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Abstract: Laser welding with beam oscillation is applied to join aluminum alloy plates in butt
configuration. The effects of beam oscillating patterns on the quality of welds are compared
and analyzed. The results indicate that beam oscillation can improve the weld formation and
microstructure of butt joints. The circular oscillating weld has the features of fine grain and uniformly
dispersed dendrites in the strengthening phase, and the porosity inhibitory effect of circular oscillation
is the most obvious. In addition, beam oscillation has few effects on the tensile strength of welds, but
exerts an influence on the elongation of welds.

Keywords: fiber laser welding; aluminum alloy; beam oscillation; microstructure; mechanical
properties

1. Introduction

Aluminum alloys are an important engineering material in the automobile, rail, and aerospace
industries as the overall performance meets the requirements of mechanical strength and low
weight [1–4]. When aluminum alloy parts are used, a welding process is often needed to join
the aluminum alloy parts with other components or structures. The weldability of an aluminum alloys
is varied with different types of aluminum alloys. To some degree, the existence of magnesium, zinc, and
silicon elements can improve the weldability of aluminum alloys due to the lower thermal conductivity
and melting temperature [5]. The 5000-series aluminum alloys have better weldability than other
types of aluminum alloys [5,6]. Various welding techniques are available [7–9]. In comparison with
traditional welding techniques, laser beam welding has the advantages of a high energy density, a high
welding speed, a deeper penetration depth, and a small heat-affected zone (HAZ) [10–15]. Therefore,
this paper is especially intended to discuss a laser welding process that can meet the aforementioned
requirements of a joining process.

Beam oscillation technology is proposed during electron beam welding [16], and then transplanted
to laser beam welding [17,18]. Previously, laser beam oscillation was obtained by the mechanical
swing of a welding head with low frequency and poor stability. However, a high-power galvanometer
scanner was developed and widely used for laser beam oscillation due to its high frequency and high
flexibility. Currently, laser welding with beam oscillation is applied widely in remote laser welding
for its good weldability [19–22]. The primary cause of good weldability with an oscillating beam is
the dilution degree of the melt pool. Therefore, laser beam oscillating welding is more popular in the
industry. Zhang et al. [17] demonstrated that a good weld quality without porosity could be achieved
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with a weaving laser beam during the laser welding of carbon steel. Hao et al. [23] investigated the
influences of beam oscillating parameters on the weld appearance during the laser welding of austenitic
stainless steel. Wang et al. [24,25] found that beam oscillation stabilized the process and improved
weld morphology. Furthermore, the elongation of welds was increased. Müller et al. [26] documented
that beam oscillation strategies could improve the gap bridge ability in fillet welding. Hagenlocher et
al. [27] revealed that the equiaxed dendritic grain was prone to be generated without the formation of
hot cracks during the laser oscillation welding of aluminum. Kraetzsch et al. [28] argued that fiber laser
welding with beam oscillation offered possibilities for crack-free welding of dissimilar Al-Cu metals,
comparable to the electron beam. Kim et al. [29] observed that the solidification crack disappeared at a
weaving frequency of 5 Hz during laser weave welding of a self-restraint tapered aluminum alloy.
Berend et al. [30] found that the humping defect of aluminum alloy welds could be suppressed by
high-frequency oscillation and the welding process could be stabilized under high-speed welding.

In summary, the research on laser beam oscillating welding is still at an initial stage [31]. Studies
have indicated that laser oscillation welding has the advantages of process stability and good welding
quality. However, the effects of beam oscillation on the microstructure and mechanical properties of
aluminum alloy welds have seldom been studied [24,32]. The present study makes an attempt to
compare and analyze the effects of no oscillation, transverse oscillation and circular oscillation on the
performance of aluminum alloy butt welding through a welding test on a 4-mm-thick 5056 aluminum
alloy butt joint with a fiber laser and a wobble laser welding head. The weld appearance, metallurgical,
and mechanical properties of the butt-welded joints are analyzed comparatively.

2. Design of Experiments

Figure 1 displays the setup of the experiments. A continuous-wave fiber laser (YLR-6000-CL; IPG
Photonics Co., Oxford, MA, USA) was used as the laser source. The laser beam emitted from the end
of the operation fiber was collimated and focused with a wobble laser welding head (FLW-D50-W).
The laser beam emitted from the end of the optical fiber was collimated by a lens with a focal length of
200 mm and afterwards was transmitted by a galvanometer scanner unit and focused on the specimen
surface by an f-theta focusing unit with a focal length of 300 mm. The spot size of the focused laser
beam was approximately 0.225 mm.
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Figure 1. Experimental setup: (a) equipment and (b) schematic of laser oscillation welding process.

Four-millimeter-thick 5056 aluminum alloy plates were used as welding materials. Table 1
summarizes the chemical composition of the substrate. Table 2 gives the processing parameters of
the laser welding experiments. Figure 2 is the schematic diagram of beam oscillating pattern. The
oscillating patterns applied in our experiments are transversal and circular. The beam oscillation
diameter/width ay is 1 mm, and the value of the degree of beam overlap ax is 0.3 mm.
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Table 1. Chemical composition of the aluminum alloy studied.

Element Cu Cr Mn Si Mg Zn Fe Al

(wt.%) 0.10 0.05 0.05 0.30 4.5 0.10 0.40 Bal.

Table 2. Parameters used in the experiments.

Weld No. #1 #2 #3

Oscillating pattern No Transversal Circle
Laser power (W) 1700 2200 2800

Oscillating frequency (Hz) - 100 100
Welding speed (m/min) 1.8 1.8 1.8

Defocus (mm) 0 0 0
Shielding gas type Ar Ar Ar

Shielding gas flow rate (L/min) 20 20 20
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Figure 2. Schematic diagrams of beam oscillating patterns: (a) without oscillation; (b) transverse 
oscillation; (c) circular oscillation. 

The welded plates were cut into standard tensile samples by electrodischarge machining (EDM), 
as illustrated in Figure 3. The cross sections of the welded joints were also cut by EDM, and then 
polished with abrasive paper and polishing cloth. The finished cross sections of the welded joints 
were etched by Keller’s reagent, and then observed by an optical microscope (OM) (Leica DM4000M, 
Solms, Germany). The composition of the joints was tested by scanning electron microscopy (SEM) 
(Tescan MIRA3 LMU, Brno, Czech) equipped with an energy-dispersive X-ray spectrometer (EDS). 
An X-ray diffraction (XRD) instrument (Rigaku CD/max2200VPC, Tokyo, Japan) was used to identify 
the strengthening phase in the fusion zone of the joint. The digital and intelligent micro-hardness 
tester (HVST-1000Z, Ningbo, China) was used to measure the Vickers microhardness. The tester has 
a load of 100 g force (gf) applied in a time of 20 s. Transverse tensile tests were carried out using a 
universal tensile testing machine (MTS CMT5105, Eden Prairie, USA) at room temperature with a 
crosshead speed of 1 mm/min. The fractured samples were cut and examined by SEM to reveal the 
fracture patterns. 

 

Figure 2. Schematic diagrams of beam oscillating patterns: (a) without oscillation; (b) transverse
oscillation; (c) circular oscillation.

The welded plates were cut into standard tensile samples by electrodischarge machining (EDM), as
illustrated in Figure 3. The cross sections of the welded joints were also cut by EDM, and then polished
with abrasive paper and polishing cloth. The finished cross sections of the welded joints were etched by
Keller’s reagent, and then observed by an optical microscope (OM) (Leica DM4000M, Solms, Germany).
The composition of the joints was tested by scanning electron microscopy (SEM) (Tescan MIRA3 LMU,
Brno, Czech) equipped with an energy-dispersive X-ray spectrometer (EDS). An X-ray diffraction (XRD)
instrument (Rigaku CD/max2200VPC, Tokyo, Japan) was used to identify the strengthening phase in
the fusion zone of the joint. The digital and intelligent micro-hardness tester (HVST-1000Z, Ningbo,
China) was used to measure the Vickers microhardness. The tester has a load of 100 g force (gf) applied
in a time of 20 s. Transverse tensile tests were carried out using a universal tensile testing machine
(MTS CMT5105, Eden Prairie, MN, USA) at room temperature with a crosshead speed of 1 mm/min.
The fractured samples were cut and examined by SEM to reveal the fracture patterns.
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3. Results and Discussion

3.1. Weld Appearance

Figure 4 shows the macroscopic morphologies of the butt-welded joints. As seen in Figure 4, the
formation of the top and root surfaces of the weld can be affected by beam oscillation. Specifically, the
top and root surfaces of the weld are discontinuous, unsmooth, and narrow in width without oscillation.
For the weld formed by transverse oscillation, the top and root surfaces turn out to be smoother and
still have a narrow width. However, the circular oscillating weld shows great improvement in the
smoothness and consistency of its top and root surfaces and has a wider width. In addition, the
specimens are completely welded in any case, but, as shown in Figure 4, root sagging or undercut is
obvious on the top and root surfaces of the weld without oscillation, but insignificant root sagging or
undercut is noted under transverse oscillation, and less or no root sagging or undercut is observed in
circular oscillation.
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3.2. Microstructure

Figure 5 demonstrates the optical micrographs of the butt joints. It is shown in Figure 5a that, in
the fusion zone without oscillation, Mg3Al2 dendrites in the strengthening phase are accumulated
and distributed inconsistently. The XRD analysis suggests that the Mg3Al2 phase is generated in the
fusion zone of the welds, as shown in Figure 6. This can be explained by the fast cooling rate and the
high degree of supercooling during the laser welding process. In contrast, Mg3Al2 dendrites tend to
disperse in the fusion zone using transverse oscillation, as shown in Figure 5b. This is because there
is a strong stirring effect in the welded keyhole, which forces the dendritic growth to disperse [32].
The fusion zone with circular oscillation is the best for the dispersion of Mg3Al2 dendrites, being
very uniform and almost equal to that of the base material, as illustrated in Figure 5c. Therefore,
we can conclude that the microstructure of the weld is significantly improved and the mechanical
properties seem to be better with beam oscillation. As seen in Figure 5d, the grains at the heat-affected
zone of the welds with beam oscillation grow to equiaxed dendrites more easily without columnar
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dendrites, which generally appear in laser welding without beam oscillation. This can be attributed to
the periodic cycles of keyhole expansion and shrinkage in laser welding with beam oscillation [32].
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3.3. Mechanical Properties

Figure 7 is the cross-sectional hardness distribution of welds in different beam oscillation modes.
The averages of three measurements is shown as one point in Figure 7. It is determined from Figure 7
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that no significant difference is identified between the hardness of welds in the three beam oscillation
modes, and also no difference between the hardness in different regions’ base material (BM), fusion
zone (FZ), and heat-affected zone (HAZ). In particular, the average microhardness of the fusion zone
of the circular oscillating weld is max. 69.50 HV vs. min. 68.71 HV, compared to the weld without
oscillation. Moreover, the change in microhardness change in the fusion zone of the weld is greater
with oscillation than with circular or transverse oscillation. This confirms that beam oscillation has
a beneficial effect on the uniform distribution of the fusion zone microstructure. In addition, the
microhardness value of the annealed base material before welding is 66.83 HV. In summary, the
microhardness of the weld is well matched to the metallographic microstructure, and the hardness of
the weld and the heat-affected zone are both higher than those of the base material. An explanation
for this is that the heat input is concentrated, the heating and cooling times are extremely short, and
the weld structure formed is very small during laser welding, thus increasing the hardness. In other
words, the circular oscillating weld has the finest and most dispersed dendrites and thus the largest
microhardness, which confirms the Hall-Petch relationship.
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(c) circular oscillation.

The transverse tensile test represents an effort to assess the tensile strength of the butt joints. The
stress-strain curves of welds are displayed in Figure 8. The tensile strength of joints welded with or
without beam oscillation is 212-215 MPa, which lends support to the idea that the beam oscillation and
weld surface conditions exert only minor influences on the weld tensile strength. However, the beam
oscillation is an important predictor of weld ductility. The circular oscillating weld has the biggest
strain of about 6.0%, 17.6% higher than that of the weld without oscillation (5.1%). The elongation of a
transversely oscillating weld is measured at about 5.8%. According to [24], this is due to the increased
proportion of equiaxed grains in the weld under circular oscillation.
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Figure 8. Stress-strain curves of the welded specimens.

Figure 9 is a graph showing the fracture effect of a tensile specimen. As indicated in Figure 9a,d,
the specimen without oscillation starts to fracture from the undercut, and ends at the weld fusion zone
after tension. A large pore is seen in the fracture, the presence of which reduces the force area and
thus increases the tensile strength of the weld. The cause of the pores in the welds is the instability of
the keyhole [33]. Porosity is a typical effect during the laser welding of aluminum. A similar facture
pattern is established after tension in a specimen welded with transverse oscillation, compared to
one without oscillation, as shown in Figure 9b. However, for the circular oscillating specimen, the
fracture starts from the heat-affected zone of the weld, and ends at the weld fusion zone, as indicated
in Figure 9c. In addition, no obvious pore is observed in the fractures of the welds with transverse
oscillation and circular oscillation, as evidenced in Figure 9e,f. This sheds light on the fact that the
undercut defect of the surface weld is a weak part of the welded joint, and can be improved by the
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application of circular oscillation. It should be noted that all the fractures of the specimen are 45◦ from
the direction of the tensile stress applied, which is the ductile shear fracture [27].
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particles that were pulled out from the weld bead during tensile testing. It is evident that the 
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Figure 9. Macroscopic views of the fractured tensile specimens: (a) and (d) without oscillation; (b) and
(e) transverse oscillation; (c) and (f) circular oscillation.

In order to explore the causes of the variation of tensile strength and plasticity of butt joints, the
fracture surfaces of the tensile samples were observed by SEM, as shown in Figure 10. The morphology
of the joint welded without beam oscillation exhibited a fracture with characteristic pores and dimples,
as shown in Figure 9d and 10a. This indicated that the test specimen failed as a ductile fracture with
the feature of dimple/microvoid coalescence. The pores worsened the stress concentration in the weld
during tensile testing, and resulted in the reduced tensile strength and toughness of the weld. The
transversely oscillating specimen also showed a ductile fracture, which conforms a dimple/microvoid
coalescence pattern in which the fracture has many dimples but few pores, as displayed in Figure 10b,c.
In the circularly oscillating specimen, numerous cavities were seen on the fractured blade, as shown
in Figure 9f. This was ascribed to the vast reinforced phase particles that were pulled out from the
weld bead during tensile testing. It is evident that the appearance of reinforced phase particles led to
the higher dispersion strengthening of the weld bead. The formation of dense small dimples with a
higher depth-diameter ratio confirmed the hypothesis that the plasticity of a joint welded with circular
oscillation was good, which was consistent with the tensile stress-stain curve and the macroscopic
necking phenomenon of the tensile samples.
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4. Conclusions

Motivated by the scarcity of research on the welded joint of a fiber laser welding aluminum alloy
with beam oscillation, we conducted a laser welding experiment on 5056 aluminum alloy specimens,
and analyzed the appearance, microstructure, hardness, and strength properties of welded joints. The
following conclusions were made after the experiment.

(1) Beam oscillation causes great improvements in the weld formation of laser butt welding of
aluminum alloy. The surface of the weld with circular oscillation is well formed and has good
consistency without spatter, undercut, and root sagging.

(2) Beam oscillation results in a significant improvement of the weld microstructure of laser butt
welding of aluminum alloy. The circular oscillating weld has the features of fine grain and
uniformly dispersed dendrites in the strengthening phase, and the largest microhardness is
observed in the fusion zone.

(3) Beam oscillation is significantly inhibitory to the porosity of the weld, and the inhibitory effect is
even stronger with circular oscillation than with transverse oscillation. There is no pore in the
tensile fracture of the circular oscillating weld, but a small number of pores can be seen in the
corresponding position of a transversely oscillating weld, and many more pores with a large
volume are noted without oscillation. Beam oscillation has few effects on the tensile strength of
the weld, but exerts a great influence on the elongation of the weld, which is evidenced by the
fact that the largest elongation of the weld is associated with circular oscillation.
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