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Abstract: Three-dimensional nonlinear finite-element (FE) models using an explicit algorithm were
established to simulate the behavior of beams reinforced with glass fiber-reinforced polymer (GFRP)
bars cast using lightweight aggregate concrete (LWAC) with and without steel fibers, and the
progressive damage model was employed to simulate the rupture of GFRP. The developed FE
model was evaluated by test results, and it exhibited good agreement with the test results in terms
of moment–deflection response, serviceability performance, ultimate capacity, and failure mode.
Influencing factors, including the section height, reinforcement ratio, and span length were discussed
according to the established FE model. It was revealed that the reinforcement ratio corresponding to
balanced failure was higher than that given by code ACI 440.1R, which confirmed the necessity of
the amplification factor of a balanced reinforcement ratio to ensure concrete crushing of the beam.
For specimens that failed due to concrete crushing, the increase in fiber-reinforced polymer (FRP)
reinforcement ratio did not significantly improve the ultimate capacity, but it did have an obvious
effect on the reduction of deflection at service load. Moreover, a greater reinforcement ratio was
needed for beams when the span length increased.

Keywords: lightweight aggregate concrete; steel fiber; fiber-reinforced polymer bar; finite element
analysis (FEA); numerical analysis

1. Introduction

Lightweight aggregate concrete (LWAC) is beneficial for use in structures such as large-span
bridges, high-rise buildings, and offshore oil platforms owing to its lower density, higher specific
strength, and reliable durability [1,2]. However, the low strength of the aggregate negatively affected
the tensile strength and brittleness of LWAC [3]. In recent years, the addition of steel fiber into mixtures
of LWAC has received considerable attention for its higher tensile strength and better toughness
comparatively to plain LWAC [4–8]. Fiber-reinforced polymer (FRP) bars are regarded as satisfactory
alternatives to steel reinforcement in reinforced concrete (RC) structures due to their corrosion resistance,
high strength-to-weight ratio, nonmagnetic, and nonconductive nature [9]. The combination of steel
fiber-reinforced lightweight aggregate concrete (SFLC) and FRP is expected to be a promising system
due to its prospectively desirable serviceability, high strength-to-weight ratio, and reduced overall
lifetime cost [10].

The design of FRP–RC beams is usually governed by the requirements in the serviceability limit
state due to the low elastic modulus of the FRP reinforcements [11,12]. Researchers have performed
many investigations on FRP-reinforced fibrous concrete beams and proved the benefits of the fibers
achieved in postcracking stiffness. Gribniak et al. [13] indicated that the tension–stiffness characteristics
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after the cracking of FRP–RC beams increased noticeably when steel fibers were used. Zhu et al. [14]
carried out flexural tests on partially fiber-reinforced beams reinforced with FRP bars and concluded
that the deflection of the specimens could be significantly reduced by adding steel fibers to the concrete.
Abed and Alhafiz [15] investigated the effect of basalt microfibers on the flexural behavior of concrete
beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. They concluded that introducing
basalt fibers to the concrete helped improve the curvature ductility and postcracking behavior of the
beams. In recent research by the authors [10], the investigation on the flexural behavior of SFLC beams
reinforced with glass fiber-reinforced polymer (GFRP) bars revealed that the specimens exhibited low
deflection and high load-carrying capacity, and the specimens showed acceptable midspan deflections
but greater crack widths compared to the limits recommended by the codes. However, the available
information about the SFLC beams reinforced with GFRP bars is still incomplete. The factors affecting
the performances of beams such as span length and reinforcement ratio need to be further studied.

In most cases, the finite element (FE) method can be a powerful instrument to complete the
structural analysis [16,17]; nonetheless, one of main issues associated with the analysis of SFLC beams
reinforced with GFRP bars is the nonlinear corporation system, which brings impediments on the
convergence of frequently used implicit procedures. A dynamic explicit algorithm is salient for its
calculation without iterations; as a result, the convergence problem brought by nonlinear behavior
is abandoned. Concerning that it is capable of resolving the static problem when the entire loading
period and each time increment are fully sufficient [18], the application of an explicit algorithm is
considered as an excellent solution for the study of GFRP-reinforced SFLC beams.

This study was dedicated to establish three-dimensional nonlinear FE models for LWAC and
SFLC beams reinforced with GFRP bars by using an explicit algorithm. The established models were
evaluated by test results. Moreover, the effects of span length, height of section, and reinforcement
ratio on the performance of beams were discussed.

2. Nonlinear Finite–Element Modeling

2.1. General

The nonlinear finite element implicit algorithm has been extensively used for the numerical
analysis of reinforced concrete structures and members. However, the implicit algorithm may not
perform well when it is used to resolve complex nonlinear problems, while the explicit procedure is a
better method for models involving complex cracking and damage behaviors.

The nonlinear behavior of LWAC, which is widely known for its brittleness, is especially obvious
after cracking, which would lead to severe convergence difficulties if the implicit procedure is applied.
An excellent feature of the explicit algorithm is that the global stiffness matrix is not necessary, whereby
the processes of iterations and convergence requirement are abandoned. In explicit procedures,
the displacements, velocities, and accelerations at the beginning of the increment collectively contribute
to the state of the models at the end of the increment. Thus, reliably small increments are a prerequisite
of an accurate and stable calculated result. Furthermore, iterative calculation for a stiffness matrix is no
longer required in an explicit algorithm [18]; accordingly, if the model has a large number of degrees of
freedom, the application of the explicit method will result in a reduction in calculation cost.

2.2. Finite-Element Geometry and Mesh

Figure 1 shows the FE model developed in the ABAQUS software (SIMULIA corp, Providence,
Rhode Island, USA). In this study, the symmetry was not considered so that more of the information
contained in finite element models could be obtained. To obtain a regular mesh grid, structured meshing
tech was used to model the concrete, and considering the relatively large calculation cost of the explicit
procedure, the reduced integration element was employed. It is worth noting that a single block
element with reduced integration has only one integral point, which suggests that more elements
are required to ensure the precision of whole FE model in this case. Therefore, for the purposes of
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saving cost and ensuring the accuracy of the model, the C3D8R-type element was assigned to the
concrete component, and a relatively small dimension (25 mm) was adopted for the concrete elements.
For the steel and GFRP bars, T3D2 (3D-2 nodes linear truss) elements were chosen to complete the
modeling process, and their length was selected as twice that of the concrete element. The bond
between reinforcing bars and concrete was assumed to be perfect by using embedded region tech,
whereas the stress transfer of bond–slip behavior was considered by defining the tension stiffening of
concrete properties.
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2.3. Boundary Conditions and Load Application

To prevent the unexpected stiffening brought by using constraint methods such as tie and
coupling [19], two rigid plates with similar size to the supports used in the tests were applied for the
FE models. The properties of the interactions between the plates and concrete were defined by hard
contact and the Coulomb friction referring to the normal and tangential contact behaviors, respectively.

The degrees of freedom corresponding to the out-of-plane factors of the four loaded reference
points were blocked. For instance, to simulate the in-plane sliding support, the loaded point RP-2 was
blocked in the directions of U1, U2, UR2, and UR3. Details of the boundary conditions are indicated in
Figure 1.

The dynamic explicit procedure requires a fairly slow loading rate to simulate the quasi-static
situation, in addition to the smoothness of changes in the velocity and displacement. To this end,
the smooth step was used to define the loading system. This tech is capable of generating an amplitude
that has first and second derivatives of zero at two ends of a given time period, as shown in Figure 2.
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2.4. Dynamic Explicit Solution Scheme

The motion equation and its relevant initial conditions in explicit procedures can be expressed as
follows:

M
..
u + C

.
u + Ku = P(t) (1)

u(t = 0) = u0 (2)

.
u =

∂u
∂t
|t=0 = v0 (3)

..
u =

∂u2

∂2t
|t=0 = a0 (4)

where M, C, and K are the mass, damping, and stiffness matrixes, respectively; t is the time; u,
.
u, and

..
u

denote the displacement, velocity, and acceleration, respectively; u0, v0, and a0 are the displacement,
velocity, and acceleration at t = 0, respectively; and P(t) is the nodal forces vector.

During the explicit procedures, the displacements are solved by using the central difference
method, and the basic equation can be derived as:

.
u
∣∣∣∣(t+ ∆t

2 ) =
.
u
∣∣∣∣(t− ∆t

2 ) +
(∆t

∣∣∣(t+∆t) + ∆t
∣∣∣(t) )

2
..
u
∣∣∣(t) (5)

u
∣∣∣(t+∆t) = u

∣∣∣(t) + ∆t
∣∣∣(t+∆t)

.
u
∣∣∣∣(t+ ∆t

2 ) (6)

where ∆t is the time increment.
The state of the model at time step ti is directly derived from the previous step ti–1 so that an

accurate result can be obtained if the increments are small enough. Nonetheless, the highly nonlinear
behavior of LWAC results in variation of the highest frequency of the model, which would lead to a
varying smallest stable temporal increment. Consequently, inconsistent time increments are requested.
In fact, the central difference operator is conditionally stable, and the stability limit for the operator is
given in terms of the highest of frequency of the system as (with no damping):

∆t ≤
2

ωmax
(7)

where ωmax is the highest frequency of the system.
With damping, the stable time increment is given by:

∆t ≤
2

ωmax

(√
1 + ξ2

max − ξmax

)
(8)

where ξmax is the fraction of critical damping in the mode with the highest frequency.
During the explicit procedure, an element-by-element method was used to estimate the stability

limit for time increment, which is expressed as:

∆t ≈ min

Le

√
ρ

λ̂+ 2µ̂

 (9)

where Le is the element dimension, ρ is the density of the material in the element, λ̂ and µ̂ are effective
Lame’s constants for the material.

Additionally, hereinto a small amount of damping is introduced in the form of bulk viscosity to
control high-frequency oscillations, which is contrary to the usual engineering intuition. The bulk
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viscosity was introduced with truncation frequency damping. It generates a bulk viscosity pressure
Pbv1 that is linear in the volumetric strain rate:

pbv1 = b1ρcdLeεvol (10)

where b1 is the damping coefficient of 0.06, cd is the current dilatational wave speed, and εvol is the
volumetric strain rate.

2.5. Material Model

To explicitly track the overall behavior of steel-reinforced LWAC beams reinforced with GFRP
bars, the concrete damaged plastic (CDP) model and elastoplastic model along with progressive
damage available in Abaqus were used to simulate the mechanical properties of LWAC and GFRP
bars, respectively. Especially, parameters required by the tensile behavior of the CDP model and those
needed by the progressive damage model were adjusted according to the demand of analysis.

2.5.1. CDP Model

The concrete damaged plastic (CDP) model [19–21] assumed compressive and tensile failure as
two failure mechanisms. The yield surfaces and deviatoric plane of the CDP model are shown in
Figure 3. The yield function of the CDP model is depicted as [19] follows:

F =
1

1− α
[q− 3αp + β(ε̃

pl
t , ε̃pl

c )〈σ̂max〉 − γ〈−σ̂max〉] − σc(ε̃
pl
c ) (11)

p = −
1
3

tr(σ) (12)

q =

√
3
2
‖dev(σ)‖ (13)

with

α =
(σb0/σc0) − 1

2(σb0/σc0) − 1
; 0 ≤ α ≤ 0.5 (14)

β =
σc(ε̃

pl
c )

σt(ε̃
pl
t )

(1− α) − (1 + α) (15)

γ =
3(1−Kc)

2Kc − 1
(16)

where p and q are the hydrostatic stress and the von Mises equivalent stress, respectively; ε̃pl
t and ε̃pl

c
are the plastic strain in tension and compression, respectively; σ̂max is the max principal effective stress;
σ denotes the stress tensors; σb0/σc0 is the initial equi-biaxial compressive yield stress to initial uniaxial
compressive yield stress, which was taken as 1.16 in this study. σc(ε̃

pl
c ) and σt(ε̃

pl
t ) are cohesion values

in tension and compression, assumed to depend on the compressive and tensile equivalent plastic
strains, ε̃pl

c and ε̃pl
t , respectively.

As shown in Figure 3, Kc is the ratio of the second stress invariant on the tensile meridian to that
on the compressive meridian, which directly controls the shape of the yield surfaces in the deviatoric
plane. According to the work of Lubliner [20], Kc was taken as 2/3 in this study.
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2.5.2. Compressive Stress–Strain Relationship

The stress–strain models proposed by the authors [22] for plain LWAC and SFLC were introduced
in the FE model, which was expressed as follows.

Ascending:
y = ax + (3− 2a)x2 + (a− 2)x3 (17)

Descending:

y =
k1λx

k1λ− 1 + xk2λ
(18)

where y = f /f c’; x = ε/εc; f 1 is the general stress in the compression; ε1 is the general strain in the
compression; f c’ is the peak stress; εc is the strain corresponding to the peak stress; Ec is the elastic
modulus of the concrete; and a, λ, k1, and k2 are the modified factors, as defined in Table 1.

Table 1. Parameters for compressive stress–strain model. LWAC: lightweight aggregate concrete, SFLC:
steel fiber-reinforced lightweight aggregate concrete.

Parameters LWAC SFLC 1

a 1.797Ecεc/ f ′c − 1.264
λ 1/[1− ( f ′c /εcEc)]

k1 k1 = (37.15/ f ′c )
3.062 k1 = −0.220r− 0.017 f ′c + 1.758

k2 k2 = (41.25/ f ′c )
1.544 k2 = 0.299r + 0.014 f ′c − 0.505

1 r = volume fraction of steel fibre in %.

The conversions established by Carreira and Chu [23] were employed to generate the modified
compressive stress–strain model. The expressions for the initial modulus of elasticity and strain
corresponding to peak stress can be written as:

Ec = 0.0736( f ′c )
0.3ρd

1.51 (19)

εc = (0.71 f ′c + 168) × 10−5 (20)

where ρd is the oven-dry density of concrete.



Appl. Sci. 2019, 9, 5128 7 of 21

2.5.3. Tensile Behavior

Hillerborg described the tensile behavior of plain concrete using tension stress and crack width [24],
which gives rise to a linear descending portion for the tension constitutive curves. However, the ‘tension
stiffening’ that reflects the stress transfer between rebar and concrete cannot be neglected. In the
present study, considering the different bond characteristics of GFRP bars compared to traditional steel
reinforcing bars, and by conducting trial calculations previously to this study, a rapidly decreased
portion was assumed after the tensile strength (ft) of plain LWAC, while a final 10 times peak strain
(εt0) was adopted for all models, as suggested by [19]. The diagram of uniaxial tension behavior of
concrete is depicted in Figure 4.
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2.5.4. Damage Evolution

The definition of damage parameter in the CDP model is demonstrated in Figure 5, where the
plastic strain in tension and compression were calculated as:

ε̃
pl
c = ε̃in

c −
dc

(1− dc)

σc

Ec
(21)

ε̃
pl
t = ε̃ck

c −
dt

(1− dt)

σt

Ec
(22)

where dc and dt are the compressive and tensile damage parameter, respectively; ε̃in
c is the (inelastic)

crushing strain, and ε̃ck
t is the cracking strain (Equation (23)).

ε̃in
c = εc −

σc
Ec

ε̃ck
t = εt −

σt
Ec

(23)

The definition of the damage parameter does not affect macro responses such as the
moment–deflection and crack patterns; therefore, with the purpose of saving calculation costs,
a simple, linear damage evolution was assumed in the present study, which can be written as:

di = 1−
σi
fi

; i = t, c (24)

where t and c represent tension and compression, respectively; σ is the general stress in each time
increment, and f is the peak stress.

Furthermore, to ensure the stability of models, damage parameters in both the compression and
tension were limited to below 0.8, resulting in a predetermined residual stress of approximately 20%
peak stress.
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2.5.5. Modeling of GFRP and Steel Bars

Bilinear behavior was applied to the GFRP and steel bars, which includes linear elastic and
hardening plastic branches in the stress–strain curve. The sudden rupture of GFRP bars is one of
the significant observations of the experimental investigation. To incorporate this phenomenon into
the FE models, progressive damage was introduced into the stress–strain relationship of GFRP bars.
Figure 6 presents the progressive damage model used, where εpl

0 was taken as the end of the linear

segment, while εpl
f was defined as a value that almost equals to zero, such as 0.00001, by which the

linear behavior up to failure could be simulated.
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Figure 6. Indication of stress–strain curve including progressive damage (E0 is the initial elastic
modulus; σ0 is the stress corresponding to end of the elastic stage; and σr0 is the stress at the onset of
damage).

3. Experimental Tests

3.1. Material and Specimens

The performance of FE models developed in this paper is validated against the experimental tests
previously conducted by the authors [10]. A total of 10 LWAC specimens tested under four-point
bending loads were presented. The expanded shale type of lightweight aggregate with a maximum
size of 16 mm was used as the coarse aggregate. The test parameters were: (1) GFRP reinforcement
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ratio ρf; (2) steel fiber content; (3) bar diameter db; and (4) type of reinforcement. The details of the
specimens are reported in Figure 7 and Table 2. The mechanical properties of the GFRP and steel bars
determined by tests according to ACI 440.3R [25] and ASTM E8/E8M [26], respectively, are shown in
Table 3.
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Table 2. Details and experimental results of specimens.

Series Specimens ID fcu (MPa) ρf (%) Mu (kN·m) ∆s(mm) EfAf (kN) Failure Mode 1

Series I

LC–G–5#13.77 64.7 1.64 82.92 15.0 33,027 C.C
SLC–G–5#13.77 82.3 1.64 98.75 11.3 33,027 B.F
LC–G–8#13.77 62.5 2.66 97.96 12.5 52,843 C.C
SLC–G–8#13.77 79.4 2.66 119.85 13.1 52,843 C.C

Series II

LC–G–3#13.77 54.9 0.92 63.51 13.3 19,816 B.F
SLC–G–3#13.77 81.6 0.92 73.54 7.1 19,816 FRP.R
LC–G–6#9.87 64.4 0.98 43.30 6.6 21,452 FRP.R

SLC–G–6#9.87 69.5 0.98 56.51 4.1 21,452 FRP.R

Series III
LC–G–4#9.87 61.6 0.62 32.52 1.2 14,302 FRP.R
LC–S–4#10.62 76.2 0.72 47.77 - 65,974 C.C

1 C.C = Concrete crushing, B.F = Balanced failure, FRP.R = FRP rupture; fcu = cube compressive strength of concrete;
Ef = modulus of elasticity of the glass fiber-reinforced polymer (GFRP) bars; Af = area of tension reinforcement.

Table 3. Properties of GFRP and steel bars.

Type db (mm) Af (mm2) Ef (GPa) ffu (MPa) εfu (%)

GFRP–1 9.87 ± 0.08 76.5 47 663 1.42
GFRP–2 13.77 ± 0.13 148.8 44 602 1.33

Steel 10.62 ± 0.05 78.5 Es = 204 fy = 445 εy = 2.28
1 Es = modulus of elasticity of the steel rebars; ffu = ultimate tensile strength of the GFRP bars; fy = yield strength of
the steel rebars; εfu = ultimate tensile strain of the GFRP bars; εy = ultimate tensile strain of the steel rebars.

The symbols “LC” and “SLC” denote the types of concrete. “G” denotes GFRP bars, while “S”
denotes steel reinforcements. The final part of each label demonstrates the number and diameter of the
reinforcing bars. For instance, SLC–G–3#9.87 represents a SFLC specimen that was reinforced with
three GFRP bars with a diameter of 9.87 mm.

3.2. Test Results

3.2.1. Failure Mode

The test results including ultimate moments (Mu), failure modes, and deflections at 30% of Mu

(∆s) are shown in Table 2. The typical failure modes of the specimens are given in Figure 8. Three typical
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failure modes were observed among the 10 specimens, namely, concrete crushing, balanced failure,
and the rupture of GFRP bars. This result was corroborate with those of FRP-reinforced plain and
fibrous normal weight concrete beams [27–29]. Specimens undergoing concrete crushing failure
exhibited large deflection and crack widths in the midspan, and owing to its relatively gradual process,
the damage incurred by this type of failure is less destructive than that of the other failure modes
(Figure 8a). The balanced failure mode featured concrete crushing followed immediately by the rupture
of GFRP bars. The concrete on the top surface at the midspan was compressed to crushed, and the
beams collapsed along the crack caused by the sudden fracture of the GFRP bars, as shown in Figure 8b.
Compared to the balanced failure, a distinct characteristic of the FRP rupture failure was that the
concrete located in the compression zone was not crushed (Figure 8c). Hence, this type of failure
involved fracturing without prior warning. Specimens that were classified into FRP rupture possessed
relatively little deflection.
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3.2.2. Moment–Deflection Relationship

The moment–deflection curves of the beams are displayed in Figure 9. All the FRP-reinforced
beams yielded typical bilinear relationships before the peak load, namely, a steep linear stage that
described the uncracked condition and a basically linear stage that represented the reduced postcracking
stiffness. Similar observations were reported for FRP-reinforced normal weight concrete (NWC) beams
with and without fibers [30]. For beams SLC–G–5#13.77 and SLC–G–8#13.77, the slopes of the deflection
curves slightly decreased just before the peak load. It could be explained by the fact that the presence
of the steel fiber restrained the propagation of the transverse cracks in the compression zone.
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Furthermore, for FRP-reinforced specimens that were damaged by concrete crushing, a nonlinear
stage that corresponded to the crushing process was observed after the peak load. In this stage,
the specimens continued to sustain the load with increasing deformation. The inelastic deformations
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near failure lent a degree of ductility for this failure mode, which was in agreement with the results
reported for GFRP-reinforced NWC beams with and without fibers [27].

3.2.3. Deflection at Service Load

Bischoff et al. [31] recommended a load corresponding to 30% of Mu as a service load for
FRP-reinforced beams. The ∆s of the GFRP-reinforced beams are displayed in Figure 10. Specimens
failed by concrete crushing and balanced failure yielded higher ∆s than those of beams damaged by
FRP rupture due to their higher Mu. The addition of the steel fiber contributed to decreasing the ∆s for
beams with low ρf values (0.92%–1.64%), but caused an increase in the ∆s for that with ρf of 2.66%.
GB 50608 [32] specified a deflection limit of L/200 (15 mm), according to which the beams exhibited
conservative ∆s except for specimen LC–G–5#13.77.
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3.2.4. Moment–FRP Strain Relationship

The applied moment versus the FRP strain is presented in Figure 11. The FRP bars assumed little
deformation before the cracking moment was reached, indicating that the load was mainly sustained by
concrete in the precracking stage. After cracking, the moment–FRP strain curves of FRP bars increased
with reduced slope until failure.
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4. Validation of the Established FE Models

4.1. Failure Mode and Crack Pattern

The results predicted by the developed FE method are listed in Table 4. The failure models for all
the tested beams were accurately predicted, indicating the inclusion of progressive damage into the
properties of GFRP bars was capable of reflecting the rupture behavior in FE analysis. Typical failure
shapes for each mode are depicted in Figures 12–15.

Table 4. Results predicted by the finite-element (FE) method.

Models
Moment Deflection

Failure Mode
Mu (kN·m) Mu,Exp/Mu,FEM ∆s (mm) ∆s,Exp/∆s,FEM

LC–G–5#13.77 71.69 1.16 12.82 1.17 C.C
SLC–G–5#13.77 82.96 1.19 14.13 0.79 B.F
LC–G–8#13.77 84.04 1.17 12.79 0.97 C.C

SLC–G–8#13.77 105.45 1.14 14.60 0.89 C.C

LC–G–3#13.77 58.38 1.09 10.91 1.22 B.F
SLC–G–3#13.77 63.26 1.16 6.39 1.11 FRP.R

LC–G–6#9.87 54.09 0.80 4.89 1.35 FRP.R
SLC–G–6#9.87 65.63 0.86 3.04 1.34 FRP.R

LC–G–4#9.87 44.81 0.73 1.17 1.02 FRP.R
LC–S–4#10.62 42.73 1.12 0.97 - C.C

Mean - 1.04 - 1.09 -
Standard deviation - 0.17 - 0.19 -

4.1.1. Concrete Crushing for Steel Reinforced Beam

Crack patterns and damage distribution of steel reinforced beam LC–S–4#10.62 referring to the
status of Mu are shown in Figure 12. It was observed that the possible cracks extended from 40% to 80%
of the beam depth, which was close to test results. When the ultimate load was reached, the concrete
elements located at the top surface of the midspan assumed a high degree of compressive damage.
It can be concluded that the whole loading process and the final failure mode of the FE model for the
steel-reinforced LWAC beam were greatly consistent with the observations obtained in tests.
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4.1.2. Concrete Crushing for GFRP-Reinforced Beam

Specimen LC–G–5#13.77 was used to illustrate the failure of concrete crushing for GFRP-reinforced
beams; the relevant crack patterns and failure modes are shown in Figure 13. Compared to the FE
model for steel reinforced beams, the model for specimen LC–G–5#13.77 exhibited a larger possible
cracking area along the span direction. Similar to the test results, diagonal cracks in the shear span
were observed in the FE model, although their inclinations were relatively small. At the point that Mu

was reached, the compressive damage initially occurred among the concrete elements at the top of the
midspan. With further increasing of displacement, no significant decrease in the load was observed
before total disintegration of the compressive concrete occurred, which was in good agreement with the
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experimental observation. In this stage, the strain in the GFRP bars continued to increase, as depicted
in Figure 13b.
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4.1.3. Balanced Failure

Figure 14 presents the crack patterns, strain of GFRP bars, and final failure mode of the FE model
for beam SLC–G–5#13.77. The length of the possible cracks ranged from 50% to 80% of the beam
depth, and it can be observed that their distribution in this model was similar to that in the FE model
for LC–G–5#13.77. Both models assumed a relatively longer range than that in the steel reinforced
beam LC–S–4#10.62, which was considered to be a result of the low elastic modulus of the GFRP bars.
Similar to the test results, the failure of the FE model began with the crushing of the concrete located
on the top surface at the midspan, which was immediately followed by the rupture of the GFRP bars.
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4.1.4. FRP Rupture

The FE model for SLC–G–3#13.77 was used to demonstrate the FRP rupture failure mode.
The progressive damage model, as mentioned in the previous section, entailed the sudden rupture of
GFRP bars. Owing to its relatively high strength, the concrete at the top surface of midspan did not
exhibit any compressive damage when the ultimate load was reached. Thus, the failure mode of FRP
rupture was satisfactorily obtained (Figure 15).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 21 

The FE model for SLC–G–3#13.77 was used to demonstrate the FRP rupture failure mode. The 

progressive damage model, as mentioned in the previous section, entailed the sudden rupture of 

GFRP bars. Owing to its relatively high strength, the concrete at the top surface of midspan did not 

exhibit any compressive damage when the ultimate load was reached. Thus, the failure mode of 

FRP rupture was satisfactorily obtained (Figure 15). 

Figure 15. Crack patterns, strain of GFRP bars, and the final failure mode of FE model SLC–G–

3#13.77. 

4.2. Deflection Behavior, Ultimate Capacity, and FRP Strain 

Comparisons between the experimental midspan deflections of the beams and the theoretical 

results based on the FE models are displayed in Figure 16. According to the curve segments divided 

in [10], generally, the experimental and measured deflections followed the same trend in the 

precracking and postcracking stages. For GFRP-reinforced beams that experienced concrete 

crushing, the FE models yielded a stage that corresponded to the crushing process, which was in 

agreement with the test results. However, the estimations with respect to the deflection value 

evidenced discrepancies in this stage. In the case of the steel reinforced beam LC–S–4#10.62 (Figure 

16j), the FE model provided reasonable predictions during the entire loading period. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

（j）(i)

Figure 15. Crack patterns, strain of GFRP bars, and the final failure mode of FE model SLC–G–3#13.77.

4.2. Deflection Behavior, Ultimate Capacity, and FRP Strain

Comparisons between the experimental midspan deflections of the beams and the theoretical
results based on the FE models are displayed in Figure 16. According to the curve segments divided
in [10], generally, the experimental and measured deflections followed the same trend in the precracking
and postcracking stages. For GFRP-reinforced beams that experienced concrete crushing, the FE
models yielded a stage that corresponded to the crushing process, which was in agreement with the
test results. However, the estimations with respect to the deflection value evidenced discrepancies in
this stage. In the case of the steel reinforced beam LC–S–4#10.62 (Figure 16j), the FE model provided
reasonable predictions during the entire loading period.

Based on Bischoff et al.’s recommendation [31], the 30% of Mu obtained by the test results was
selected as the service load to evaluate the accuracy of the established FE models. Table 4 lists the
∆s according to the FE models and the experimental-to-predicted ∆s (∆s,Exp/∆s,FEM). The models
predicted the ∆s with a mean ∆s,Exp/∆s,FEM of 1.09 ± 0.19, while ACI 440.1R [33], CSA S806 [34],
and GB 50608 [32] provided estimations with average ∆s,Exp/∆s,FEM values of 0.94 ± 0.38, 0.57 ± 0.26,
and 1.97 ± 0.40, respectively, as calculated in [10]. The estimations based on the FE models closely
matched the measured deflections at service load with small dispersion, which supported the validity
of the developed FE model in predicting the stiffness of LWAC and SFLC beams reinforced with
GFRP bars.

Table 4 summarizes the Mu computed by the FE method and compared the predictions with the
experimental results. The established FE models yielded accurate Mu predictions with an average
experimental-to-predicted ratio (Mu,Exp/Mu,FEM) of 1.04 ± 0.17. While the Mu,Exp/Mu,FEM values that
were obtained according to ACI 440.1R [33], CSA S806 [34], and GB 50608 [32] were 0.94 ± 0.38,
1.01 ± 0.39, 0.94 ± 0.16, as reported in [10]. In addition, as shown in Figure 17, the similar evolution of
strain in GFRP reinforcement suggested that the definition of tension stiffening applied in this study
was applicable for such beams.

However, the models for LC–G–6#9.87 and SLC–G–6#9.87 produced some relatively larger
deviations in predicting the ultimate capacity and deflection of beams. The discreteness in the
mechanical properties of the concrete and GFRP bars was responsible for this difference between the
simulation and test results. Notwithstanding these errors, the whole moment–deflection responses
and evolution of FRP strain still presented an acceptability of FE models.
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Figure 16. Comparison of moment-deflection curves: (a) LC–G–5#13.77; (b) SLC–G–5#13.77;
(c) LC–G–8#13.77; (d) SLC–G–8#13.77; (e) LC–G–3#13.77; (f) SLC–G–3#13.77; (g) LC–G–6#9.87;
(h) SLC–G–6#9.87; (i) LC–G–4#9.87; and (j) LC–S–4#10.62.
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Figure 17. Comparison of moment-strain of GFRP bars: (a) LC–G–5#13.77; (b) SLC–G–5#13.77;
(c) LC–G–8#13.77; (d) SLC–G–8#13.77; (e) LC–G–3#13.77; (f) SLC–G–3#13.77; (g) LC–G–6#9.87;
and (h) LC–S–4#10.62.
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The modeling and predictions of three specimens reinforced with GFRP bars yielding different
failure modes, and the specimens without GFRP bars were analyzed to illustrate the results of the
FE method. Figure 18 presents the historical energy of the four models. The kinetic energy of the
four models was negligible; therefore, the influence of kinetic energy on the results was insignificant.
Similarly, the results of all 10 models were not found to be greatly affected by kinetic energy, yet the
diagrams for these were not presented owing to the length limitation.
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5. Parametric Analysis

To further investigate the performance of SFLC beams reinforced with GFRP bars, the FE model
for SLC–G–8#13.77 was selected as the control sample to conduct the parametric analysis with respect
to the section height H, FRP reinforcement ratio ρf, and clear span length L.

5.1. Section Height

Figure 19 displays the evolution of the ultimate moment, deflection, and reinforcement strain.
The detailed results of FE analysis are given in Table 5. As the H increased from 300 to 450 mm, the failure
modes obtained by the FE method transformed from concrete crushing into balanced, which could be
attributed to the reduction in the ρf. Specimens with H values of 350 mm, 400 mm, and 450 mm were
all damaged due to balanced failure, indicating that the reinforcement ratio corresponding to balanced
failure was actually a range instead of an exact value for certain materials. Although the same failure
mode was obtained, there was a slight difference in the range of the crushed concrete. As expected,
the range of the crushed concrete of specimens with an H value of 450 mm was slightly smaller than
that of specimens with an H value of 350 mm, as illustrated in Figure 20.

Table 5. Predictions of FE models.

Series H (mm) ρf (%) L (mm) Mcr (kN·m) Mu (kN·m) ∆s (mm) Failure Mode

IV

300 2.66 3000 18.60 105.45 12.44 C.C
350 2.66 3000 29.12 135.02 4.82 B.F
400 2.66 3000 35.78 177.36 7.98 B.F
450 2.66 3000 41.58 210.11 4.26 B.F

V

300 0.92 3000 18.96 63.21 1.40 FRP.R
300 1.33 3000 18.44 84.12 2.71 B.F
300 2.66 3000 18.60 105.45 12.44 C.C
300 3.68 3000 18.58 112.64 3.39 C.C

VI

300 2.66 3000 18.60 105.45 14.60 C.C
300 2.66 3600 18.18 99.98 13.18 C.C
300 2.66 4200 17.76 104.49 19.92 C.C
300 2.66 4800 16.09 102.38 27.58 C.C
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As can be seen in Figure 21, the ρf value of the model with balanced failure was higher than that 

given by ACI 440.1R [33]. Due to the destructive feature of FRP tension failure, the designers should 

adopt a factor to ensure concrete crushing of the beam, as 1.4 in ACI 440.1R [33]. Furthermore, the 

capacity of the beam was not increased by the reinforcement ratio linearly, so that it was necessary to 

determine the critical ratio for concrete crushing in order to make relatively full use of the materials’ 

strength. 

As shown in Table 5, the Δs first increased and then decreased with the increasing ρf. This 

result could be attributed to the fact that increasing the ρf had both positive and negative influences 

on the Δs, more specifically, improving the Ms as well as lowering the deflection simultaneously. 

For specimens with ρf values of 0.92% and 1.33%, their Ms were close to the cracking moment (Mcr), 

Figure 20. Failure modes obtained by FE method: (a) Concrete crushing of model with height of
300 mm; (b) Balanced failure of models with height of 350 mm; (c) Failure mode of model with height
of 450 mm.

The increase of the H value was beneficial for the capacity of SFLC beams reinforced with GFRP
bars, which was similar to the traditional RC beam. However, a minimum ρf was especially required
for this kind of beam to avoid the unexpected rupture of GFRP bars. In terms of deflection, no direct
relationship between the H and the ∆s values was observed, since increasing the H increased the Mu

and the stiffness simultaneously.
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5.2. Reinforcement Ratio

The reinforcement ratio was varied from 0.92% to 3.68% to study the effects of the reinforcement
ratio on the performance of SFLC beams reinforced with GFRP bars. Figure 21 presents the ultimate
moment of FE models, and Table 5 gives the details of the simulated results.
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As can be seen in Figure 21, the ρf value of the model with balanced failure was higher than
that given by ACI 440.1R [33]. Due to the destructive feature of FRP tension failure, the designers
should adopt a factor to ensure concrete crushing of the beam, as 1.4 in ACI 440.1R [33]. Furthermore,
the capacity of the beam was not increased by the reinforcement ratio linearly, so that it was necessary
to determine the critical ratio for concrete crushing in order to make relatively full use of the
materials’ strength.

As shown in Table 5, the ∆s first increased and then decreased with the increasing ρf. This result
could be attributed to the fact that increasing the ρf had both positive and negative influences on the ∆s,
more specifically, improving the Ms as well as lowering the deflection simultaneously. For specimens
with ρf values of 0.92% and 1.33%, their Ms were close to the cracking moment (Mcr), and thus led to
very low ∆s values. Nevertheless, their failure modes, including FRP rupture and balanced failure,
were brittle and catastrophic. When further increasing the ρf to 2.66%, the failure mode changed to
concrete crushing, and the ∆s increased to 12.44 mm. It could be derived that the improvement in the
stiffness failed to complement the increase in the Ms. Comparing specimens that failed due to concrete
crushing (with ρf of 2.66% and 3.68%) revealed that the increase in ρf had an obvious effect on the
reduction of deflection. The reason behind this behavior was that increasing the ρf did not significantly
increase the flexural capacity Ms for this failure mode.

5.3. Length of Span L

Specimens with same shear span ratio but different L were studied according to the established
FE model. Table 5 presents the Mu, ∆s, and failure modes of the specimens with L values of 3000 mm,
3600 mm, 4200 mm, and 4800 mm. The ∆s of the specimens and the deflection limit required by GB
50608 [32], L/200, are depicted in Figure 22. As expected, specimens with the same ρf but varied L
values exhibited the same failure mode and similar Mu (Ms) values. The ∆s was not linearly altered
with the increase of span for beams with the same reinforcement ratio. This was consistent with the
deflection equation based on the fundamental theory of material mechanics [34], in which the deflection
was a quadratic function of L for a given moment. As the deflection limit was in proportion to the L,
the ∆s of specimens with larger values were more likely to exceed its limit. Intuitively, as displayed in
Figure 22, the ∆s values of beams with L that ranged from 3000 to 4200 mm were acceptable, while that
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of their counterpart with an L of 4800 mm was unconservative. Therefore, a larger reinforcement
ratio was needed for SFLC beams reinforced with GFRP bars with larger span lengths according the
current provisions.
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6. Conclusions

In the present study, nonlinear FE models were established to simulate the behavior of LWAC and
SFLC beams reinforced with GFRP bars. A dynamic explicit procedure together with a progressive
model was employed to simulate the brittle failure of the beams. The validation of FE models was
confirmed according to the experiments previously reported by the authors, and the influencing factors,
including the height, reinforcement ratio, and length of span were discussed through the FE method.
The following conclusions are drawn:

(1) The established FE models successfully obtained three failure modes of beams referring to the
test results, namely concrete crushing, balanced failure, and FRP rupture. This confirmed that
the constitutive models of LWAC and SFLC introduced in the FE model are efficient, and the
inclusion of progressive damage into the properties of GFRP bars is capable of reflecting the
rupture behavior. Moreover, the explicit procedure entails the uninterrupted calculation when
brittle failures occurred.

(2) The FE models yielded accurate ultimate capacity predictions with an average
experimental-to-predicted ratio of 1.04 ± 0.17. At service load, the estimated deflection closely
matched the measured results with an average experimental-to-predicted ratio of 1.09 ± 0.19.

(3) The reinforcement ratio corresponding to balanced failure was higher than that given by code
ACI 440.1R, which confirmed the necessity of the amplification factor of a balanced reinforcement
ratio to ensure the concrete crushing of the beam.

(4) For specimens that failed due to concrete crushing, the increase in the FRP reinforcement ratio did
not significantly improve the ultimate capacity, but it did have an obvious effect on the reduction
of deflection at service load.

(5) The increase rate of the deflection at service load was higher for GFRP-reinforced beams with
larger clear span lengths. Therefore, a greater reinforcement ratio is needed for beams when the
span length is increased.
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