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Abstract: Anesthesia induction is associated with frequent blood pressure fluctuation such as
hypotension and hypertension. If it is possible to precisely predict blood pressure a few minutes ahead,
anesthesiologists can proactively give anesthetic management before patients develop hemodynamic
problem. The objective of this study is to develop a real-time model for predicting 3-min-ahead blood
pressure from the start of anesthesia induction to surgical incision. We used only vital signs and
anesthesia-related data obtained during anesthesia-induction phase and designed a bidirectional
recurrent neural network followed by fully connected layers. We conducted experiments on our
collected data of 102 patients, and obtained mean absolute errors between 8.2 mmHg and 11.1 mmHg
and standard deviation between 8.7 mmHg and 12.7 mmHg. The average elapsed time for prediction
of a batch of 100 unseen data was about 26.56 milliseconds. We believe that this study shows feasibility
of real-time prediction of future blood pressures, and the performance will be improved by collecting
more data and finding better model structures.

Keywords: blood pressure prediction; deep learning; recurrent neural network; real-time sequence
prediction

1. Introduction

General anesthesia for surgery can be divided into three phases (i.e., induction, maintenance
and emergence from anesthesia). Especially in the anesthesia-induction phase, the changes in blood
pressure is rapid and can range variously from hypotension to hypertension. This usually caused
not only by the administration of intravenous anesthetic agents (propofol and remifentanil), volatile
anesthetic agents, neuromuscular blocking agents but also by airway manipulation to intubate patient’s
trachea for the mechanical ventilation. It has been reported that hypotension, even a short duration
of mean arterial pressure less than 55 mmHg, is associated with acute kidney injury and myocardial
injury [1]. On the other hand, hypertension, if left untreated, increases risks of bleeding, cerebrovascular
events, and myocardial infarction postoperatively [2]. If blood pressure can be accurately predicted,
anesthesiologist may proactively search for possible causes to prevent severe hemodynamic changes.
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This may enable early intervention such as adjustment of anesthetic agents, fluids, and vasoactive
drugs. Thus, patient may not experience harmful consequences caused by hypotension or hypertension
as such events can be prevented ahead. However, intraoperative accurate blood pressure predictions
is nearly impossible because of complex mechanisms that cause blood pressure changes, and at least
similar predictions require much experience and knowledge of factors that affect blood pressure
fluctuations during surgery.

The volume of modern anesthesia data has increased with the use of electronic medical records.
It is difficult for anesthesiologist to use these data to judge patients hemodynamic status during
operation, so it will be helpful if there is a tool to support clinical decision making for anesthesiologist
based on these data. Machine learning technique is one of the tools for supporting clinical decision
making, as it is known to be effective in learning arbitrary patterns of data. There have been few
studies on hypotension prediction using machine learning models. One study used various machine
learning models based on existing information in the electronic health records to predict hypotension
within 10 min of anesthesia induction [3]. It should be noted that it does not predict when exactly
the hypotension event will occur, but predicts whether the event will occur within 10 min; so it is not
applicable to real-time service because the event may occur right after 1–2 s. There was another study
that predicts the probability of developing hypotension 15 min before its actual occurrence by applying
a machine learning model to the waveform of invasive arterial blood pressure [4]. Although it predicts
the potential hypotension event before its actual occurrence, it is not suitable to real-time prediction
because it assumes that the hypotension event does not occur again within 20 min. It is obvious that
we do not know when future events will occur, so it is impossible to use it for real-time prediction
based on such assumption. As far as we know, most previous studies basically aimed at a classification
problem (i.e., predict the potential event), but there was no study for a real-time regression problem
(i.e., predict the actual blood pressure).

Machine learning models have been widely adopted for the regression problem. Support vector
regression (SVR) [5], which is based on the same principles of the support vector machine (SVM) [6],
has been used to predict various real-numbers (e.g., stock price, demand/supply of pulpwood) [7,8].
Random forest (RF) [9] is one of ensemble learning methods. It is known to keep low bias of decision
trees and avoid overfitting by controlled variance. The RF can be used for either classification or
regression [10]. These traditional machine learning models have shown quite successful results, but
they suffer from a common limitation; they strongly depend on a hand-crafted feature set that requires
much effort of experts.

Deep learning is one of solutions for the limitation as it automatically extracts arbitrary patterns
(i.e., features) beneath the observed data. The deep learning is rooted from artificial neural network
(ANN) [11], and it can be used for the regression problem by adopting a particular loss function
(e.g., mean squared error). The deep learning is theoretically capable of modeling all non-linear patterns
by stacking many layers. As it is discovered that stacking too many layers might cause worse outcome
(e.g., low accuracy, high error) due to gradient vanishing [12], there have been several approaches to
effectively building deeper layers: rectified linear unit (ReLU) [13], residual connection [14], shortcut
connection [15], Inception module [16], and pretraining concept [17,18]. Thanks to these studies,
convolutional neural network (CNN), which mainly consists of convolutional layers and pooling layers,
was widely used for detection and recognition problem [19–21]. The convolutional layer extracts latent
local features, and the pooling layer picks the most meaningful feature among the extracted local
features; the CNN effectively captures local patterns and makes a decision by summarizing the most
meaningful patterns. On the other hand, recurrent neural network (RNN) [22] allows a layer to have a
recursive connection to itself, so that the RNN effectively captures sequential patterns by memorizing
previous inputs. Such property makes the RNN to be widely used for machine translation [23,24] and
real-time prediction for sequences [25,26].

In this paper, we aim at real-time prediction of blood pressure between the induction of anesthesia
and the beginning of operation. This is basically a problem of real-time regression for blood pressure.
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Please note that we do not predict the current blood pressure, but the blood pressure of future
(e.g., three minutes later). We adopt the RNN to capture arbitrary features from the sequential vital
signs, and it makes prediction based on the features. As far as we know, this is the first study of
applying the RNN to the real-time prediction of future blood pressure. We believe that this might be
helpful for preventing some patients from falling into a critical condition.

This paper is structured as follows. Section 2 describes the characteristics of target data (e.g., vital
signs) and how we preprocess the data. It also provides details of our proposed approach as well
as the definition of input and output. Section 3 demonstrates the performance of our approach
by experimental results, and Section 4 interprets some sample results and discuss about additional
experiments with different settings. Finally, Section 5 summarizes and concludes this paper.

2. Materials and Methods

This paper aims at solving a new problem that predicts future blood pressures in real time.
We basically follow Data Science (DS) methodology from problem to approach. As mentioned so far,
real-time prediction of blood pressures will help to prevent patients from falling into critical condition.
Practically, we follow Cross Industry Standard Process for Data Mining (CRISP-DM) methodology
that is an iterative process of several steps such as business understanding, data understanding, data
preparation, modeling, evaluation, and deployment. We collect and examine the data of vital signs,
and preprocess the data to feed them to train our proposed model as shown in Figure 1. The model is
designed to incorporate underlying sequential patterns of the vital signs, and evaluated by averaged
absolute errors of 10-fold cross-validation. At the running phase, future blood pressures will be
predicted given the vital signs for previous few minutes (e.g., 3 min). As this paper is a feasibility
study, it is not ready for deployment; it must be carefully deployed because this is a life and death
situation. We will keep collecting more data and improving the model for deployment.

Figure 1. Entire process from data acquisition to output visualization, where the solid line represents
the training phase and the dotted line corresponds to the running phase.
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This retrospective study was approved by the institutional review board of Soonchunhyang
University Bucheon hospital (approval No. 2019-08-016). We collect data from three operation rooms
of Soonchunhyang University Bucheon Hospital, where the operations are performed between 29
October 2018 and 18 January 2019. The data are obtained from various devices using Vital Recorder:
B × 50 (patient monitor), Solar 8000M (patient monitor), Datex–Ohmeda (anesthesia machine),
Primus (anesthesia machine), BIS (brain monitor) and Orchestra (infusion pump), which results
in a K-dimensional real-valued vector. As the vector has few missing values, we employ two strategies:
(1) replacing the missing values with the mean of surrounding values, and (2) replacing the missing
values with the lastly observed previous value. We apply the first strategy to the vital signs obtainable
from the BIS (e.g., signal quality index (SQI)), and make use of the second strategy to other values.
In this paper, the vector dimension K is 27, and the detail of the vital signs is described in Table 1.
Each dimension of the vector has a distinct sampling rate; for example, BIS/SQI and BIS/BIS are
collected every second, whereas TV and MV are collected every six seconds. To address this issue,
we assume that all dimensions have the common sampling rate (i.e., three seconds). For example,
the blood pressure values (e.g., mean blood pressure (MBP), systolic blood pressure (SBP), diastolic
blood pressure (DBP)) are obtained every 1∼3 min (mostly every minute), so these values are assumed
to be fixed until their new values come in. That is, if the MBP value is sampled every minute, then the
MBP values for every 20 timesteps will be the same.

For each r-th surgery operation, we collect K-dimensional vectors for Tr seconds, where 1 ≤ r ≤ R
and R denotes the number of operations. As we assume that all vital signs are sampled every three
seconds, the total data becomes R× K× (Tr/3) tensor (i.e., R sequence of K× (Tr/3) matrices). Please
note that the Tr for different operation will be different because different operations probably have
different operation time. For our collected data, the number of patients (i.e., the number of operations)
R is 102.The statistics of the collected data are summarized in Table 2. Figure 2 depicts a sample
sequence of the collected data. Please note that the three blood pressure values are fixed for 20
timesteps (i.e., one minute) while other values change.

Figure 2. Sample sequence of real-valued vectors.
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Table 1. Details of collected data.

Name Description

HR Heart-rate (number of heartbeats per minute)

ETCO2
End tidal carbon dioxide
(carbon dioxide concentration at the end of exhalation)

NIBP_SBP
Non-invasive systolic blood pressure
(systolic blood pressure measured by sphygmomanometer)

NIBP_MBP
Non-invasive mean blood pressure
(mean blood pressure measured by sphygmomanometer)

NIBP_DBP
Non-invasive diastolic blood pressure
(diastolic blood pressure measured by sphygmomanometer)

NMT_TOF_CNT
Neuromuscular transmission train-of-four count
(number of single twitches caused by consecutive four electrical stimuli)

RR_TOTAL
Total respiratory rate
(number of breaths per minute including mechanical and spontaneous breath)

TV
Tidal volume
(volume in single breath)

MV
Minute ventilation
(volume of air moved into and out of the lungs in a minute)

PIP
Peak inspiratory pressure
(highest airway pressure during inspiration)

MAWP
Mean airway pressure
(average airway pressure during inspiration)

PEEP_TOTAL
Total Positive End-Expiratory Pressure (PEEP)
(alveolar pressure above atmospheric pressure that exists at the end of expiration)

BIS/SEF
Spectral edge frequency
(frequency at which 95% of the total power lies below it)

BIS/SQI
Signal quality index
(signal quality of the electroencephalography signal between 0 and 100%)

BIS/EMG

Electromyogram power
(a logarithmic scale of total power in the 70–110 Hz range,
averaged over the preceding 10 s.
It has a minimal value of 25 dB, and in the awake patients it is 40–60 dB)

BIS/BIS
BIS value
(value provided by the bispectral index algorithm (range 0–100))

BIS/TOTPOW
Total power
(absolute total power in the frequency range (0.5–30 Hz))

PROPOFOL_RATE
Propofol flow rate
(speed of propofol administration (mL per hour))

PROPOFOL_CP
Propofol plasma concentration
(propofol concentration in the blood (microgram per mL))

PROPOFOL_CE
Propofol effect-site concentration
(propofol concentration in the brain (microgram per mL))

PROPOFOL_CT
Propofol target concentration
(set concentration of propofol to target brain concentration (microgram per mL))

PROPOFOL_VOL
Propofol infused volume
(volume of propofol infused (mL))

REMIFENTANIL_RATE
Remifentanil flow rate
(speed of remifentanil administration (mL per hour))

REMIFENTANIL_CP
Remifentanil plasma concentration
(remifentanil concentration in the blood (nanogram per mL))

REMIFENTANIL_CE
Remifentanil effect-site concentration
(remifentanil concentration in the brain (nanogram per mL))

REMIFENTANIL_CT
Remifentanil target concentration
(set concentration of remifentanil to target brain concentration (nanogram per mL))

REMIFENTANIL_VOL
Remifentanil infused volume
(volume of remifentanil infused (mL))
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Table 2. Statistics of the collected data.

Item Value

Sex ratio (female:male) 57:45
Age (mean ± sd) 52.11 ± 13.13 years

Weight (mean ± sd) 67.66 ± 12.96 kg
Height (mean ± sd) 162.42 ± 9.51 cm

American Society of Anesthesiologist (ASA) physical status ratio (1:2:3) 42:47:13

We transform the sequence of K × (Tr/3) matrices into a shape for the real-time sequential
prediction of future blood pressure as follows. First, for each t-th timestep where 1 ≤ t ≤ Tr/3,
we define the sequence of vital signs excluding blood pressures for previous W timesteps as an input it;
in other words, the input it is a K− 3×W matrix for the timesteps between [t−W + 1, t]. We also add
the timestep t into the it, so finally the it becomes a K− 2×W matrix. Second, we define a normalized
blood pressure at the t-th timestep as a supplementary input sit. If the blood pressure value is 125, then
it is divided by 250 to be normalized (e.g., 125/250). We take only the latest observed blood pressure,
but not the blood pressure values for W timesteps because the inconsistent sampling rate (e.g., every
minute) of the blood pressure may harm the results of the RNN. Third, we define the blood pressure
value of the timestep t + G as an output ot. It is important that the output ot is not the blood pressure
at the timestep t, but the future blood pressure at the timestep t + G. Through the steps above, for
each timestep t, we generate a triple of the input it, the supplementary input sit, and the output ot.
Assuming that t = 100, W = 60, and G = 20. The input i100 will be a (K− 2)× 60 matrix and the si100

will be a real-number of the normalized blood pressure at the 100-th timestep. The output o100 will be a
blood pressure value at the 120-th timestep. This can be interpreted that it predicts the blood pressure
of one minute later (i.e., after 20 timesteps) given the lastly observed vital signs for three minutes
(i.e., 60 timesteps). As we generate the triple (it, sit, ot) for every timestep, the total number of triples
for the r-th operation will be Tr/3−W − G + 1. We conduct the above transformation process to the
three blood pressures (e.g., MBP, DBP, and SBP) independently, and got the triples for each of them.
The transformation process is summarized in Figure 3. In short, the input consists of W vital signs it
and a current blood pressure sit, while the output is a future blood pressure ot after G timesteps.

Figure 3. Data preparation for the prediction of future blood pressure in real time.

We observe that different operations exhibit different sequential patterns (e.g., different aspect of
heart-rate changes). To incorporate such diversity of sequential patterns, we design an RNN model
followed by fully connected layers as shown in Figure 4. Given the input it for r-th operation, the
W vital vectors are sequentially injected to the RNN. Please note that our RNN has bidirectional
and hierarchical structure. The bidirectional RNN consists of a forward RNN and a backward RNN,
where the forward RNN and the backward RNN can capture forward patterns and backward patterns,
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respectively. There might be sequential patterns of a forward direction and a backward direction,
so we take the bidirectional RNN to incorporate such patterns.

Figure 4. Structure of the proposed model.

Meanwhile, both forward and backward RNN are hierarchical as they have two stacked layers.
The first RNN layer may capture sequential correlations between different vital signs (e.g., a propofol
rate and the heart-rate), and the second RNN layer catches high-level sequential correlations between
the correlations found at the first layer. Thanks to the bidirectional and hierarchical structure, the
RNN will memorize high-level sequential patterns in both directions. The forward RNN yields a
R2-dimensional summary vector hF, and the backward RNN also gives a R2-dimensional summary
hB. These two summary vectors are then concatenated and the supplementary input sit comes into
the vector, resulting in a 2× R2 + 1-dimensional vector. The concatenated vector is passed to the fully
connected layers that are supposed to find some correlations between the hF and hB. For example,
when the RNN layers may capture ‘increasing trend of heart rates’ and ‘fluctuating ETCO2’ patterns,
the fully connected layers may find how positive or negative correlation they have. Finally, given the
F2-dimensional vector generated by the second fully connected layer, the output layer predicts the
future blood pressure.

For the cell of the RNN layers, we adopt the Gated Recurrent Unit (GRU) [27] that is one of
the most widely used RNN cells. The most important aspect of the RNN cell is that it remembers
previously observed information. Although the RNN cell must be capable of preserving every previous
information theoretically, it loses long-term information practically. The GRU is one of solutions to
settle such issue by two types of gates (i.e., an update gate and a reset gate). These two types of
gates help to preserve important long-term information while discarding unnecessary information.
Thanks to the GRU cells, the bidirectional RNN layers give two vectors (e.g., hF and hB) that capture
important sequential patterns in both directions. For the two fully connected layers, we adopt the
rectified linear unit (ReLU) [13] as an activation function as it is known to prevent from the gradient
vanishing problem. For the output layer, we take mean squared error (MSE), which is widely used for
regression, as a loss function.

3. Results

We set W = 60 and G = 60, which implies that we predict the blood pressure of three minutes
later, given the observed vital signs for latest three minutes. Please note that we use the vital data
only obtained between the induction of anesthesia and the beginning of operation; we do not employ
any other information (e.g., age, sex, base blood pressures, ASA). The total number of transformed
data is 26,887. Each dimension of the transformed data is normalized except for the timestep value.
The normalization, of course, is done with only training data. We take 10-fold cross-validation and
compute mean absolute error (MAE). We conduct three independent experiments: SBP prediction,
MBP prediction, and DBP prediction. All experiments are performed using a computer with eight
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Central Processing Units (CPU) of i7-7700 3.6 GHz and two NVIDIA GeForce 1080 Ti. The proposed
model is implemented with Python3 language with Google TensorFlow packages.

The training recipe and parameter setting are as follows. The dimensions of RNN layers R1 and
R2 are equally 15, and the dimensions of the fully connected (FC) layers F1 and F2 are 100 and 50,
respectively. We applied the drop out [28] with a keep probability 0.1 to the RNN layers, and the
decov [29] with a weight 0.1 to the FC layers. Both the drop out and the decov are known to have
a regularization effect, which prevents from overfitting. In terms of the parameter initialization, the
weight matrices of the FC layers are initialized using He initialization [30], and the biases are initialized
as zero. The weight matrices of the RNN layers are initialized using Xavier initialization [31], and the
initial bias value is one. We use Adam optimizer [32] with an initial learning rate 0.001 to train the
model parameters, and the number of epochs is 60. For training phase, it computes a predicted blood
pressure by feed-forward propagation; the RNN layers generate two vectors given a input, and the
fully connected layers take the concatenation of the two vectors as an input and generate an output.
It computes a cost (error) by comparing the predicted blood pressure and a true blood pressure, and all
weights and bias values are updated via back propagation algorithm. For each epoch, the feed-forward
and back propagation are conducted throughout all data with a mini-batch as a unit. In this paper,
we set the size of mini-batch as 100.

Table 3 summarizes the mean and standard deviation of the absolute errors obtained from
the three predictions. Small mean and standard deviation mean that it predicts the blood pressure
accurately. Among the three predictions, the DBP prediction is the most accurate while the SBP
prediction exhibits the worst results. The Figures 5–7 depict histograms of errors, where horizontal
axis represents error bins; for example, a bin [1–2) represents the range 1 ≤ e < 2 where e indicates
an error. The three figures seem to have a form of Gaussian distribution, and they generally follow
the trend of the true blood pressures. For instance, in Figure 6, the peak of distribution is located
around the interval [0–1), which implies that the predicted MBP values are mostly correct compared
to the true MBP values. However, the shapes of three figures are a bit left skewed, so the overall
mean is between 8.2 mmHg and 11.1 mmHg while the standard deviation is between 8.7 mmHg and
12.7 mmHg. Figure 8 shows Bland-Altman diagrams of the three blood pressures. The diagrams imply
that errors tend to grow when the average of a predicted blood pressure and a true blood pressure
is high. This can be interpreted that it is hard to correctly predict the true blood pressure when the
average is abnormally high because such cases were barely seen in the data.

Figure 5. Error histogram of SBP prediction, where horizontal axis represents error bins and vertical
axis is the number of associated data.
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Figure 6. Error histogram of MBP prediction, where horizontal axis represents error bins and vertical
axis is the number of associated data.

Figure 7. Error histogram of DBP prediction, where horizontal axis represents error bins and vertical
axis is the number of associated data.

Table 3. Mean and standard deviation of absolute errors.

Experiment Mean (mmHg) Standard Deviation (mmHg)

SBP prediction 11.056 12.687
MBP prediction 9.253 9.835
DBP prediction 8.231 8.689
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Figure 8. Bland-Altman diagrams of SBP prediction, MBP prediction, and DBP prediction, where TBP
and PBP mean true blood pressures and predicted blood pressures, respectively.

4. Discussion

We investigated whether RNN could predict future blood pressure (e.g., 3 min ahead) during
anesthesia-induction period. We found that our model could predict 3-min ahead blood pressure with
absolute error around 10 mmHg for each SBP, DBP, and MBP. Although this error seems to be large
for helping clinicians to use our model as decision support tool in the hemodynamic management
during anesthesia for now, we suggest it is feasible for RNN to predict future blood pressure using
only features those obtained from various anesthesia monitors, ventilator and drug infusion pump in
relatively short periods.

We examine the plots of predicted blood pressure and true blood pressure. To do so, we trained
the model with 90% of shuffled data, and the remaining data is used for examination. Figure 9 shows
three plots of SBP prediction, where the two upper examples are relatively well predicted cases and the
bottom example shows a poorly predicted case. Please note that the model gives its first prediction at
the 120-th timestep because it sees the sequential data of three minutes (i.e., 60 timesteps) and predicts
three minutes later (i.e., 60 timesteps). Because the SBP is sampled every minute, the plot of true SBP
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looks like stairs. Generally speaking, the three figures in Figure 9 show that the model well predicts the
trend of future blood pressure; it captures when the SBP will arise, keep or fall. Interestingly, as shown
in the second figure of Figure 9, the predicted SBP fluctuates as the true SBP even though it predicts
the SBP of three minutes after. On the other hand, in the bottom figure, the predicted SBP follows the
trend of true SBP but there is a steady gap between them. We believe that such gap will be reduced if
we collect more data to incorporate various patterns of blood pressure.

Figure 9. Plots of predicted SBP (orange color) and true SBP (blue color), where horizontal axis
represents a timestep and vertical axis is the SBP (mmHg).

Among the hemodynamic changes occurring during surgery, hypotension is known to be frequent
and has been reported to cause adverse outcomes after surgery [1]. Definition of intraoperative
hypotension varies among investigators which ranges from MBP of 55 mmHg to 65 mmHg. In [33],
it was revealed that MBP less than 60 mmHg for 11 to 20 min and MBP less than 55 mmHg for more
than 10 min are associated with acute kidney injury. The mean absolute error of MBP predicted by
our proposed model was 9 mmHg, which may not helpful to clinicians in some critical situations.
For example, if the actual MBP is 58 mmHg, then MBP predicted by our model may range from
49 mmHg to 67 mmHg. Such variation of the predicted MBP might cause two opposite ways of
management. If the predicted MBP is 49 mmHg, one will explore possible causes for hypotension,
whereas one just observes blood pressures and do nothing if the predicted MBP is 67 mmHg. Of course,
there can be another case that the predicted MBP is helpful. Assuming that actual MBP is around
75 mmHg, and predicted MBP may range from 66 mmHg to 84 mmHg. This is generally not harmful
to most surgical patients. The Association for the Advancement of Medical Instrumentation (AAMI)
established standards for the validation of automatic arterial pressure monitoring. It was defined
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as acceptable if error (e.g., mean absolute error) is not greater than 5 mmHg and standard deviation
of errors is not greater than 8 mmHg for SAP and DAP [34]. In this regard, as the mean absolute
errors of our model for SBP and MBP were 11 mmHg and 9 mmHg, respectively, which does not meet
the AAMI standards. However, there is no consensus on the accuracy of clinically acceptable blood
pressure because the AAMI standards are for the approving clinical validation of new automated
blood pressure devices.

One may argue that there might be better parameter settings or better structure of the model.
The training recipe and parameter setting used in this paper is obtained via a grid-searching. We varied
the number of RNN layers and fully connected layers, and tried various dimensions. A part of the
grid-searching result is shown in Table 4, where the relative change of MAE is computed using the best
MAE 11.056 of Table 3; the relative change is (current MAE − 11.056)/11.056 × 100, so greater value
means worse result. It seems that the bidirectional RNNs generally work better than the unidirectional
RNNs. The FC dimensions represent F1 and F2; [100, 50] means F1 and F2 are 100 and 50, respectively,
and [100] implies that it uses a single FC layer with F1 = 100. It seems that using two FC layers is much
better than using a single FC layer, and the regularization methods (e.g., drop out, decov) prevent the
model from overfitting.

Table 4. Part of SBP prediction results with different settings, where FC means fully connected layers.

Bidirectional RNN Dimensions RNN Drop Out FC Dimensions FC Decov MAE (Relative Change)

No [10, 10] No [100] No 12.803 (415.8%)
No [15, 15] No [100] No 12.715 (415.0%)
No [20, 20] No [100] No 12.996 (417.5%)
No [15, 15] No [100, 50] No 11.789 (46.6%)
Yes [15, 15] No [100, 50] No 11.770 (46.5%)
Yes [15, 15] No [100, 50] 0.3 11.693 (45.8%)
Yes [15, 15] No [100, 50] 0.1 11.537 (44.4%)
Yes [15, 15] 0.25 [100, 50] 0.1 12.062 (49.1%)

This study aims at a real-time prediction of blood pressure, so one may ask ‘Does this model
really work in real time?,’ because our model has a quite complex structure (e.g., a composite model of
RNN and fully connected layers). We found that the average elapsed time for prediction of a batch of
100 unseen data is about 26.56 milliseconds. As our model must give a prediction result every three
seconds, it is definitely capable of the real-time prediction.

Although our model exhibits its potential as a real-time predictor of future blood pressure, there
is a room for improvement, especially about the error. About the SBP prediction, its mean absolute
error 11.056 indicates that we still have a lot to do. The main reason for this is that our data is
obtained from only 102 operations, which is not much enough for incorporating diverse patterns of
operations. Thus, this study can be a first step that proves the feasibility of the real-time prediction of
future blood pressure. We believe that our model will achieve further improvement as we will keep
collecting more data. Another minor limitation of our work is that it gives its first result after some
timesteps (e.g., 120 timesteps), which can be addressed if we collect the vital signs before the induction
of anesthesia.

5. Conclusions

In this study, we prepared and preprocessed the vital signs, and design a recurrent neural network
for real-time prediction of future blood pressures. We demonstrated that the model has a potential to
predict the future blood pressures by histograms of absolute errors, but also observed its limitation
(e.g., mean and standard deviation of absolute errors). By the plots of predicted blood pressures,
we showed that the model can foresee the trend of blood pressures. We also proved that our model
works in real time by measuring average elapsed time for prediction. This study is not a final stop and
not ready for deployment, but shows a feasibility of the RNN-based model for the prediction of future
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blood pressures. We believe that this study will help to reduce facing emergent situations by warning
to the medical team before it happens. For example, if our model reports that a future SBP will be low
(e.g., 60 mmHg), then the medical team may inject arteriopressor to prevent potential hypotension.
To improve the performance of the proposed model, we will keep collecting more data and finding
better model structures. Furthermore, we will investigate other useful devices (or sensors) as well as a
combination of clinical values (e.g., EMR) and the vital signs. We will also extend our study to develop
a real-time system of an intraoperative prediction of future blood pressures.
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