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Abstract: Besides the application of the photonic crystal for the photodetector in the visible range,
the infrared devices proposed with subwavelength structure are numerically and experimentally
investigated thoroughly for infrared radiation sensing in this research. Several complementary
metal oxide semiconductor (CMOS) compatible thermopiles with subwavelength structure (SWS)
are proposed and simulated by the FDTD method. The proposed thermopiles are fabricated by the
0.35 µm 2P4M CMOS-MEMS process in TSMC (Taiwan Semiconductor Manufacturing Company).
The measurement and simulation results show that the response of these devices with SWS is higher
than for those without SWS. The trend of the measurement results is consistent with that of the
simulation results. Obviously, the absorption efficiency of the CMOS compatible thermopile can be
enhanced when the subwavelength structure exists.
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1. Introduction

Based on the photonic crystal (PhC), it is proved to successful in the efficient photon coupling into
photodetectors when the PhC structure is employed [1]. Besides the visible range, thermopiles as the
infrared sensor converting thermal energy into electrical energy can sense heat radiation and generate an
output voltage proportional to a local temperature difference or temperature gradient [2]. Thermopiles
working as infrared sensors can be used in many applications, such as remote temperature sensing [2–5]
and non-dispersive infrared sensing (NDIR) gas detection [6]. In recent decades, with the development
of micro-electromechanical systems (MEMS) technology, the problem of mass production of thermopile
IR sensors has been effectively solved, and the manufacturing cost has been greatly reduced [3,4].
MEMS technology can be a goal of continuous integration, miniaturization, extended functionality,
lowering cost, and improved performance and reliability. For the requirements of integration, the
monolithic complementary-metal-oxide-semiconductor (CMOS) MEMS integration that integrates
MEMS structures with integrated circuits (IC) on a single CMOS substrate is developed [7]. The digital
micro-mirror device (DMD) manufactured by Texas Instruments (TI) is a well-known commercial
monolithic CMOS-MEMS device [8,9].

Some researchers focus on the enhancement of infrared emitters or absorbers by adding specifically
artificial structures. A unique thermally stimulated mid-infrared source emitting radiation within a
narrow range of wavelengths is experimentally and theoretically investigated [10]. Here, the periodicity
of a metal coated silicon–air photonic crystal etched into the emitter surface determines the emission
wavelength. Wavelength-selective uncooled IR sensors using square lattice two-dimensional plasmonic
absorbers are investigated [11]. The results show that selective enhancement of the responsivity
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is achieved, and for the detection wavelength the triangular lattice case is shorter than the square
lattice case. A 2D photonic crystal is first proposed to enhance the infrared absorption efficiency of
thermopiles [12]. The experimental results show that the thermopiles with 2D microstructures have a
significantly higher response than those without the photonic crystal. To meet the commercial batch
production, the thermopile with photonic crystal is fabricated by the CMOS MEMS process.

Beyond the development of optimized structured absorbers for CMOS infrared detectors
empirically, it was firstly proposed with theoretical analysis and investigation with experiments
thoroughly. In this study, various CMOS compatible thermopiles with subwavelength structures are
fabricated in the standard 0.35 m CMOS-MEMS, which are numerically and experimentally investigated
and reach agreement with response curves. The various subwavelength structures (SWSs) of photonic
devices are analyzed by the finite-difference time-domain (FDTD) [13,14] method. Then, the thermopile
with subwavelength structure (SWS) [15] is fabricated by the 0.35 µm 2P4M CMOS-MEMS process.
Finally, we discuss the results of structural measurement and summarize in the conclusion. The
measurement and simulation results show that the CMOS compatible thermopiles with SWS are higher
than the one without SWS.

2. Research Preliminary

Based on the cantilever beam structure floating over an etched silicon cavity, the properties of
SWS were investigated and measured for the properties of infrared absorption. The working principle
of infrared absorption on the front-side of a thermopile is depicted in Figure 1 [16], and the dynamic
thermal behavior is governed by the heat equation including the exchange of thermal radiation
between the infrared source and sensor, and solid conduction and convective conduction, which are
described in Equation (1). The spectral absorption of thermal radiation for SWS is more important to
be highlighted as R(λ). The absorption of the rest area of cantilever beam structure is denoted as Rm.
The temperature of hot junction, ambient environment and radiation source are denoted as Th, Ta and
Tb, respectively. So is used to describe the geometrical factor of the light path between the radiation
source and sensor. εb and εa are the emissivity of radiation source and the sensor, respectively. H is the
heat capacitance of thermopile membrane and Aa, Am are the active area and the rest area of cantilever
beam structure, respectively. h is the convective heat transfer coefficient and Ao is the total area of
cantilever beam structure.

H dTh
dt + Gs(Th − Ta) +

∫
∞

0 SoεbσAa
2hc
λ3

R(λ)
ehc/λkTb−1

dλ

+
∫
∞

0 SoεbσAm
2hc
λ3

Rm

ehc/λkTb−1
dλ+ εaσAoT4

a + hAo(Th − Ta) = Pe
(1)

Without an external heat source Pe, Equation (1) can be simplified and manipulated as Equation (2)
and the infrared radiation exchange plays the major role of heat source in the heat equation. ε is the
emissivity of absorption area and plays the major role of the infrared absorption for our proposed
SWSs. Go is the total thermal conductance including the solid and heat convection, which conduct the
heat to the environment at the ambient temperature Ta i.e., Go = Gs+Gc.

H
dTh
dt

+ Go(Th − Ta)= εσA(T4
b − T4

a ) (2)

τ =
H
Go

=
1
ωc

=
1

2π fc
(3)

The response time and bandwidth of frequency response, fc for thermal sensor are determined by
H and G, which can be estimated and measured. The frequency response curve through the modulation
of infrared radiation with mechanical chopper is preceded and then it can conduct the thermal time
constant, which is expressed as the following Equation (3).
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Figure 1. Schematic diagram of heat conduction for the CMOS thermal sensor.

3. Simulation Results and Discussion

To explore the effect of the SWSs for the CMOS thermal sensor, the rectangular hole and circular
hole structural parameters of the SWS CMOS compatible thermopile are analyzed by the FDTD
method and compared with the one without SWS. Figure 2 shows the schematic diagram of lightwave
propagation through a CMOS compatible thermopile with SWS simulated by the FDTD method.
Here, n0 and ns are the refractive indices of the incident medium and SiO2, respectively. In this study,
we take n0 = 1 for air and ns = 1.42 for SiO2 FDTD simulation, absorbing boundary conditions are
required to truncate the computational domain without reflection. A perfect matched layer (PML)
is a useful method to decrease this error induced form the boundary situation [17,18], so we use the
PML boundary to be the simulated area. To explore the effect of incident infrared radiation in the
active area, the absorption, transmittance, and reflectance detectors are used. Figure 3 shows the
schematic top-view of the rectangular-hole and circular-hole patterns for the SWS, respectively. For the
rectangular-hole type (RHT) cases, the length is taken as 15 µm, the width is considered as 3, 3.5 and
4 µm, and the spacing is the same as the width. For the cylindrical-hole type (CHT) cases, the diameter
is considered as 3, 3.5 and 4 µm and the spacing is the same as the diameter.

Figure 4 shows the simulation results of the normalized absorption difference with the target
temperature for the thermopiles without the SWS, with the RHT SWS, and with the CHT SWS,
respectively. The normalization for the data to be analyzed in the following is applied while the
maximum of absorption curve is adopted as the 100%. One can see that the maximum is the result of
the case of RHT thermopile with the SWS width 3.5 µm at target temperature 75 ◦C and those results
with SWS are obviously better than those without SWS in Figure 4. For the CHT cases, the case of
the diameter of 3 µm is higher than the other cases. The results of the RHT thermopile and CHT
thermopile are higher than those without the SWS.
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Figure 4. Simulation results of the normalized absorption difference with the target temperature for
the thermopiles for the thermopiles with various SWS.

4. Experimental Results and Discussion

Thermopile sensors are designed and fabricated by using the TSMC 0.35 µm 2P4M CMOS-MEMS
process, which is achieved after a series of anisotropic etching. As a thermopile is a device that
uses a local temperature difference to measure thermal radiation, it is susceptible to environmental
conditions. To avoid this problem, we configured several proposed thermopiles with various SWSs
and a thermopile without an SWS in the same chip. Figure 5 shows the schematic diagram of the
structure of TSMC 0.35 µm 2P4M CMOS MEMS. The standard CMOS process in TSMC fabricates the
array of thermocouples with CMOS materials of polysilicon and aluminum as in step 1.
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In step 2, the etching windows and active area are formed by some specific MEMS processes.
There structures are fabricated with RLS and RLSSI processes which etch the Si3N4/SiO2 layers and
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silicon substrate subsequently. The patterns of the SWS are formed in the RLS process with RIE etching
of the Si3N4/SiO2 layers on the active area. By using the RLSSI process, the RIE etching of silicon
substrate is proceeded under the membrane. Therefore, the sensing area is floated and filled with
arrays of etching hole as the periodic refractive index waveguide. The silicon substrate beneath the
cantilever beam is removed and only a thin structure layer with 7 µm thickness is left on top. The
structure of the thermocouples is designed with a strip of n-poly 20 µm width and a length of 200 µm.
An aluminum wire with a width of 0.5 µm was deposited on top of the n-type polysilicon. Finally,
the thin cantilever beam was floating upon the etched cavity with a poor thermal conduction, which
served as a sensing structure and a good platform for investigation and analysis of SWSs. To show
the effect of the SWSs for the CMOS compatible thermopile, the thermopile without SWS was also
simulated and fabricated.

Figure 6a,b shows SEM images of a CMOS compatible thermopile, which can be compared
to Figures 1 and 5. The active area filled with IPC is verified to suspend over a cavity of silicon
substrate and the cantilever beam structure is well built under the processes. The thermocouples are
patterned and embedded between the passivation oxide layers. Figure 6a,b shows the SEM of (a) RHT
and (b) CHT subwavelength structures for the CMOS compatible thermopile. One can see that the
structures of SWS are well fabricated for thermopile devices and both are successfully fabricated by
the CMOS-MEMS process. It is worth noting that holes of RHT and CHT subwavelength structures
are well defined, as in our design. The size of the design, 3 × 15 µm for RHT after dry etching of active
area deviated to 3.27 × 15.15 µm in Figure 6a, and the diameter of design at 3.5 µm for CHT after dry
etching of active area deviated to an average of 3.82 µm in Figure 6b. The cause of deviation may come
from the over-etching of the undercut of the structure and error of tilt angle of SEM measurement.
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To investigate the absorption efficiency between our infrared thermopiles with SWS, thorough
measurements for the output voltage of thermopiles with SWS were carried out. The setup of
measurement was arranged as shown in Figure 7, consisting of a standard infrared radiation source
and a modulated mechanical chopper system. The output signal of the thermopile is amplified with a
chopper-amplifier AD8551 and the signal is delivered to a digital multi-meters (DMM). The infrared
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radiation source is placed 40 mm distance away from the sensor chip. The temperature of infrared
radiation source is set to be between 30 ◦C and 75 ◦C at increments of 15 ◦C. In addition, to avoid
interference from ambient light or other background signals, we set up a chopper before the sensor
chip and a 5–14 µm infrared filter.
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Figure 7. Setup of the experimental measurement framework for the thermopiles.

To investigate the bandwidth of proposed thermopile, the measurement of frequency response
was built and is shown in the Figure 8. The frequency ranged from 1–150 Hz to investigate the
bandwidth of the frequency response and the range was much higher than the bandwidth of the
proposed thermopile. The results of the infrared modulation measurement for thermal time constants
of sensors under various conditions are shown in Table 1. The time constant was about 5 ms and the
corresponding bandwidth was 32 Hz, which has proved to be practical for the applications of infrared
thermometer and thermal imagery.
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Table 1. Frequency response measurement with infrared radiation.

Target Temperature (◦K) Relative Cut-Off Frequency (Hz) Relative Thermal Time Constant (ms)

473.15 33.1 4.81

573.15 32.4 4.92

673.15 30.2 5.27

Average cut-off frequency is 31.9 Hz
Average of thermal time constant τ = 5 ms.

The prototypes for the thermopile without the SWS, the RHT thermopile with the SWS width
of 3 or 3.5 µm, and the CHT thermopile with the SWS diameter of 3 or 3.5 µm, were measured and
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the results are shown in Figure 9. Here, the output voltage difference is the difference between the
thermopile with SWS and the one without SWS. It can be seen that the maximum is the result for the
case of the RHT thermopile with an SWS width of 3.5 µm at a target temperature of 75 ◦C. The best
case of the measurement is the same as the one of the simulation and is also the RHT case for the SWS
width of 3.5 µm, that is, the maximum is the result of the RHT thermopile with the SWS width 3.5 µm
at a target temperature of 75 ◦C. For the CHT thermopiles, the case of the SWS diameter 3 µm was
also higher than the other cases. Comparing Figure 9 with Figure 4, it can be seen that the normalized
experiment results are highly consistent with the normalized simulation results.
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