks can be viewed as a particular directional
singularity in different scales, which makes it possible to remove from the rainy image without
additional details missing. However, loss of the details from the rain-free layer in corresponding
frequency bands cannot be avoided. In order to minimize this kind of details loss, the multi-direction
Shearlets is used to preserve most original image details.

Figure 2. The visual results of Shearlets decomposition coefficients in different scales (high frequency)
and different directions are displayed (the testing image is “Sydney Opera House”, can be downloaded
in http://homepages.lboro.ac.uk/cgs/datasets/ucid/ucid.html).

Compared with the recent state-of-the-art directional UTV rotation-based rain removal model
in [21], the proposed model has the following advantages:

- The directional multilevel transform, Shearlets transform, is utilized to describe the sparse
structure of rain streaks and the background layer. Different from the rotation UTV method,

http://homepages.lboro.ac.uk/cgs/datasets/ucid/ucid.html
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the Shearlets-based method can obtain the gradient variation in different directions and different
scales efficiently, thus the recovery keeps more directional singularities details.

- For different directions of rain streaks, the Shearlets transform can capture the rain streak layer
details due to its multi-direction property. Moreover, the fast algorithm for solving the proposed
model can be obtained as the discrete Shearlets transform and inverse are available.

- The split Bregman algorithm is utilized to solve the proposed convex optimization model,
which guarantees that the solver is global optimal. The computation of algorithm includes three
soft-thresholding processes and two Shearlets transforms, and the total computing complexity is
O(N log N) + O(N), where N is the total number of pixels.

3. Shearlets

Shearlets system is first given in [31] by Kutyniok et al, which not only inherits the multiscale
structure of wavelets, but also possesses the directional windows in the frequency domain by
introducing the shear operator, thus making it possible for the Shearlets transform to capture the
directional singularities in images and high dimensional signals. This section gives a retrospection of
the basic definition and construction of Shearlets, for more details refer to [28,32].

For the basic wavelet function φ ∈ L2(R2), it is supposed to satisfy

Cφ =
∫

R2

|φ̂(ω)|2
|ω| dω < ∞, (2)

where φ̂ represents the Fourier transform of φ, and it has the following separated form:

φ̂(ω1, ω2) = φ̂1(ω1)φ̂2(
ω2

ω1
), (3)

with φ1 ∈ L2(R), φ2 ∈ L2(R2). Then the Shearlets multilevel system S is generated by

S(φ) = {φj,s,t = TtD
j
2Ssφ : j ∈ Z, s ∈ R, t ∈ R2}, (4)

where Tt is the translation operator, Ttφ = φ(· − t). Ds is the scaling operator and Ss is the shear
operator, their definitions are given as

Dj
2 =

(
2j 0
0 2j/2

)
, Ss =

(
1 s
0 1

)
. (5)

where j ∈ Z is the scaling parameter, which decides the decomposition layer. s ∈ R is the shearing
parameter, which decides the multi-direction property. t is the translation parameter, which decides
the number of sub-bands in each scale. For the signal f ∈ L2(R2), its continuous Shearlets transform

f → S(φ) f (j, s, t) =< f , φj,s,t >, j ∈ Z, s ∈ R, t ∈ R2, (6)

where S maps f into the Shearlets coefficients S(φ) f (j, s, t) with different scale j, shearing s, and
translation t. Then the discrete Shearlets system can be given as

Definition 1 ([28]). Let ψ, φ ∈ L2(R2), c = (c1, c2) ∈ R2, the definition of the discrete Shearlets system
S(ψ, φ; c) is

S(ψ, φ; c) = Ψ(ψ; c) ∪Φ(φ; c) ∪ Φ̃(φ̃; c), (7)
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where
Ψ(ψ; c) = {ψj,m = TtD

j
2ψ = 23/4ψ(Dj

2 · −cm) : m ∈ Z2},

Φ(φ; c) = {φj,k,m = 23/4φ(SkDj
2 · −cm) : j ≥ 0, |k| ≤ 2j/2, m ∈ Z2},

Φ̃(φ̃; c) = {φ̃j,k,m = 23/4φ̃(SkDj
2 · −cm) : j ≥ 0, |k| ≤ 2j/2, m ∈ Z2}.

(8)

with ψ̂ = φ̂1(ω1)φ̂2(ω2), and φ̃(ξ1, ξ2) = φ(ξ2, ξ1).

The multilevel system Ψ(ψ; c) corresponds to the low frequency area in the frequency domain,
while the system Φ(φ; c) and Φ̃(φ̃; c) corresponds to the high frequency region in vertical and horizontal
direction respectively. The sub-band of S(ψ, φ; c) in the frequency domain is shown in Figure 3.

Figure 3. The sub-band of Shearlets in the frequency domain.

4. The Proposed Method

4.1. The Proposed Optimization Model

This subsection describes the proposed convex model with three sparse prior regularizers and
some non-negative constraints as follows:

1. The sparse constraint of the Shearets coefficients of the background layer in the rain drops’
direction. In fact, the Shearlets decomposition coefficients of the background layer in high
frequency can be approximately considered (in the rain drops’ direction) as sparse (see Figure 1)
due to the intensity distribution for multilevel coefficients. In order to describe this sparse
regularizer, the `1 norm of multilevel coefficients in different scales, along the direction of the
rain-free layer is used, which also reflects the discontinuity of rain streaks, specifically

Reg1(b) = ‖Srb‖1 = ‖Sr(o− r)‖1; (9)

where Srb is the Shearlets transform of the rain-free layer in the rain drops’ direction.
2. The sparse constraint of the Shearlets coefficients of the rain streaks across the rain drops’ direction.

In the real scenes of rainfall, the shape of rain streaks is a stretched ellipse in a specific direction
reflected in pixels, therefore the directional multilevel transform is more sensitive than UTV
in detecting the directional singularities in images. From Figure 2, it shows that the Shearlets
coefficient in scale 2 across the rain drops’ direction of the rain streak has sparse structure.
Similarly,

Reg2(r) = ‖Sbr‖1. (10)
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where Sbr is the Shearlets transform of the rain streak across the rain drops’ direction.
3. The sparse constraint of rain streaks (see Figure 1). In general, the rain streak is sparse when the

rain is not heavy, therefore its sparsity can be described by `0 norm, which represents the number
of nonzero elements. Here, the `1 is utilized to replace the `0 norm due to its non-convexity,
thus we have the following sparse regularizer of rain streaks

Reg3(r) = ‖r‖1. (11)

4. Some non-negative constraints of r and b. For the rain streaks removal problem, the pixel of
the rain streaks layer r and the background layer b are non-negative, therefore the following
constraints hold

Con1(r, b) : r ≥ 0; b ≥ 0. (12)

By analyzing the property of multi-direction Shearlets transform of rain streaks and background
layers, the corresponding sparse regularizers are obtained. With constraints of r and b, the optimization
model for solving single image rain removal problem can be given as follows:

min
s

γ1‖Sr(o− r)‖1 + γ2‖Sbr‖1 + γ3‖r‖1, s.t. r ≥ 0; b ≥ 0; (13)

where γi, i = 1, 2, 3 are positive regularization parameters. The convexity of (13) guarantees its solver
to be global optimal.

4.2. Solving the Proposed Model

To solve the proposed model, the split Bregman algorithm is utilized [27], and the split step is
implemented by introducing new variables:v1

v2

v3

 =

Sr(o− r)
Sbr
r

 (14)

as the `1-norm is not differentiable, thus (13) has the following equivalent form

min γ1‖v1‖1 + γ2‖v2‖1 + γ3‖v3‖1

s.t. v1 = Sr(o− r), v2 = Sbr, v3 = r; r ≥ 0; b ≥ 0;
(15)

for non-negative constrains of r and b, they can be implemented by a projection operator.
The corresponding Bregman iterations can be given as

(vk+1
1 , vk+1

2 , vk+1
3 , rk+1) = arg min

v1,v2,v3,r
γ1‖v1‖1 + γ2‖v2‖1 + γ3‖v3‖1 +

α1

2
‖Sr(o− r)

− v1 − bk
v1
‖2

2 +
α2

2
‖Sbr− v2 − bk

v2
‖2

2 +
α3

2
‖r− v3 − bk

v3
‖2

2;

bk+1
v1

= bk
v1
+ Sr(o− r)− v1;

bk+1
v2

= bk
v2
+ Sbr− v2;

bk+1
v3

= bk
v3
+ r− v3;

(16)
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Then the vi-sub-problem i = 1, 2, 3 can be given as

vk+1
1 = arg min

v1
γ1‖v1‖1 +

α1

2
‖Sr(o− r)− v1 − bk

v1
‖2

2;

vk+1
2 = arg min

v2
γ2‖v2‖1 +

α2

2
‖Sbr− v2 − bk

v2
‖2

2;

vk+1
3 = arg min

v3
γ3‖v3‖1 +

α3

2
‖r− v3 − bk

v3
‖2

2;

(17)

they can be solved accurately by soft-thresholding strategy as follows

vk+1
1 = Sh

(
(Sr(o− rk) + bk

v1
)(r),

γ1

α1

)
;

vk+1
2 = Sh

(
(Sbrk + bk

v2
)(r),

γ2

α2

)
;

vk+1
3 = Sh

(
(rk + bk

v3
)(r),

γ3

α3

)
;

(18)

for r = 1, ..., N, N represents the total number of pixels, where

Sh(x, y) = sign(x)max(|x| − y, 0); (19)

with

sign(x) =


1, x > 0;

0, x = 0;

−1, x < 0.

(20)

The r-sub-problem can be given by minimizing the following equation

rk+1 = arg min
r

α1

2
‖Sr(o− r)− vk

1 − bk
v1
‖2

2 +
α2

2
‖Sbr− vk

2 − bk
v2
‖2

2 +
α3

2
‖r− vk

3 − bk
v3
‖2

2, (21)

since the `2 norm is differentiable, we have the following closed-form solver for r-sub-problem

(α1S∗r Sr + α2S∗b Sb + α3 I)r = α2S∗b (v
k
2 + bk

v2
) + α3(vk

3 + bk
v3
)− α1S∗r (v

k
1 − bk

v1
− Sro), (22)

where I is the identity matrix. From [28], the Shearlets transform is constructed to be a Parseval frame,
which implies that S∗r Sr = I, then the r-sub-problem above can be solved by Fast Fourier Transform
(FFT, F ) efficiently.

rk+1 = F−1
( α1F (S∗r Sr) + α2F (S∗b Sb) + α3F (I)

α2F (S∗b (v
k
2 + bk

v2
)) + α3F (vk

3 + bk
v3
)− α1F (S∗r (vk

1 − bk
v1
− Sro))

)
, (23)

where F−1 represents the Fast Inverse Fourier Transform.
In the end, the constrains for r ≥ 0 and b ≥ 0 can be projected by the following formula:

rk+1 = min(o, max(rk+1, 0));

bk+1 = min(o, max(o− rk+1, 0));
(24)

Having explained the main idea of our method, the final resulting algorithm is displayed in
Algorithm 1.
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Algorithm 1: The split Bregman algorithm for proposed model (13)

Input: o0, Miter, tol, γ1, γ2, γ3, α1, α2, α3

Output: r, b
Initialization: b0

v1
= b0

v2
= b0

v3
= 0, r0 = 0;

while ‖o− rk+1‖2/‖o− rk‖2 > tol or k < Miter do
(1) Solving v1-sub-problem by

vk+1 = Sh
(
(Sr(o− rk) + bk

v1
)(r),

γ1

α1

)
;

(2) Solving v2-sub-problem by

vk+2 = Sh
(
(Sbrk + bk

v2
)(r),

γ2

α2

)
;

(3) Solving v3-sub-problem by

vk+3 = Sh
(
(rk + bk

v3
)(r),

γ3

α3

)
;

(4) Solving r-sub-problem using FFT by

rk+1 = F−1
( α1F (S∗r Sr) + α2F (S∗b Sb) + α3F (I)

α2F (S∗b (v
k
2 + bk

v2
)) + α3F (vk

3 + bk
v3
)− α1F (S∗r (vk

1 − bk
v1
− Sro))

)
;

(5) Output r, b are given by

rk+1 = min(o, max(r,k+1 0));

bk+1 = min(o, max(o− rk+1, 0));

(6) Updating bk
v1

, bk
v2

, bk
v3

by

bk+1
v1

= bk
v1
+ Sr(o− r)− v1;

bk+1
v2

= bk
v2
+ Sbr− v2;

bk+1
v3

= bk
v3
+ r− v3;

(7) Computing the relative error by

tolk+1 = ‖o− rk+1‖2/‖o− rk‖2

end

5. Numerical Experiments

In this section, some comparison tests are performed to validate the effectiveness of the proposed
method. We compare the proposed method with three recent state-of-art rain removal methods,
including a dictionary learning-based algorithm in [11] (15ICCV), a minimization model with the
learned rain layer prior method in [13] (16CVPR), and a directional global sparse model in [21]
(18UTV). All tests are implemented in a laptop, CPU: Inter Core i5, memory: 16 GB, OS: Windows 10,
testing software: Matlab R2016a.

Since humans are more sensitive to changes in luminance, all the RGB testing images are converted
to YUV space. The proposed method is utilized to remove rain streaks only in the luminance channel
(three compared methods are also implemented on the luminance channel). To be more persuasive, we
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use two kinds of data for experiments, the synthetic data, and real data. For the synthetic data, the
relative error (RelErr), peak signal–noise ration (PSNR), and the structural similarity (SSIM) [33] are
used to estimate the performance of different methods.

• The relative error (RelErr) is defined as

RelErr =
‖u− ur‖2

F
‖u‖2

F
, (25)

where u and ur are the original signal and the recovered signal, and ‖ · ‖F represents the Frobenius
norm.

• The peak signal–noise ration (PSNR) is defined as

PSNR = 10 log
MNu2

max
MSE

, (26)

where umax is the maximum value of u, and

MSE =
1

MN

M

∑
i=1

N

∑
j=1
‖u(i, j)− ur(i, j)‖2

F, (27)

where M, N are the size of the signal u.
• The structural similarity (SSIM) is defined as

SSIM =
(2µuµur + c1)(2σuur + c2)

(µ2
u + µ2

ur + c1)(σ2
u + σ2

ur + c2)
, (28)

where µu and µur represent the average of u and ur, σu, and σur represent the standard deviation
of u and ur, σuur is the covariance of u, and ur, c1, c2 > 0.

5.1. Comparison Tests of the Synthetic Data

The testing results and discussions for synthetic data are given in this subsection. First, the
synthetic rainy image is generated as follows: (1) adding the salt and pepper noise with a random
density den (which decides the density of rain streaks) to a zero matrix; (2) convoluting (1) with a
motion kernel (including the directional parameter θ and motion parameter len); (3) adding (2) to the
rain-free images to obtain the rainy image [14]. The parameters of synthetic rainy image for testing
are given in Table 1. Then these RGB rainy images are converted to YUV channels, and only the rain
streaks in the Y channel are removed using the 15ICCV method, the 16CVPR method, the 18UTV
method, and the proposed method. In this test, we choose 5 images as the testing images, which can be
downloaded from the dataset “UCID” (http://homepages.lboro.ac.uk/cgs/datasets/ucid/ucid.html)
and (https://pixabay.com/).

Table 1. The parameters list.

Parameters den len θ◦

1 [0.02, 0.04, 0.06, 0.08] 10 30
2 0.04 [10, 20, 30, 40] 15
3 0.04 10 [−15, −5, 0, 5, 15]

The testing image are given in Figure 4. The visual results for 4 methods are displayed in Figure 5.
The first column displays the de-rain results by the 15ICCV method, the second column shows the
de-rain results by the 16CVPR method, the third column gives the de-rain results by the 18UTV
method, and the last column shows the de-rain results by the proposed method.

http://homepages.lboro.ac.uk/cgs/datasets/ucid/ucid.html
https://pixabay.com/
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Ground truth

Ground truth
Rainy image

Rainy image

Figure 4. The ground truth and rainy image of synthetic testing images.

15ICCV 16CVPR 18UTV Ours

Figure 5. The visual results of four methods for synthetic images.

From Figure 5 and the corresponding zooming in images in Figure 6, we find that the method
15ICCV fails to remove the rain streak completely, which leads to the lower SSIM value, and while
methods 16CVPR and 18UTV perform better than 15ICCV, they cannot outperform our method.
Comparing with three methods, the proposed method removes rain streaks and preserves the details
of the background layer more efficiently. Then we have the conclusion as follows:

• the method 15ICCV cannot remove rain streaks completely, especially with heavy rain;
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• the method 16CVPR does remove rain streaks completely, but the resulted background seems to
be over-smooth;

• the method 18UTV can remove rain streaks completely, but rain streaks are detected by TV,
which leads to a non-smooth background, especially in the heavy rain case;

• the proposed method using multilevel system performs better both in rain streaks removal and
details preservation in heavy and light rain cases.

The quantitative results for different methods with different rain streaks’ direction are presented
in Table 2, including PSNR, SSIM, and RelErr values for both the background layer and the rain streak
layer in heavy and light rain cases.

In addition, we randomly choose 20 images from UCID dataset to further test the rain removal
performance in different directional rainy images. The quantitative results of four different methods in
terms of RelErr, PSNR, and SSIM value are shown in Figure 7.

15ICCV 16CVPR 18UTV Ours

Figure 6. The corresponding local enlarged view of four methods for synthetic images.
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Table 2. Results comparison on synthetic data.

Rainy Type Heavy Light

Background Rainy Streaks Times(s) Background Rainy Streaks Times(s)

Image Methods PSNR SSIM RelErr PSNR SSIM RelErr PSNR SSIM RelErr PSNR SSIM RelErr

Pic1 15ICCV 28.79 0.8673 11.832 27.51 0.4831 15.642 71.54 29.84 0.9002 10.273 27.16 0.495 11.416 78.32
16CVPR 30.49 0.8892 7.682 30.67 0.6417 7.394 948.27 30.76 0.9123 10.791 30.52 0.533 10.376 941.96
18UTV 30.83 0.9027 7.591 30.91 0.6793 7.427 0.87 32.87 0.9345 5.964 32.79 0.6497 5.873 0.68
Ours 31.62 0.9115 8.244 30.76 0.6954 7.082 2.39 33.28 0.9452 5.417 33.19 0.6719 5.314 2.26

Pic2 15ICCV 27.12 0.8117 12.027 27.01 0.4193 12.314 73.94 28.96 0.8936 10.217 28.74 0.4019 10.127 82.37
16CVPR 28.54 0.8629 9.264 28.31 0.5763 10.028 926.85 29.94 0.9187 9.026 29.78 0.4693 10.201 931.57
18UTV 30.17 0.9056 8.3146 30.09 0.6493 8.217 0.94 32.69 0.9221 7.424 31.79 0.6019 7.619 0.79
Ours 31.68 0.9195 8.027 30.59 0.6952 8.335 4.08 32.94 0.9207 7.506 32.84 0.6394 6.701 3.15

Pic3 15ICCV 27.64 0.8327 10.837 27.28 0.4237 10.316 98.69 30.96 0.9017 7.462 29.85 0.5173 7.438 96.54
16CVPR 28.94 0.8725 8.497 29.03 0.4887 9.287 837.29 32.15 0.9102 7.4179 32.36 0.5782 7.419 864.61
18UTV 30.42 0.9013 7.694 30.25 0.5473 7.415 1.29 32.83 0.9274 7.018 32.59 0.5995 6.131 1.25
Ours 31.52 0.9113 8.917 30.83 0.591 7.4953 4.76 33.65 0.9431 6.294 33.46 0.6554 5.831 4.93

Pic4 15ICCV 26.84 0.7916 13.94 26.95 0.4017 14.92 80.64 29.07 0.8114 9.148 28.96 0.4771 10.167 82.17
16CVPR 28.41 0.8792 11.64 28.44 0.4657 10.13 1147.09 32.18 0.9104 8.365 32.06 0.4993 9.725 1129.68
18UTV 32.17 0.9208 8.61 32.07 0.6129 8.486 1.17 32.36 0.9502 7.628 31.59 0.6107 8.847 1.89
Ours 31.88 0.9159 8.05 32.16 0.6283 7.971 3.87 32.87 0.9221 7.391 32.72 0.6194 7.872 3.84

Pic5 15ICCV 29.76 0.8339 10.017 30.01 0.4996 9.172 44.93 32.69 0.9017 7.286 32.54 0.5162 7.836 31.26
16CVPR 31.94 0.8992 8.274 31.79 0.5194 7.139 428.16 33.94 0.9317 6.264 33.72 0.5997 6.938 441.27
18UTV 33.26 0.9331 6.192 33.86 0.5917 6.985 0.61 34.92 0.9427 5.947 34.94 0.627 5.846 0.57
Ours 31.86 0.9141 7.214 30.94 0.5711 8.718 2.95 32.09 0.9197 7.172 30.52 0.6844 9.873 3.17
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Figure 7. Relative error (RelErr), peak signal to noise ratio (PSNR), structural similarity index (SSIM) performances on 20 images.
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5.2. Results and Discussion for the Real Data

This subsection tests the performance of different methods under real rainy images. In Figure 8, the
real rainy images and their local enlarged view are displayed. The testing images can be downloaded
from the website.

Rainy image

Rainy image

Figure 8. The real rainy images.

The visual results recovered by four methods are displayed in Figure 9, the first column shows
de-rain results by the 15ICCV method, the second column displays the de-rain results by the 16CVPR
method, the third column gives the de-rain results by the 18UTV method, and the last row shows the
de-rain results by the proposed method.

15ICCV 16CVPR 18UTV Ours

Figure 9. The visual results of four methods for real rainy images.

From Figure 9 and the corresponding local enlarged view in Figure 10, we can get similar results
as the synthetic data. The method 15ICCV still has rain streaks remaining in the background layer,
methods 16CVPR and 18UTV do significantly remove the rain streaks, but fail to detect directional
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singularities, while the proposed method performs well both in rain removal and detail preservation
of the rain-free layer. Two test results suggest that the proposed method can remove the directional
rain streaks efficiently.

15ICCV 16CVPR 18UTV Ours

Figure 10. The corresponding local enlarged view of four methods for real rainy images.

6. Some Discussion for the Proposed Method

6.1. Computation Complexity

The computation complexity of our algorithm includes two Shearlets transforms computation and
four sub-problems with closed-form solutions. For two Shearlets transforms, its computation complexity
is about O(N log N) + O(N). The computation complexity of four sub-problems is O(N), thus the
total complexity for Algorithm 1 is O(N log N) +O(N), where N represents the total number of pixels.
Table 2 shows the computation time comparison of four methods. For ’Pic1’ with size [559× 314× 3], the
computing time of the proposed method is 2.39 s, while the 15ICCV and 16CVPR methods take 72 s and
946 s respectively, and the 18UTV method only takes 0.87 s (without direction rotation). Our explanation
is that the computation of Shearlets transform needs more computing time than UTV. Thus, we should
strike a balance between the algorithm efficiency and computation complexity.

6.2. Description for Parameters

The proposed method includes two kinds of parameters, the model parameter and the
algorithm parameter. For the model parameter, γ1, γ2, γ3 are used to constrain the sparsity of
Shearlets decomposition coefficients in high frequency, thus the recovery is sensitive to their
changes. But different testing images with directional rain streaks are not sensitive to the parameters
γi, αi, i = 1, 2, 3. In the testing, we set γ1 = γ2 = 1e− 3, γ3 = 1e− 2, αi = 8.

For the algorithm parameter tol, Miter, they are chosen to be tol = 1e − 3 and Miter = 250.
(for some images, parameters are chosen different to obtain the best result). The default setting for
the 15ICCV, 16CVPR, and 18UTV methods parameters can be found in [21]. We give the average
quantitative performance of 20 images of UCID in Table 3.
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Table 3. Average quantitative performance of 20 images from UCID with different types of rain streaks.

Background Rainy Streaks
Rain Type Methods PSNR SSIM RMSE PSNR SSIM RMSE Time(s)

den = 0.04 15ICCV 28.74 ± 2.49 0.8293 ± 0.0513 11.57 6 ± 2.895 26.19 ± 3.42 0.4702 ± 0.0527 13.042 ± 3.521 144.27
len = 40 16CVPR 29.64 ± 2.01 0.8846 ± 0.0312 9.142 ± 1.259 27.41 ± 1.39 0.5327 ± 0.0932 9.741 ± 1.692 1152.64
theta = 0 18UTV 30.74 ± 0.63 0.8811 ± 0.0737 9.747 ± 0.994 27.94 ± 0.53 0.6017 ± 0.0574 9.226 ± 1.726 1.59

Ours 31.02 ± 1.722 0.8842 ± 0.0397 8.117 ± 0.692 28.52 ± 0.63 0.6064 ± 0.0827 8.017 ± 0.923 3.94

den = 0.08 15ICCV 26.39 ± 1.64 0.7923 ± 0.6249 12.971 ± 2.063 27.73 ± 1.36 0.4713 ± 0.0539 12.973 ± 2.918 119.57
len = 40 16CVPR 28.94 ± 1.92 0.8709 ± 0.0319 10.559 ± 1.947 28.59 ± 2.74 0.5904 ± 0.1752 9.172 ± 2.072 1397.46

theta = −15 18UTV 29.59 ± 2.17 0.8906 ± 0.0216 9.311 ± 1.509 28.74 ± 1.915 0.6607 ± 0.0793 10.703 ± 1.448 1.97
Ours 30.16 ± 1.43 0.9042 ± 0.0161 9.942 ± 1.772 28.94 ± 2.73 0.692 ± 0.1154 9.954 ± 2.142 4.57

den = 0.04 15ICCV 28.74 ± 1.89 0.8841 ± 0.0719 11.409 ± 1.173 28.97 ± 1.83 0.5516 ± 0.0967 12.712 ± 1.837 86.53
len = 40 16CVPR 30.55 ± 1.93 0.892 ± 0.0517 10.929 ± 1.846 30.59 ± 1.73 0.6012 ± 0.0953 10.397 ± 2.066 1493.27

theta = 15 18UTV 31.27 ± 1.53 0.9004 ± 0.0439 7.492 ± 0.793 31.37 ± 1.74 0.6112 ± 0.0571 10.973 ± 0.722 1.38
Ours 31.42 ± 1.71 0.9087 ± 0.0164 7.928 ± 0.271 32.17 ± 0.54 0.6292 ± 0.0803 9.364 ± 0.574 4.61
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6.3. Simple Discussion of Regularization Terms

In order to understand the effect of three sparse terms, some tests are implemented to reveal
their contribution for rain removal. We choose real rainy image “gentlemen” as the testing image
(see Figure 11a). The visual results after discarding sparse terms Reg1, Reg2, Reg3 are listed in
Figure 11c–e. From the recovery, we find that the regularizers Reg1, Reg2 have a remarkable effect on
the rain removal, since Reg1, Reg2 describe the sparsity of the Shearlets transform of rainy images in
the rain drops’ direction and the perpendicular direction respectively.

(a) Ground truth (b) Rainy image (c) Without Reg1

(d) Without Reg2 (e) With Reg1 and Reg2 (f) With 3 regulations

Figure 11. Recovery without different regularizer terms.

6.4. Convergency of the Proposed Algorithm

In Figure 12, we display the convergency curve of the proposed algorithm for the testing image
‘gentleman’. It is easy to find that the RelErr value decreases as the iteration number increases, while
the PSNR value and SSIM value increase with the iteration number increasing, which suggests that the
proposed algorithm is stable.
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Figure 12. The variation of RelErr, PSNR, SSIM values with the iteration number.

7. Conclusions

This work proposed an efficient convex rain removal model for single images, which is based on
the sparse prior of rainy streaks and the background layer. The split Bregman algorithm is utilized to
solve our model, which ensures the global optimal. We test the synthetic and real data to demonstrate
that the proposed method performs better both in rain removal and details preservation of background
layer than the comparable three methods.
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