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Abstract: District heating and cooling networks can pose the possibility of including a variety of
renewable energy sources as well as waste heat into a district’s heat supply concept. Unfortunately, low
demand densities as they increasingly occur through higher building energy standards and in rural
areas render conventional heating and cooling networks inefficient. At the same time, power-to-heat
is becoming more and more important to make use of a larger amount of renewable energy sources
on the electrical side by providing more flexibility by means of demand response and demand-side
management. Within this work, a rural Plus-Energy settlement is presented addressing those topics
by a low-temperature district heating and cooling network connected to a novel agrothermal collector
supplying 23 residential buildings with decentralized heat pumps and PV systems. The collector,
the network, and six of the buildings are equipped with comprehensive monitoring equipment.
Within those buildings, forecast and optimization algorithms are implemented to adapt their heat
pump operation to enable an increase of self-consumption, to include flexible electricity tariffs,
and also to participate in power markets. Thereby, for the low-temperature district heating and
cooling network, it has been shown that the concept can operate in the future at competitive heat
costs. On the building level, up to 50% of cost savings could be achieved under ideal conditions
with the optimization of the self-consumption of PV electricity. However, to ensure optimal results,
the individual system components have to be dimensioned for this task.

Keywords: low-temperature district heating; LowEx; fifth generation district heating and cooling;
plus-energy settlement; decentral heat pumps; virtual powerplant; power-to-heat; demand response;
demand-side management

1. Introduction

The expansion of wind power and photovoltaics is progressing inexorably. Due to that, renewable
heat supply has often received less attention in the past. At the same time, in many countries,
the private households contribute to the high energy consumption, especially the heat consumption.
Here, DHC (district heating and cooling) networks can offer several benefits compared to decentralized
heating systems such as higher heating plant efficiencies, cogeneration, and tapping waste heat
potentials. Unfortunately, first to fourth generation DHC networks cause many heat losses due to the
distribution process, the high temperature levels (above 70–200 ◦C) and often weak insulation (first
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to third generation) [1]. Therefore, they also require a high demand density to operate economically,
making them little or not applicable in rural areas. Future construction of more “climate neutral”
buildings and the ongoing refurbishment of existing buildings will reduce the demand for conventional
district heating grids even more, resulting in a reduced heating demand density also in more dense
areas [2]. Furthermore, in densely populated areas, district heating is often more expensive compared
to conventional, mainly fossil fuel-based decentralized heat supply systems [3]. Reducing the grid
temperature in fifth generation DHC networks can reduce both grid losses and construction costs
for insulation [4], and thus lead to competitive specific heating prices in less dense areas. Low
temperature heating and cooling sources such as vertical heat exchangers, low-temperature waste heat,
or horizontal ground collectors can supply these fifth generation low-temperature DHC networks [5].
With temperature levels of the distribution network around the soil temperature, heat losses can be
equalized [6]. In some cases, the fluid temperature is even below the soil temperature, which generates
a heat yield along the length of the piping [6]. De facto, the distribution network serves as a horizontal
heat collector.

Nowadays, especially in Germany, a lot of research is carried out in the field of low-temperature
DHC, as displayed in Table 1.

Table 1. Summary of current research projects in Germany developing low-temperature district heating
and cooling (DHC) networks with geothermal energy sources.

Project Name Reference
Number Timespan Short Summary

BestHeatNet 03ET1626A 12.2018–10.2023
Practical development and testing of a
low-temperature DHC network with

variable renewable energy sources

Envisage Plus 03ET1465A 01.2017–03.2021 Low-temperature DHC network with
agrothermal collector

ErdEis 03ET1382A 09.2016–03.2019 Utilization of latent heat and geothermal
heat storage for the districts

ErdEisII 03ET1634A 03.2019–02.2022 Low-temperature DHC network with a
frozen soil storage system

Grubenwasser in
Bochum-Werne 0327400Z 10.2011–19.2016 Use of heat from mine water for a

low-temperature DHC network

Kassel Zum
Feldlager 03ET1336A 11.2015–08.2019

New build district in Kassel (Germany)
with solar thermal and vertical geothermal

systems as the heat supply

Living Lab Energy
Campus 03ET1551A 01.2018–12.2020 Field site to test a self-sufficient area

network with renewable energy sources

LowExTra 03ET1237A 07.2014–12.2017
Low-temperature DHC network for the

integration of multiple renewable energy
sources (solar, thermal, geothermal)

NATAR 03ET1425A 01.2017–09.2020 Low-temperature DHC network to provide
regulatory power

Neckarpark Stuttgart 03ET1156A 05.2013–04.2020 Low-temperature DHC network fed by
sewage out of the sewer

Within those projects, the municipality of Wüstenrot, which is addressed in this work, was one of
the first cities trying horizontal heat exchangers together with a low-temperature DHC network for
research purposes in 2011. Since then, the development of the systems is progressing. In the summer
of 2019, the local energy distributor of Bad Nauheim (Germany) built the largest known horizontal
geothermal collector with 22,000 m2 of collector surface distributed over two layers [7,8]. Together
with the approximately 6 km long low-temperature district heating and cooling network, the system
supplies heat and cooling for around 1000 people in more than 400 residential units.
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A wider range of different technologies and national differences is addressed by the European
funded research project called “REWARDHeat—Renewable and Waste Heat Recovery for Competitive
District Heating and Cooling”, which focuses on demonstrating low-temperature DHC networks and
their business models. Twenty-eight partners around Europe use their knowledge of low-temperature
DHC to make it even more competitive. The project is coordinated by EURAC (the European academy
of Bozen / Bolzano). The knowledge gained from the Plus-Energy settlement “Wüstenrot” will be also
considered in the project.

Decentralized brine/water heat pumps complement low-temperature DHC networks ideally.
Low-temperature DHC networks and heat pump systems can be used for sector coupling—a very
promising approach [9]. This is relevant, as the current situation in Germany points toward that in 2018,
the share of RES (renewable energy sources) within the entire consumed electricity was at approximately
40% [9], but the share of RES within the consumed heat was approximately 14% [10]. The transfer
of excess electricity can serve as heating (power-to-heat), but it also allows direct grid-stabilizing
measures. For instance, it can counteract the increasing challenge that the share of RES in the (German)
electricity grid poses due to its high volatility. Power-to-heat applications based on heat pumps show
a promising and largely untapped potential as they could provide a DR (demand response) potential
of up to 20 GWel in the year 2030 [11]. Together with DR, DSM (demand-side management) can play
an important role to ensure future power grid stability [12]. In addition, technologies such as battery
storage, regulatory measures such as strategic stability reserve plants, or innovative incentives in the
private sector such as flexible end-user electricity tariffs can provide solutions for this demanding
task [13,14]. Advanced prediction, optimization, and control algorithms are needed to implement
DR and DSM in HVAC (heating, ventilation, and air-conditioning) and in specific within-heat pump
systems, as well as to increase the system efficiency.

This work focuses on the Plus-Energy settlement in Wüstenrot, its novel agrothermal heat source
combined with a low-temperature DHC network, and 23 residential buildings that are connected
to the grid. All buildings have high-energy efficiency standards, are equipped with decentralized
heat pumps, PV (photovoltaic) systems, some with battery storages and all relevant electrical and
thermal energy flows are monitored in detail. At first, a comprehensive overview is given about the
Plus-Energy settlement, including its planning, realization, and construction (costs). Monitored results
of the settlement’s heat demand and of the novel agrothermal collector system and its operational
characteristics are presented. Further, the PV and heat pump concept as well as the approach on
economical assessment are explained. Then, the focus is taken to the building level where currently
work is still in progress regarding optimized building operation. Thereby, strategies for the application
of DR and DSM are presented. The utilization of white box and self-learning black box simulation
models for the prediction and application of evolutionary (genetic) algorithms for optimization are
explained, and a validation together with an estimation of the prediction inaccuracy is carried out.
Based on the knowledge gained and on the models developed, results of the ongoing work are presented,
including an assessment of the agrothermal low-temperature DHC systems costs, the building-side
end-user costs, results for the optimization parameters, as well as simulation-based estimations on
self-consumption, flexible electricity tariffs, and power markets.

2. The Wüstenrot Pilot Site

The Plus-Energy settlement “Vordere Viehweide” (see Figure 1) consists of 23 recently built
residential buildings with high-energy standards. All buildings are equipped with decentralized heat
pumps, thermal buffer storages, PV systems between 6 and 13 kWp, and in some cases with battery
storages. All heat pumps are connected to a low-temperature DHC network. A novel large-scale, very
shallow horizontal geothermal collector also called an “agrothermal collector” works as the heating
and cooling source. The name “agrothermal collector” defines the simultaneous use of very shallow
geothermal energy from the soil together with agricultural usability on top of the surface.
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but not on the thermal side, underlining the importance of sector coupling. Further information is 
described in the final report of the specific project [16].  

Within the research projects EnVisaGe, Envisage Plus [17], and the Horizon2020 project 
Sim4Blocks [18], a settlement monitoring was installed in 11 out of 23 buildings. The monitoring of 
six buildings is more detailed, comprising all thermal and electrical energy flows together with the 
temperatures in detail (intensive monitoring). By doing so, it is possible to make a statement of the 
buildings’ performance. The other five buildings’ monitoring includes as well thermal and electrical 
monitoring. However, here the energy flows are measured at the buildings’ boundaries (extensive 
monitoring). All monitoring data are accessible via a cloud-based monitoring and control system. 
The pilot site also contributed to work in the Horizon 2020 projects FLEXYNETS [19] and REFLEX 
[20]. The results of the innovative low-temperature DHC system together with the agrothermal use 
are supporting the energy transition in Germany. 
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At the beginning, it was planned to connect 25 buildings to the low-temperature DHC network 
with an estimated total heat demand of about 520 MWh/year, including a possible extension to 
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between 7500 and 13,000 m2. This collector size should also be suitable to cover all estimated peak 
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supplementary 34,000 € would have been necessary to fill the grid and the collector with 
monoethylene glycol. For the construction of the DHC network, common costs of 350 €/m were 
assumed. To boost this novel technology, a subsidy of 246,000 € was granted within the federal 
German research project EnVisaGe. The collector field was planned in two construction phases to 
handle the growth of the Plus-Energy settlement (see Figure 2). 

Unfortunately, the collector system was in a prototype state, which increased project costs 
consequently. Higher costs for transport of machinery and monitoring equipment installation also 
contributed to this issue. In total, the final costs of the first collector construction phase (Figure 2, blue 
collector) and its implementation were as high as originally planned for both construction phases at 
around 240,000 €, which resulted in specific costs of 54.5 €/m2. Fortunately, trial operation of the low 
temperature DHC network showed that the ground’s actual heat transfer rate was higher than 
estimated in the planning phase. Thus, the first installed collector field of 4400 m2 proved to be 
sufficient to support the first planning phase of 23 buildings. It is estimated that the construction costs 
could be reduced by 50% to 70% for further systems of the same type [22]. 

Figure 1. The “Vordere Viehweide” Plus-Energy settlement.

The settlement was originally planned within the national research project “EnVisaGe” [15] in
Wüstenrot, Germany. There, it was part of a larger strategy for the whole municipality of Wüstenrot
with the aim to produce more thermal and electrical energy by its annual balance than its demand to
become energy independent. Investigations showed that this was reasonable on the electricity side,
but not on the thermal side, underlining the importance of sector coupling. Further information is
described in the final report of the specific project [16].

Within the research projects EnVisaGe, Envisage Plus [17], and the Horizon2020 project
Sim4Blocks [18], a settlement monitoring was installed in 11 out of 23 buildings. The monitoring of
six buildings is more detailed, comprising all thermal and electrical energy flows together with the
temperatures in detail (intensive monitoring). By doing so, it is possible to make a statement of the
buildings’ performance. The other five buildings’ monitoring includes as well thermal and electrical
monitoring. However, here the energy flows are measured at the buildings’ boundaries (extensive
monitoring). All monitoring data are accessible via a cloud-based monitoring and control system.
The pilot site also contributed to work in the Horizon 2020 projects FLEXYNETS [19] and REFLEX [20].
The results of the innovative low-temperature DHC system together with the agrothermal use are
supporting the energy transition in Germany.

2.1. Planning, Realization, and Construction Costs

At the beginning, it was planned to connect 25 buildings to the low-temperature DHC network
with an estimated total heat demand of about 520 MWh/year, including a possible extension to connect
five existing and 10 new additional buildings. It was estimated that between 40 and 70 kWh/m2 per
year could be extracted from the ground, resulting in an agrothermal collector size between 7500 and
13,000 m2. This collector size should also be suitable to cover all estimated peak loads [21,22].

Initially, costs of 240,000 €were calculated for the construction of a 15,000 m2 collector field. A
supplementary 34,000 €would have been necessary to fill the grid and the collector with monoethylene
glycol. For the construction of the DHC network, common costs of 350 €/m were assumed. To boost
this novel technology, a subsidy of 246,000 € was granted within the federal German research project
EnVisaGe. The collector field was planned in two construction phases to handle the growth of the
Plus-Energy settlement (see Figure 2).

Unfortunately, the collector system was in a prototype state, which increased project costs
consequently. Higher costs for transport of machinery and monitoring equipment installation also
contributed to this issue. In total, the final costs of the first collector construction phase (Figure 2, blue
collector) and its implementation were as high as originally planned for both construction phases
at around 240,000 €, which resulted in specific costs of 54.5 €/m2. Fortunately, trial operation of the
low temperature DHC network showed that the ground’s actual heat transfer rate was higher than
estimated in the planning phase. Thus, the first installed collector field of 4400 m2 proved to be
sufficient to support the first planning phase of 23 buildings. It is estimated that the construction costs
could be reduced by 50% to 70% for further systems of the same type [22].
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Figure 2. Low-temperature DHC network with realized (blue) and planned (red) collector
construction phases.

2.2. Settlement Heat Demand

The Plus-Energy settlement “Vordere Viehweide” spreads over 25,000 m2 of land area, without the
agrothermal collector field. Twenty-three buildings complying with the German KfW-55 standard are
connected to the low-temperature DHC network. KfW-55 requires each building’s annual demand of
primary energy to be equal or less than 55% of the demand of a new building with the same geometry,
according to German energy-saving regulations. In addition, stricter regulations are put directly on
the properties of the building’s thermal envelope. This results in a building-specific energy demand of
55 kWh/m2. The settlement’s estimated annual heat demand for space heating and DHW (domestic
hot water) is 340 MWh, resulting in 255 MWh of heat demand on the network side when assuming an
average heat pump COP (coefficient of performance) of 4. Approximately 60% of provided energy is
used for space heating, and the remaining 40% is used for DHW heating. The houses are equipped
with underfloor heating systems, resulting in low supply temperatures. The decentralized heat pumps
increase the low-temperature DHC network’s temperature to temperatures between 30 and 40 ◦C
for space heating, with an estimated return temperature from the underfloor heating system of 6 K
to 10 K lower than the supply temperature. The prepared DHW temperature is aimed to be around
50–55 ◦C [22].

2.3. Heat Supply by a Novel Agrothermal Collector Field with Low-Temperature DHC Network

Despite the plan to include waste heat from chillers, at present the heat supply of the
low-temperature DHC network comes solely from the very shallow agrothermal collector field
with a size of 4400 m2. The agrothermal collector field consists of pipes that lie in parallel to each other
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at a distance of 0.5–1 m. They were laid into the ground at a depth of approximately 2 m with a special
plough (see Figure 3). This allows a very fast and easy installation of the collector pipes with no need
for extensive earthwork, and this maintains the soil stratification. The pipes are also located far below
the plant roots, not affecting the agricultural yield due to lower soil temperatures [22].
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As it can be seen in Figure 4, the supply temperature of the low-temperature DHC network changes
over the year, following a seasonal profile with a lag of approximately 1–2 months. The reason for this
is that the geothermal collector is laid just 2 m below the ground surface, which allows the seasonal
conditions to have a direct influence on the ground and thus on the collector transfer fluid temperature.
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Figure 5 shows the monthly average COP value of six heat pumps for which detailed monitoring
data on the electrical and thermal side (5 s measurement interval for the electrical side and 30 s for the
thermal side) has been collected. It shows that the heat pumps’ COP depends on the low-temperature
DHC network supply temperature. Even during summer when the COP should be lowered since only
DHW is prepared at a higher less efficient temperature level, the effect of the supply temperature is
stronger. The best COP values are generated in October when the supply temperature of the DHC
network is “high” and at the same time the space heating demand increases. This leads to high COPs.
In January, the supply temperature is yet high enough and the space heating demand exceeds the
DHW by 90%, which also leads to high efficiencies. In May and June, when the space heating demand
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is very low and the supply temperature is not that high, lower COP values are generated. The lowest
efficiency results by the end of the heating season in Germany in March/April. Then, the supply
temperature is very low, and the heating demand is still very high.
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The entire low DHC network consists of a two-pipe system with a large diameter of DN250
(see Figure 6). The total network length is about 500 m. There are several reasons why the pipes
are oversized. One is that the network was planned with a future extension in mind. In addition,
the piping of the network works as a thermal buffer, no central circulation pump is utilized, and the
pressure drop should be as low as possible. Since there are no thermal losses, no insulation is required,
which is reducing the costs of oversized piping. At present, the buildings’ peak heat demand is at
around 186 kW, resulting in a network-side peak heat demand of 140 kW (at a COP of 4) and a flow
rate of about 32 m3/h [22].
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Within the low-temperature DHC network, a 20% monoethylene glycol/water mixture is used
(see Table 2). There is no need for a permanent circulation, because even when the circulation stops,
the ground temperature remains available. Thus, the low-temperature DHC network’s circulation
is turned on and off by the individual heat pumps. Every building is heated by decentralized heat
pumps in combination with thermal buffer storages, of which some are controllable. The installed
heat pumps have a thermal power output between 6 and 20 kW, depending on the building size. Each
decreases the network fluid temperature between its inlet and its outlet by 4 K with an annual COP of
around 3.8–4.6 [22].
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Table 2. Physical properties of the monoethylene glycol—water mixture circulating in the district
heating (DH) loop in Wüstenrot [23].

Property Value Unit

Monoethylene glycol concentration 20 %
Freezing point −8 ◦C

Reference temperature, Tref 10 ◦C
Density at Tref 1028 kg/m3

Specific heat at Tref 3.97 kJ/(kg K)
Dynamic viscosity at Tref 2 10−3 Pa s

Building owners were obligated to install heat pumps, PV systems, and thermal buffer storages,
and to connect to the low-temperature DHC network, but they could choose the systems manufacturer
and building services engineering planner by themselves. This resulted in a variety of different system
combinations, resulting in more knowledge of the various combination’s behavior, but also in a higher
construction workload and in higher costs, especially for the installment of the monitoring equipment.

2.4. Geothermal Monitoring

As mentioned above in Section 2.1, the existing agrothermal collector field excelled the assumed
values for the heat supply of the DHC network. As a reminder, the primary specific heat capacity of
the collector field was estimated at between 40 and 70 kWh/m2 per year with the assumption that
40 kWh/m2 per year could be extracted from the soil a total size of around 6500 m2 would have been
necessary to cover the low-temperature DHC network’s total heat demand of 255 MWh. Thus, that a
size of only 4400 m2 of collector area actually can serve the complete heat demand of the connected 23
consumers had to be investigated in detail.

To map the thermal behavior of the agrothermal collector field and the effects of the temperature
and humidity conditions of the tethered soil was the one main objectives of the geothermal monitoring
planned for Wüstenrot. To balance the needs of accuracy versus technical and financial aspects of
the monitoring, only one collector tube was equipped with several thermal and humidity sensors,
as shown in Figure 7.
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Figure 7. Sensor installation along one collector line.

Three horizons (A-A, B-B, and C-C) of temperature and humidity measurements along one
collector pipe (red line) were installed (Figure 7). The metering point horizon A-A is approximately
25 m far from the hydraulic interlocking shaft of the collector, displayed as a red rectangle in the lower
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left side of the scheme. The distance among the horizons A-A, B-B and B-B, C-C is equal: 20 m each.
All sensors are connected to the data acquisition in the interlocking station by wires. For fast and easy
installation of the measurement setup, all sensors were preinstalled on slotted filter pipes with a total
length of 4 m each. One measurement horizon consists of two of these tubes buried vertical in the soil
(top edge 0.5 m under ground level, see Figure 8).
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interlocking station).

The distance between the collector tube and its metering points is about 0.5 m on the left- and
right-hand sides of the tube. For the mounting of the sensors, slotted filter pipes were chosen because
of their hydraulic behavior. These tubes are hydraulically “transparent”, which means that there is
almost no influence of the groundwater flow nearby the installation. The supposed groundwater flow
through the collector field has been logged by the three metering points GWA-A, GWB-B, and GWC-C.
At all three metering points, the level of groundwater can be measured down to a depth of 4 meters
under ground level. All the metering points shown in Figure 7 were calibrated by GPS measurements
and precise leveling of the geographical height.

With the three sensors GWA-A to GWC-C, the level of the groundwater can be measured within
the collector field. With their exact height above sea level and the pressure differences caused by the
varying water pillars over the sensors at the bottom of the installation, the gradient of the groundwater
level can be calculated. Combined with the properties of the soil, the velocity and the direction of the
groundwater can be derived.

In a first try to explain the significant increase of the thermal capacity compared to the design
assumptions of the collector field, a simplified investigation was done.

A one-dimensional groundwater gradient between metering point GWB-B and GWC-C was
calculated for each week in the 2017–2018 heating season. In Figure 9, these gradients are shown as
blue lines. The red dots in the scheme represent the height of the 21 collector tubes in the cross-section
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GWB-B/GWC-C. The red dots that are below the blue line are under the groundwater level, while
the others are above (the black line on top of the red dots is the vertical position of the ground level).
Each blue line represents the groundwater level for a duration of one week. In Figure 10, the cover
percentage of the collector field by groundwater level (blue bars) is plotted against the time by adding
the supply line temperature of the DHC network as red line. This graph shows that during the
2017–2018 heating season, a significant amount of the collector field is below the groundwater level.
This results in a higher heat capacity [24] and heat conductivity [25] of the tethered soil, while in the
summer season the dry soil has higher temperatures, which could be read from the corresponding
supply line temperature of the DHC network (red line). The constant high COPs of the connected
heat pumps shown in Figure 5 and the high thermal performance of the agrothermal collector can be
explained as a consequence of either the high temperatures of the heat source (soil) during the summer
season or the high heat capacity and conductivity of the soil during the heating season.
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2.5. PV System

All buildings are equipped with PV systems with a peak power output in between 5 and 28 kWp.
In total, approximately 230 kWp are installed, leading to an annual PV electricity production of
approximately 210 MWh. The data available and simulations suggested that the PV electricity
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production contributes to about 30% of the buildings electricity consumption including heat pump and
household demand (see also Figure 11). On the balance sheet, it can be seen that the PV production of
November, December, and January is not high enough to fit to the heat pump. To solve this problem,
a seasonal electrical storage system as described for the case of Wüstenrot in [26] or bigger PV systems
is needed. Half of the year, the whole household’s electricity demand can be capped with PV on the
balance sheet.
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Six of the buildings are equipped with battery storages of 5 kWh capacity, increasing
self-consumption by about 20% [26,27]. Regarding the fact that the electricity price for residential
users in Germany is around 0.29 € and the feed in tariff is approximately 0.11 €, this becomes
increasingly important.

2.6. Economical Assessment

The dynamic profitability calculation was carried out based on the annuity method according to
the guildeline VDI 2067 “Economic efficiency of building services systems” [28]. Furthermore, to take
into account energy price increases and inflation, the procedure according to [29] was used.

The economic feasibility is calculated in terms of EAC (equivalent annual cost), which represents
the annual cost of owning, operating, and maintaining the different system components. The EAC are
calculated by Equation (1):

EAC =
∑

i
Pi + mom ∗

∑
i
OMi + m f ∗

∑
i

(
c f ,i ∗Q f ,i

)
+

∑
i
Pi −

∑
i
(Ri ∗m f ,i) (1)

with OMi [€] as the sum of the yearly fixed and variable operation and maintenance costs of the
component i, Q f ,i [MWh] as the amount of energy used by the component i, c f ,i [€/MWh] as the price
of the energy source/carrier used by the component i, and Ri [€] as annual revenues such as the PV
electricity fed into the grid, money saved through self-consumption or low-temperature DHC network
connection fees.

Thereby, Pi [€] (annualized capital cost of investment of the specific system component (i) is
calculated by the following Equation (2):

P = PV ∗
ri

1− (1 + ri)
−n (2)

where PV [€] is the present value of the total investment, also including present revenues such as fixed
priced connection fees, ri [%] is the yearly interest rate, and n [year] is the investment lifespan.
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The increase in operation and maintenance costs is taken into account via the factor mom [-], which
is calculated by the following Equation (3):

mom =
1 + rom

ri − rom
∗ ri ∗

(1 + ri)
n
− (1 + rom)

n

(1 + ri)
n
− 1

(3)

where rom [%] is the annual increase in operation and maintenance costs. The increase in energy prices
costs is taken into account via the factor m f [-] that is calculated by the following Equation (4):

m f =
1 + r f

ri − r f
∗ ri ∗

(1 + ri)
n
− (1 + r f )

n

(1 + ri)
n
− 1

(4)

where r f [%] is the annual increase in energy prices. This factor is also partly credited to the annual
revenues for the reduction of grid electricity purchase due to self-consumption. The grid feed in tariff
for PV electricity is assumed to be fixed over the considered time period of 20 years.

3. Monitoring System and Optimized Building Operation

Within the Plus-Energy settlement “Vordere Viehweide”, the building owners had clearly defined
targets regarding building efficiency, heating systems, and PV systems (every owner had to install a
PV system of sufficient size in order to reach the Plus-Energy status on a yearly balance). Despite this,
the individual system components and layouts could be freely chosen, leading to a variety of hydraulic
layouts and different types of manufacturers. This made the installation of monitoring equipment
quite difficult, as each building system is different. Conversely, it also offers the opportunity to obtain
the data of and experience various system combinations. Within six buildings, all the thermal and
electrical energy flows and temperatures are monitored in high resolution (5 s electrical, 30 s thermal)
and their energy systems, especially their heat pumps, are controllable by a local energy management
system. For those six buildings, an implementation of DR and DSM measures is carried out with
various goals:

• Optimization of self-consumption
• Application of flexible electricity tariffs
• Aggregated power market participation

Thereby, flexibility is provided by overloading the thermal storages and buildings. This requires
simulation-based prediction and optimization. In the literature, for prediction and optimization
purposes, various approaches exist, ranging from black box self-learning algorithms over gray box RC
models to dynamic white box building models, providing different advantages and disadvantages
regarding computational time, prediction accuracy, and adaptability [30]. In the field of energy
engineering and science, three different optimization approaches are widely in use: mixed-integer
linear programming (MILP), dynamic programming (DP), and metaheuristic algorithms such as genetic
algorithms (GA) [31]. One approach is to use dynamic building models such as EnergyPlus to create
optimized set point schedules for the following day, allowing significant electricity cost savings [32,33].
In the case of the Plus-Energy settlements’ individual buildings, a hybrid approach is implemented.
Thereby, a local energy management system together with a cloud-based simulation and prediction
software prototype is used to enable DR and DSM measures. Within that, the heat pump operation
is optimized and scheduled according to the predicted PV yield, heating, and electrical household
demand and partly by external activation or pricing signals.

For monitoring and control purposes, the communication protocols at the level of the devices are
the following:

• For the heat pumps, either the potential-free contact to switch them on or off (historically used
by grid operators to switch off the heat pump for a certain time period per day) or ModBus TCP
being the most advanced external control interface;
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• For the battery charge control, a ModBus TCP protocol is used for the communication with battery
inverter and to gain the charging level of the battery;

• For the PV Systems, ModBus TCP is also used.

To collect the data from the various installed monitoring devices, different interfaces from simple
thermocouples that are connected to the I/o-modules over analogue interfaces up to different bus
protocols such as ModBus TCP and ModBus RTU as well as proprietary bus protocols are used.

All monitoring data is stored in a cloud-based MySQL database with dedicated structure to be
accessed via the monitoring software MoniSoft [34].

3.1. Prediction Approach

For the load forecast and generation of optimized daily heat pump operation schedules,
the simulation environment INSEL (Integrated Simulation Environment Language), the user-driven
demand prediction algorithms and the optimization (both realized in Python) run in a cloud-based
virtual machine. The communication between the simulation environment and the database is carried
out by a Python script. This approach is also shown in Appendix A (Figure A1).

For the initialization of the simulation and optimization process, all relevant data (ambient, indoor,
and buffer storage temperature, charging status of battery storage) are used as the simulation models
starting parameters. For the predictive simulation, a 24 h forecast for ambient temperature and global
radiation from a metrological data provider is used. The household electricity and DHW demand
are predicted by an algorithm based on DTR (decision tree Regression), kNN (k-nearest neighbors),
and k-means clustering, constantly trained by previous measured data. This approach is further
described in Section 3.1.2.

3.1.1. Building Demand and Production

All systems and the thermal behavior of the building are dynamically modeled in the simulation
environment INSEL [35]. The following Figure 12 gives an overview over all the components, their
interaction, and the data flow. All the individual parts are described further below. A more detailed
description and assessment of the model is also given in [36].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 34 

• For the heat pumps, either the potential-free contact to switch them on or off (historically used 
by grid operators to switch off the heat pump for a certain time period per day) or ModBus TCP 
being the most advanced external control interface; 

• For the battery charge control, a ModBus TCP protocol is used for the communication with 
battery inverter and to gain the charging level of the battery; 

• For the PV Systems, ModBus TCP is also used. 

To collect the data from the various installed monitoring devices, different interfaces from 
simple thermocouples that are connected to the I/o-modules over analogue interfaces up to different 
bus protocols such as ModBus TCP and ModBus RTU as well as proprietary bus protocols are used. 

All monitoring data is stored in a cloud-based MySQL database with dedicated structure to be 
accessed via the monitoring software MoniSoft [34]. 

3.1. Prediction Approach 

For the load forecast and generation of optimized daily heat pump operation schedules, the 
simulation environment INSEL (Integrated Simulation Environment Language), the user-driven 
demand prediction algorithms and the optimization (both realized in Python) run in a cloud-based 
virtual machine. The communication between the simulation environment and the database is carried 
out by a Python script. This approach is also shown in Appendix A (Figure A1). 

For the initialization of the simulation and optimization process, all relevant data (ambient, 
indoor, and buffer storage temperature, charging status of battery storage) are used as the simulation 
models starting parameters. For the predictive simulation, a 24 h forecast for ambient temperature 
and global radiation from a metrological data provider is used. The household electricity and DHW 
demand are predicted by an algorithm based on DTR (decision tree Regression), kNN (k-nearest 
neighbors), and k-means clustering, constantly trained by previous measured data. This approach is 
further described in Section 3.1.2.  

3.1.1. Building Demand and Production 

All systems and the thermal behavior of the building are dynamically modeled in the simulation 
environment INSEL [35]. The following Figure 12 gives an overview over all the components, their 
interaction, and the data flow. All the individual parts are described further below. A more detailed 
description and assessment of the model is also given in [36]. 

 
Figure 12. Integrated white box INSEL model combining a dynamic building model and energy 
conversion systems. 

Figure 12. Integrated white box INSEL model combining a dynamic building model and energy
conversion systems.



Appl. Sci. 2019, 9, 5059 14 of 34

Dynamic Building Model

The utilized model provides a high level of detail while allowing for simplification at the data
model level. It is based on the nodal method. This method is common for building simulations,
especially when simulating multiple zone buildings. This approach also enables a good balance between
the level of detail in the results and in the calculation time. The model contains a one-dimensional
numerical solution of the heat conduction equation for each wall. Additional nodes contain room air
and windows. Long-wave radiative exchange between the room surfaces is also considered.

Heat Pump

The applied model simulates the compressor’s behavior based on a polynomial function (according
to norm DIN EN 12900). The heat exchangers on the evaporator and condenser side are resembled
with the NTU method (number of transferred units). This simplifies the calculation process, because
no complex calculations due to complicated streamlined shapes have to be carried out.

Thermal Buffer Storages

Within the thermal buffer storage model, each layer is modeled physically. Heat conductivity
between the layers is calculated. Thermal losses are added to the suitable building zone.

PV Modules and Inverter

The modules are represented by a two-diode model that is suitable for mono- and polycrystalline
Si (silicon) as well as for CIS (copper indium gallium selenide) modules. The parameters are created
via a parameter fit according to module characteristic curves. The inverter is also represented through
parameter fit by characteristic curves provided by the manufacturer. The PV modules are linked to a
MPP (Maximum Power Point Tracking) loop.

Battery Storage

The battery storage model is kept simple. It does not simulate the electrochemical process of the
battery. The charging and discharging efficiency, power, inverter efficiency, and self-discharge are
considered. The aging effect is considered dependent on number of cycles (linear aging coefficient).

3.1.2. User-Driven Demand

The prediction of the household electricity demand can contribute to an increase in the efficiency
and as well to an optimized operational sequence of the buildings’ systems [37,38]. In this context,
the extent to which the use of machine learning approaches can contribute to the prediction of household
electrical power demand is investigated. The methods used are kNN and DTR.

kNN Regression

Regression using the kNN method is one of the fastest and easiest tools for machine learning. One
reason for this is the low complexity of the model. While many other methods of machine learning
train a function, the kNN regression stores the individual data points of a selected training data set.
In a query, the input data is compared with the training data, and a point that comes as close as
possible to the input is delivered as output. This point represents the nearest neighbor. It is possible to
select several neighbors, whereby in a very simple model, the mean value of the Euclidean distance is
delivered as the output point. However, it is also possible to use other parameters that allow certain
data points to have a greater influence on the result than others.

For the parameterization of the method, the number of neighbors, the weighting of the data points,
and the algorithm to detect the nearest neighbors, as well as the regularization can be used [30,39,40].

As already mentioned above, the model is a very simple one, which can produce relatively
good predictions with a small number of characteristics (input data such as temperature, pressure,
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and irradiation). Furthermore, trends can often already be identified with this method, which is why
this algorithm can be a suitable tool for generating initial results due to its fast programming [41].

k-Means Clustering

The method k-means represents a cluster analysis and is assigned to the spectrum of unsupervised
learning in the field of machine learning. The method is unsupervised, since the algorithm does not
receive test data for its categorization, which would allow it to validate itself. Thus, clustering assigns
similar data points to a category chosen by the algorithm itself.

The algorithm first determines a relative random center of one or more clusters. Then, it follows
the allocation of the next data points to the centers of the respective clusters. The allocation of the
data points affects the position of the mean value. These two steps are performed alternately until all
data points have been assigned to the cluster centers. Ideally, the cluster center is located in the center
of a data point cloud at the end. The disadvantage of using the k-means method is that the cluster
size of the different groups is assumed to be the same. This assumption is also used to determine the
boundary of the cluster, which separates the two groups exactly in the middle between the centers of
the clusters. However, here, neither the density nor the shape is taken into account. If the data cloud is
a longish distributed point, the center and the boundary are wrongly defined. Here, other clustering
methods are better suited [30,40].

The method can be adapted to the data by different parameters. The clusters to be formed can
also be predefined [39,41].

DTR

Decision trees represent binary decision structures that can theoretically be run infinitely in order
to carry out classifications. However, there are also methods in which several decision trees can be
used for regressions. If you now imagine a tree, the basic data is the trunk from which the branches and
leaves branch off. At the forked branches, the data is sorted by a yes/no questioning. Then, the data
is further sorted out according to a sieve principle until the target classification has been reached.
In this way, very complex models can be generated. High model complexity also leads to overfitting.
The decision trees have to be cut for a certain elasticity of the prediction [39,40].

Data Preprocessing and Analysis

The data from project “Vordere Viehweide” is loaded as a CSV file into the program structure. This
is a data preprocessing program. The time imported as UNIX time is used to generate characteristics
such as month of the year (MoOY), day of the week (DOW), hour of the day (HOD), minute of the
hour (MOH), and minute of the year (MOY). The other data that serve as characteristics are the
ambient temperature (Tamb) and the global radiation (I_Rad) as well as the demand for the household
electricity (E_dem) that serves as the target value. In addition, the data (without E_dem) is analyzed
by a clustering method (KMeans) to classify the data. The dataset consists of data every minute for
three quarters of a year. The ideal number of nine clusters was determined using a grid search. In a
scatterplot (see Figures 13 and 14), the training dataset (85% of the total dataset) of the respective
characteristics (x-axis) is plotted with the target value (y-axis). This shows that the power requirement
varies between the months and days of the week. In addition, the power requirement always increases
only in the evening of the day. The temperature shows that a higher power requirement tends to be the
case on colder days.



Appl. Sci. 2019, 9, 5059 16 of 34
Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 34 

 
Figure 13. Scatterplot: Characteristics dependent on the electricity demand (minutely values) and 
Pearson correlation between the datasets. 

 

Figure 14. Heatmap: Characteristics dependent on the electricity demand and Pearson correlation 
between the datasets. 

The clusters of the k-means will represent a classification of different commonalities that have 
the remaining characteristics. The clusters in which the power consumption is low and the clusters 
in which the power demand is high can be identified. Figure 14 shows as a heatmap the correlations 
(Pearson) between the characteristics. It can be seen that HOD and MOD have the highest Pearson 
correlation with 0.165. Then, we follow MoOY and MOD with 0.10–0.11. In addition, the clustering 
priority can be read from the representation, namely that it is strongly oriented to the hour of the day 
(HOD) and the minute of the day (MOD). The application is applied in Python and the scikit-learn 
library [41]. 

3.1.3. Experimental Validation and Prediction Inaccuracy 

Evaluation 

Figure 13. Scatterplot: Characteristics dependent on the electricity demand (minutely values) and
Pearson correlation between the datasets.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 34 

 
Figure 13. Scatterplot: Characteristics dependent on the electricity demand (minutely values) and 
Pearson correlation between the datasets. 

 

Figure 14. Heatmap: Characteristics dependent on the electricity demand and Pearson correlation 
between the datasets. 

The clusters of the k-means will represent a classification of different commonalities that have 
the remaining characteristics. The clusters in which the power consumption is low and the clusters 
in which the power demand is high can be identified. Figure 14 shows as a heatmap the correlations 
(Pearson) between the characteristics. It can be seen that HOD and MOD have the highest Pearson 
correlation with 0.165. Then, we follow MoOY and MOD with 0.10–0.11. In addition, the clustering 
priority can be read from the representation, namely that it is strongly oriented to the hour of the day 
(HOD) and the minute of the day (MOD). The application is applied in Python and the scikit-learn 
library [41]. 

3.1.3. Experimental Validation and Prediction Inaccuracy 

Evaluation 

Figure 14. Heatmap: Characteristics dependent on the electricity demand and Pearson correlation
between the datasets.

The clusters of the k-means will represent a classification of different commonalities that have the
remaining characteristics. The clusters in which the power consumption is low and the clusters in
which the power demand is high can be identified. Figure 14 shows as a heatmap the correlations
(Pearson) between the characteristics. It can be seen that HOD and MOD have the highest Pearson
correlation with 0.165. Then, we follow MoOY and MOD with 0.10–0.11. In addition, the clustering
priority can be read from the representation, namely that it is strongly oriented to the hour of the day
(HOD) and the minute of the day (MOD). The application is applied in Python and the scikit-learn
library [41].
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3.1.3. Experimental Validation and Prediction Inaccuracy

Evaluation

The predictive performance of the methods determined in this paper is evaluated with the
statistical error interpretations the mean absolute percentage error (MAPE) and percentage mean
deviation (MAE).

The mean absolute percentage error or MAPE represents the absolute percentage deviation of the
values. Therefore, a particularly low value means a good reproduction of the regression model.

MAPE(%) =
100%

n

∑n

i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣ (5)

The real value is subtracted from the forecast and divided by the real value. Thus, the sum of
the individual deviations multiplied by 100% and divided by the number forms the percentage mean
deviation (MAE).

MAE =

∑n
i=1

∣∣∣ŷi − yi
∣∣∣

n
(6)

In many studies, MAPE is a popular way of evaluating forecasting methods for household
electricity demand [37,42].

Eletrical Heat Pump Demand

For validation purposes, simulations were carried out with metrological data (ambient temperature,
global radiation) during the heating period of 2017/2018, including autumn, winter, and spring. During
that period, the thermal heat pump energy output was 15,744 kWh (simulated) and 16,182 kWh
(measured). Electrical heat pump energy demand was 3826 kWh (simulated) and 3691 kWh (measured).
These results are also shown in Figure 15. Figure 16 shows the ACF (autocorrelation function) and the
corresponding residuals plot. With a MAPE of 22.8%, the results show a good match on a daily basis
as well as no periodic dependency regarding the ACF that would implement a systematic error.
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Figure 15. Comparison of simulated and measured thermal and electrical heating demand over one
winter season (daily values).
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Figure 17 shows a comparison of the simulation results with the measured electrical power demand
of the heat pump with a one-minute time resolution over the course of two days. The power peak
and the durance of the heating process show a good match. Nevertheless, predicting the timing of the
intervals is not always accurate, e.g., due to user behavior affecting the DHW demand and ventilation.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 34 

 
Figure 16. Autocorrelation function (ACF) and residuals plot between simulated and measured 
thermal heating demand over one winter season (daily values). 

Figure 17 shows a comparison of the simulation results with the measured electrical power 
demand of the heat pump with a one-minute time resolution over the course of two days. The power 
peak and the durance of the heating process show a good match. Nevertheless, predicting the timing 
of the intervals is not always accurate, e.g., due to user behavior affecting the DHW demand and 
ventilation. 

 

Figure 17. Comparison of simulated and measured thermal heating power (heat pump). 

PV Electricity Production 

For the predicted PV production baseline, the MAPE on an hourly basis between the PV power 
prediction and real measured data is 22.1% for a forecast one day in advance, 23.3% for a forecast two 
days in advance, and 27.5% for a forecast three days in advance (see Figure 18). 

Figure 17. Comparison of simulated and measured thermal heating power (heat pump).

PV Electricity Production

For the predicted PV production baseline, the MAPE on an hourly basis between the PV power
prediction and real measured data is 22.1% for a forecast one day in advance, 23.3% for a forecast two
days in advance, and 27.5% for a forecast three days in advance (see Figure 18).
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Figure 18. Comparison of predicted and measured photovoltaic (PV) yield with a prediction time of
24 h, 48 h, and 72 h in advance.

Household Electricity Demand

The models kNN and DTR are trained with 85% of the dataset and tested with the rest. The training
of the models is optimized by a grid search. In Figure 19 the hourly kNN prognosis for the test data
(612 h) is shown.
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Figure 19. K-nearest neighbors (kNN): Hourly demand and prediction over ca. 612 h.

The frame of the prediction corresponds to about 25 days. The hourly course shows that the
demand peaks of the prediction by the kNN method correspond to the actual ones but often show a
shift on the x-axis. In addition, the load peaks are often over dimensioned.

The daily requirement forecast (see Figure 20) also shows that the progression is sketched, but
always shows a shift on the x and y axes. The hourly prediction by the DTR method (see Figure 21)
shows that the model uses a kind of basic pattern for the prediction that is differently pronounced at
the y-axis as well as at its shape, depending on the hour. The baseline in the model is much worse than
that in the kNN method.
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Figure 20. kNN: Daily demand and prediction over approximately 25 days.
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Figure 21. Decision tree regression (DTR): Hourly demand and prediction over ca. 612 h.

The daily prediction by the DTR method (see Figure 22) shows that the progression and proportions
are similar to the actual demand, but there is a stronger shift on the x and y axes.

The prediction models with the kNN and DTR methods each have strengths and weaknesses, but
the kNN model represents the data in the baseline and peak range more strongly. The problem with
both models is that both can often not correctly position the demand peaks, which suggests that the
models could achieve better predictive performance through better orientation.
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Figure 22. DTR: Daily demand and prediction over approximately 25 days.

The MAPE (see Table 3) of the respective models roughly represents the results achieved in other
studies with prediction models from the machine learning field [37].

Table 3. Evaluation results of kNN and DTR modeling. MAPE: mean absolute percentage error, MAE:
percentage mean deviation.

Machine Learning Application MAPE [%] MAE [kWh]

kNN Hourly 108.67 0.27
kNN Daily 62.46 0.12

DTR Hourly 130.05 0.32
DTR Daily 80.51 0.16

With the results obtained so far, further methods from the field of machine learning are now
being used to test their suitability as prediction models for the electrical energy demand of residential
buildings. Furthermore, an analysis is carried out on how the dataset can be upgraded so that the
procedures can better allocate peak demand. Here, for example, calendar information, such as school
holidays, is implemented.

3.2. Optimization

For optimization purposes, it was decided to apply GA for several reasons. One is that they are,
e.g., compared to PSO (particle swarm optimization), more suited for global search. Their suitability
is also underlined by the fact that many studies with the aim to optimize HVAC systems rely on
evolutionary and in specific on genetic algorithms [30].

In addition, compared to rule-based approaches, GA optimization is easier to be adapted for other
use cases (flexible electricity tariffs, power markets, other system combinations) and not very sensitive
to all events that are not covered within the rule-based approach, making it more adaptive and robust.

Within this work, for optimization purposes, a communication and control interface between
the model in INSEL and Python—in particular the DEAP (Distributed Evolutionary Algorithms in
Python, [43]) framework—was established. Using 24 h forecasts of ambient temperature and global
radiation, optimized schedules for the following day’s heat pumps operation are created, addressing
various optimization goals such as the highest self-consumption and lowest electricity costs in a
flexible tariff model. Varying set point temperatures and switching on/off schedules of the heat
pump were tested to charge buffer storages and also to increase the room temperature utilizing the
building’s thermal mass to store energy. Optimization time steps are 5 minutes, taking into account the
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minimum operation times of heat pumps [44] and also allowing small steps of demand increase to
find a better optimum. Model settling time and rebound effects are also assessed and reduced by a
model parametrization using real values and a certain running time span before and after the 24 h
optimization period. Regarding flexible electricity tariffs, a special methodology was applied according
to [45] to generate ToU (Time of Use) tariffs that create more incentives for the end users.

In [46], it has been shown that varying the mutation and probability can reduce the amount of
computational time by up to 50%. In [47], for a similar optimization goal, it was determined that
a reduced number of simulation runs can be sufficient to find a nearby optimum since the forecast
inaccuracy always brings an uncertainty, and therefore, an absolute optimum that applies to the reality
cannot be found. Thus, a comprehensive iteration on the values of the algorithm operators (crossover
probability, mutation probability) and its parameters (number of populations, number of generations)
was carried out.

The algorithm’s target function e.g., for the optimization of self-consumption and/or a flexible
electricity tariff, is the cumulated electricity cost and earnings over the prediction/optimization period
described in the following equation.

Mtotal = Qel,pv_grid ∗mPV −Qel,hgrid
∗mh_tari f f −Qel,HP_grid ∗mHP_tari f f (7)

with Mtotal [€] as the building’s daily monetary balance, mPV [€/kWh] as the PV feed in the tariff,
mh_tariff [€/kWh] as the household electricity tariff, mHP_tariff [€/kWh] as the heat pump electricity tariff,
Qel,pv_grid [kWh] as the daily amount of PV electricity to the grid, Qel,h_grid [kWh] as the daily amount of
household electricity from the grid, and Qel,HP_grid [kWh] as the daily amount of heat pump electricity
demand from the grid.

4. Results

4.1. Agrothermal Collector and Low-Temperature DHC Network

The economical assessment is done for an estimated collector and network lifetime of 40 years.
The yearly rate for capital interest is assumed to be 3%, the inflation rate is assumed to be 1.5%, and the
heat price increase is assumed to be 2%. The assumed cost and revenue are summarized in Table 4.

Table 4. Cost used for the economical assessment.

Type Cost

Installation of geothermal field [€/m2] 240,000
Installation of DHC network [€] 214,000

Subsidy [€] 246,600
Connection fee (180 €/kW, 136 kW connected) [€] 24,516
Annual heat revenue (7 €/kW monthly) [€/kW] 11,424

This leads to an assumed amortization time for the agrothermal collector and low-temperature
DHC network of 27.5 years. It can be estimated that for the installment of further agrothermal collectors
and the related low-temperature DHC network, the cost could drop as far as an equivalent heat price
without subsidies [22].

4.2. Building-Side Heat End User Cost

For the end-user heat cost on the building side, the same assumptions are made as for the
agrothermal collector and low-temperature DHC network regarding the yearly rate for capital interest,
the inflation rate, and the heat price increase. The entire economical assessment is done for a 20-year
component lifetime.

The specific investments for one individual building are listed in Table 5. It has to be noted that
the 100% subsidy of the battery storage is granted within the project, whereas the subsidies for the heat
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pump and the space heating buffer storage are federal subsidies that can be claimed for all the newly
constructed heat pump systems that fulfill the requirement within Germany.

Table 5. Investment costs within an individual building. DHW: domestic hot water.

Type Investment Cost Subsidy

Heat pump [€] 10,000 5000
Space heating buffer storage [€] 1300 500

DHW buffer storage [€] 400
Battery storage [€] 7000 7000

PV system incl. inverter [€] 17,000
DHC network connection costs [€] 3240

Heat distribution and transfer station [€] 9000

Figure 23 shows that for the end user, the specific heat price including the costs and revenues of
the whole system (e.g., also PV) is equal or better in comparison with other common heating solutions.
This is partly the case because a subsidy for the battery storage is granted. However, even without a
battery storage subsidy, the specific heat price would rise about 2.3 ct to 23.3 ct/kWh, which poses a
competitive and sustainable solution. The fact that a natural gas grid is not available makes it in the
case of Wüstenrot even more favorable. The detailed parameters of this calculation can be found in
Appendix B (Figures A2 and A3).
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Figure 23. Composition of the equivalent annual cost of heat generation and specific heat price for
different heating technologies in Germany compared to the costs in Wüstenrot (July 2019).

4.3. Optimization Parameters

For optimization 24 h in advance, 2500 calculation runs proved to be sufficient, resulting in 2:30 h
of computation time on a dedicated off-the-shelf personal computer (Core I7-7700, 4 cores, 3.6 GHz).
Thereby, in the simulation timespan, it was necessary to include the previous and following 3 h in
addition to reducing the settling time at start up and to include a possible rebound effect. A crossover
probability of 0.5 and a mutation probability of 0.5 have proven to be most efficient. In addition, with
very little computational demand (e.g., 4–600 simulation runs), good results might randomly occur.
For a further implementation on mini PCs, it is planned to change the thermal demand prediction to
an RC model or a self-learning algorithm. It is estimated that this would reduce the computational
demand by a factor of 10.
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4.4. Self-Consumption

Simulation results, without taking into account the battery storage, suggest that through optimized
heat pump operation for PV self-consumption, up to 50% of cost savings can be achieved during
the course of one day under ideal conditions. Ideal conditions mean a low prediction inaccuracy, a
good coincidence of demand and production by time and extent (amount of energy and peak power),
and the available amount of thermal storage. The following figures show this case. Thereby, Figure 24A
shows the normal PV yield and the corresponding heat pump operation as it would have occurred,
and Figure 24B shows the optimized operation, shifting a significant part of the of the heat pump’s
workload to the time of the maximum PV production. Figure 25 shows the corresponding development
of the aggregated electricity costs without and with optimization. It can be seen that at first, during
midday, the costs without optimization are cheaper since electricity is fed into the grid, and thus
earnings are made by the assumed fixed price feed in the tariff. In contrast, during the later hours,
this changes and the operation with optimization becomes significantly more favorable due to the
discrepancy of feed in tariff costs (0.123 €/kWh in that case) and heat pump electricity costs (0.28 €/kWh
in that case).
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The hurdles for the optimization of self-consumption are that in summer (obviously) only DHW
is prepared, and thus less demand exists, and also DHW storages tend to be too small dimensioned.
In the transition period and in winter, there is a high heating demand, but the PV yield is significantly
lower. In that time also, the PV system’s power output is not matching the heat pumps demand,
resulting in additional electricity taken from the grid even at daily peak PV production. Installing
larger buffer storages, matching the installed PV winter power output to the heat pump’s demand,
and general conditions such as low or no PV feed in the tariff and high electricity tariff costs would
results in higher monetary optimization benefits.

4.5. Flexible Electricity Tariffs

Flexible electricity tariffs can tend to include too small incentives and in some cases, not enough
flexibility can be provided to gain an advantage from them. For example, directly applying the stock
market trade price fluctuations to a tariff and thus giving this benefit to the end costumer unfortunately
poses little incentive, as it can be seen in Table 6 and Figure 26, since within the composition of the
end-user electricity price, procurement and thus the volatile part plays a minor role (16%). Further
adaptions are needed to make flexible electricity tariffs more inciting. Thereby, one option can be ToU
(Time of Use) tariffs or CPP (critical peak pricing) tariffs based on either a dynamic FIT (Feed-In Tariff)
surcharge or a dynamic network fee such as that developed and described in [45]. This approach is
also applied to this work to generate a theoretical tariff for estimating its benefits with and without
heat pump optimization.

Table 6. German electricity tariff composition (March 2019) [48–50].

Type Specific Cost

EEG (renewable energy sources act) reallocation charge 64.05 €/MWh
CHP (combined heat and power) surcharge 2.80 €/MWh

§19 StromNEV-reallocation 3.05 €/MWh
Offshore apportionment of liability 4.16 €/MWh

Reallocation charge for switchable loads 0.05 €/MWh
Electricity grid usage charge 73.90 €/MWh

Concession charge 16.60 €/MWh
Electricity tax 20.50 €/MWh

Procurement (av. spot market price EPEX Oct 2018–March 2019) 46.79 €/MWh
Profit margin of reseller 20.00 €/MWh
VAT (value added tax) 47.86 €/MWh

Total 299.76 €/MWh



Appl. Sci. 2019, 9, 5059 26 of 34Appl. Sci. 2019, 9, x FOR PEER REVIEW 26 of 34 

 

Figure 26. German electricity tariff composition by percent (March 2019). 

The following Figure 27A shows a flexible electricity tariff included in the heat pump’s daily 
operation; Figure 27(B) shows the same situation, but with an optimization algorithm applied to the 
heat pump’s operation. Figure 28 shows the corresponding development of the aggregated electricity 
costs with and without optimization. Compared to the previous optimization of PV self-
consumption, the achieved cost reduction of 17% is significantly lower. This can be explained by the 
fact that the thermal flexibility potential in that case was not sufficient. Therefore, the size of the 
thermal buffer storages is not only relevant because of their maximum thermal storage capacity in 
kWh, but also due to the temperature levels at which the heat pump is operating. This affects the 
COP and thus can reduce the monetary benefit of the optimization significantly.  

 
Figure 27. Standard (A) and optimized (B) heat pump operation for flexible electricity tariffs. 

EEG reallocation charge
21%

Electricity grid usage charge
25%

Concession charge
5%

Electricity tax
7%

Procurement
16%

Profit margin of reseller
7%

VAT
16%

Offshore apportionment of lability,
§19 StromNEV-reallocation,
Reallocation charge for switchable loads,
CHP surcharge (together 3%)

 

15

20

25

30

35

40

0

1

2

3

4

5

6

El
ec

tri
ci

ty
 p

ric
e 

[C
t/

kW
h]

Po
w

er
 d

em
an

d 
/ o

ut
pu

t 
[k

W
] Flexible Electricity Price [Ct/kWh] Pel HP [kW]

Standard Operation

 

 
 

 
 

 
 

     

 
 

 
 

 
 

     
 

Optimized Operation

15

20

25

30

35

40

0

1

2

3

4

5

6

El
ec

tri
ci

ty
 p

ric
e 

[C
t/

kW
h]

Po
w

er
 d

em
an

d 
/ o

ut
pu

t 
[k

W
] Flexible Electricity Price [Ct/kWh] Pel HP [kW]
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The following Figure 27A shows a flexible electricity tariff included in the heat pump’s daily
operation; Figure 27B shows the same situation, but with an optimization algorithm applied to the
heat pump’s operation. Figure 28 shows the corresponding development of the aggregated electricity
costs with and without optimization. Compared to the previous optimization of PV self-consumption,
the achieved cost reduction of 17% is significantly lower. This can be explained by the fact that the
thermal flexibility potential in that case was not sufficient. Therefore, the size of the thermal buffer
storages is not only relevant because of their maximum thermal storage capacity in kWh, but also due
to the temperature levels at which the heat pump is operating. This affects the COP and thus can
reduce the monetary benefit of the optimization significantly.
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4.6. Power Markets

Simulation-based studies focusing on a single building in the Plus-Energy settlement have so
far shown a significant potential regarding a participation in aFRR (automatic frequency restoration
reserve) market under certain conditions where 48% of the heat pump’s electricity demand could
be provided by aFRR within a yearly energy balance. In that case, 11% more electricity was needed
to provide the demanded heat due to a lower COP and higher thermal losses because of the higher
operating temperatures. Thereby, PV self-consumption was only reduced from 36% to 34%. Thereby,
the main hurdles were the very short activation durations from the aFRR market that lead to problems
in heat pump cycling. This could be addressed by cluster management and by a change in the legal
framework. [51,52]

5. Discussion

Within this work, a Plus-Energy settlement with 23 residential buildings equipped with
decentralized heat pumps and PV systems in the German municipality of Wüstenrot was introduced.
The buildings are connected to a low-temperature DHC network and a novel agrothermal heat source:
a geothermal collector at depths of around 2 m that allows heat withdrawal and agriculture usage at
the same time. A broad overview of the lessons learned, monitoring results, and the application of
DR and DSM on the building level combined with a simulation-based prediction and optimization
approach was given.

Investigations of the low-temperature DHC network with decentralized heat pumps showed
that heating and cooling energy can be produced efficiently at an average annual heat pump COP
of approximately 4. With the subsidies granted within the research project, a competitive heat price
of 0.21 €/kWh for the end user was achieved. It is expected that with progressing maturity of the
technology, competitive heat prices can also be reached without subsidies.

The geothermal monitoring showed that there is a significant impact on the specific heat yield
by groundwater resulting in more than 100 kWh/m2 due to high moisture and the energy transfer
generated by the groundwater. This leads to a reduction of the collector field size. In the case of the
Plus-Energy settlement in Wüstenrot, a low-temperature DHC network also has proven to be very
suitable since it is situated in a less dense, more rural area with highly efficient buildings and available
wider open areas for collector installment.

Within the settlement, the agrothermal collector, and the low-temperature DHC network,
a comprehensive monitoring system was installed. Especially within six of the buildings, data
of all the relevant thermal and electrical energy flows are gathered in great detail, and the heat pumps
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are controllable. For monitoring and control, mainly ModBus TCP and ModBus RTU protocols are used.
Data is collected in a cloud-based MySQL database and accessed by a dedicated monitoring solution.

On the building level, an approach for the prediction of building demand and production as well
as optimization of heat pump operation was developed to increase self-consumption, apply flexible
electricity tariffs, and also participate in power markets.

Thereby, the individual thermal load forecast and the behavior of the building systems was
realized via white box simulation models, whereas the prediction of household electricity and DHW
demand was done by an algorithm based on DTR, kNN, and k-means clustering, constantly trained by
previous measured data. The prediction and optimization was realized in the simulation environment
INSEL and in Python. The implementation was so far carried out for only one building but will in the
future include six buildings of the Plus-Energy settlement.

Validation has shown an MAPE of the heat pump system of 22.8% (daily basis), an MAPE of
the PV system of 22.1% (hourly basis), and MAPE values of the household electricity prediction of
47.0% (hourly basis) and 28.1% (daily basis). Thereby, it was found that user behavior poses the
biggest inaccuracy and problems while weather forecast inaccuracy is acceptable, especially for thermal
demand predictions.

For optimization purposes of the heat pump’s operation, it was decided to apply GA because
of its suitability for this specific problem e.g., compared to PSO or rule-based heuristic approaches.
Optimization for 24 h in advance with 2500 simulation runs resulted in approximately 2.5 h of
computation time, which was mainly due to the white box thermal demand prediction. This
optimization time could be reduced by a factor of 10, utilizing an RC (resistance capacity) model for
thermal demand prediction, but would also result in more prediction inaccuracy.

Simulation results for one building have shown for PV self-consumption that through optimized
heat pump operation and overcharging of the thermal buffer storages, up to 50% of cost savings could
be achieved during the course of one day under ideal conditions. It has been found that the hurdles
for the optimization of self-consumption are that in summer only DHW is prepared and thus less
demand exists, and also that DHW storages tend to be too small. In addition, that in winter and
the transition time the PV system’s power output dos not match the heat pump’s demand results in
additional electricity taken from the grid. It was recommended to install larger thermal buffer storages
and to match the installed PV winter power output to the heat pump’s demand. In addition, general
conditions such as low or no PV feed in the tariff and high electricity tariff costs together with no
installed battery storage are ideal cases for this optimization approach.

In addition, the utilization of flexible electricity tariffs was examined on the building level.
Thereby, it is important that the tariffs show enough monetary variability whereas e.g., forwarding the
fluctuations of the spot market to the end user would show too little incentive. Even with adequate
flexible tariffs, enough thermal flexibility and thus larger thermal buffer storages and/or a higher
comfort tolerance of the buildings occupants are required. The size of the thermal buffer storages
is thereby not only relevant because of their maximum thermal capacity, but also because of the
temperature levels at which the heat pump is operating. Simulation results have shown that even with
enough storage capacity available, the higher temperatures reduced the heat pump’s COP to such a
degree that the monetary benefit of the optimization was reduced.

Based on the here described work, simulation-based studies were also published previously [51,52]
addressing the potential of a participation in aFRR (secondary reserve) markets. Thereby, for a single
building of the Plus-Energy settlement with battery storage, up to 48% of the heat pump’s electricity
demand could be provided by aFRR within a yearly balance, only reducing PV self-consumption from
36% to 34%. Thereby, the main problems were the very short activation durations from the aFRR
market that lead to problems in heat pump cycling, which could be addressed by cluster management
and by a change in the legal framework.
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Within the ongoing research project Sim4Blocks, in the future, building optimization for six
buildings shall be implemented. Further, it is planned to operate those buildings aggregated as a single
virtual power plant also including activation calls by an aggregator.

The limitations of this work are that only a very specific system combination—an agrothermal
collector with a low-temperature DHC network on the district level, and on the building level
mainly single family houses with high energy efficiency standard, decentralized heat pumps and PV
systems—is investigated, which can limit the transferability of the results. In addition, agrothermal
collectors are limited to areas with sufficient space; even in Wüstenrot, as a rural municipality, it
has proven to be difficult to find adequate areas. In addition, part of the presented results are
simulation-based, and they still have to be proven in real operation.
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