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Abstract: The transient impact components in vibration signal, which are the major information for
bearing fault severity recognition, are often interfered with by ambient noise. Meanwhile, for bearing
fault severity recognition, the frequency band selection methods which are employed to pre-process
the contaminated vibration signal only select the partial frequency band of the vibration signal and
cause information loss of other frequency band. Aiming at this issue, this paper proposes a novel fault
severity recognition method based on Huffman coding, which can retain all the information of the
frequency band, and is applied for the first time to bearing fault severity recognition. Specifically, the
average coding length of Huffman coding (ACLHC) of the original vibration signal is first calculated
to reduce the noise and highlight the impact components of the signal. Then, the ACLHC is encoded
by symbolic aggregate approximation (SAX) to reflect the modulation information of bearing. Finally,
the Lempel-Ziv indicator (LZ indicator) of the symbol sequence is calculated to reflect the fault
severity. The proposed method is verified by the bearing datasets under different working conditions.
Compared with the methods based on frequency band selection, the proposed method effectively
recognizes the fault severity of bearing for more working conditions.

Keywords: signal processing; Lempel-Ziv indicator; average coding length of Huffman coding;
symbolic aggregate approximation; bearing fault severity

1. Introduction

As an important part of rotating machinery, monitoring the health condition of bearings is very
necessary during the industrial productions. Once a local fault occurs on the surface of a bearing, a
series of impacts are aroused by the strikes between the rolling elements and the local fault on the
outer or inner race [1]. However, the impacts caused by the local fault may be submerged in the noise
as the severe environment. Therefore, effectively highlighting the impact components of the signal is
beneficial to improving the recognition results of bearing fault severity.

Recently, the importance of bearing fault severity recognition has been paid more and more
attention [2,3]. In general, the damage severity of bearings is usually measured from the aspect of
signal complexity [4]. Currently, as the effective method for fault severity recognition, the Lempel-Ziv
indicator (LZ indicator) is frequently used for the recognition of bearing fault severity. The LZ indicator
can effectively reflect the change in frequency component in signals, and the different fault severities of
the inner and outer race of the bearing will cause the change in the frequency component [4]. Thus, The
LZ indicator can be effectively used for the recognition of bearing fault severity. However, although
the LZ indicator can effectively recognize the fault severity of the inner and outer race of the bearing,
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the recognition results are often affected by the environmental noise. Therefore, based on Lempel-Ziv
complexity, various methods of noise reduction have been used to improve the recognition results of
bearing fault severity. To date, continuous wavelet transform [5], Empirical Mode Decomposition [6],
local mean decomposition [7,8], intrinsic time-scale decomposition [9], double-dictionary matching
pursuit [10], and sparsogram [11] have been used in combination with the Lempel-Ziv complexity to
reduce the noise and improve the recognition results of fault severity. Therefore, reducing noise and
improving signal-to-noise ratio are helpful for improving the fault severity recognition results of the
LZ indicator.

Recently, the frequency band selection methods have been widely used to improve the
signal-to-noise ratio and to highlight the impact components of signal. As a common time–frequency
method, wavelet transform is used to decompose and extract the effective frequency components of
the signals. For examples, Wang et al. [12] combined the Hilbert and wavelet transforms to improve
the results of bearing fault identification. In order to extract the effective information of the signal
effectively, spectral kurtosis was first used to select that of the signal. For example, Tian et al. [13]
applied the K-Nearest Neighbor (KNN) distance measurement to bearing fault detection based on
the multiple features which, extracted by cross-correlation, improve spectral kurtosis. Saidi et al. [14]
applied support vector regression to estimate the residual useful life (RUL) of the high-speed shaft
bearings based on the time indicators derived from spectral kurtosis. Based on the high potential of
spectral kurtosis in detecting and characterizing non-stationary signals, Antoni et al. [15] proposed a
new method called Kurtogram, which improved spectral kurtosis using short-time Fourier transform,
depending on a series of different window lengths. In addition, Kurtogram has been continuously
improved to improve the ability to select the effective fault information. For example, Wang et al. [16]
applied manifold learning to overcome the drawbacks of Kurtogram, in which the in-band noise was
left unprocessed. Wang et al. [17] improved Kurtogram based on a meshing frequency modulation
index which utilized the particular gearbox related phenomenon to extract the bearing fault-induced
impact components under the background noise of the planetary gearbox. Besides this, other new
methods have been used in combination with the original methods to improve the extraction results.
Barszcz et al. [18] proposed a new method called Protrugram, which calculates the kurtosis of the
envelope spectrum amplitudes of demodulated signals instead of the kurtosis of the filtered temporal
signals when the signal to noise ratio is low. Based on the sparsity measurement, Tse et al. [19] proposed
Sparsogram, which can detect the high resonant frequency to extract bearing fault feature and then
apply the genetic algorithm and Morlet wavelet to enhance the detection results of Sparsogram. Miao
et al. [20] identified the optimal frequency band under the interferences of the motor and industrial
field based on the singular value negentropy. These methods have achieved good results in fault
diagnosis and feature frequency selection.

Although these frequency band selection methods can reduce noise and have a good effect in
feature frequency selection and fault diagnosis, they also ignore some effective information out of the
selected frequency band. Meanwhile, as the transient impact caused by bearing fault can spread within
a wide frequency band [16], the above methods cannot retain all the information caused by bearing
fault. Although these frequency band selection methods can improve the recognition results of the LZ
indicator to some extent, there could be some deviations in fault severity recognition based on the
LZ indicator.

Aiming to resolve this problem, in this paper, a fault severity recognition method of bearing based
on the full frequency band of vibration signal is proposed. According to the average coding length
of Huffman coding (ACLHC), the original signal is processed to reduce the noise and highlight the
impact components of the signal. The signals processed by ACLHC not only reduce the influence of
noise, but also contain all the fault information. Then, the ACLHC of the signal is further encoded by
symbolic aggregate approximation (SAX) to reflect the modulation information of bearing vibration
signal. Finally, the LZ indicator is obtained to reflect the fault severity. After the above processing and
calculation, the bearing fault severity under different working conditions can be effectively recognized.
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The rest of this paper is organized as follows. Section 2 introduces the basic theory of ACLHC and
symbolic aggregate approximation Lempel-Ziv indicator (SAX-LZ). In Section 3, the new recognition
method of bearing fault severity is proposed and the characteristic of the ACLHC is discussed.
In Section 4, the effectiveness of the proposed method is validated by the bearing datasets under
different working conditions. Section 5 concludes this paper.

2. Theory Background

2.1. The Theory of ACLHC

Huffman coding is a variable-length source coding method which was proposed by Huffman in
1951 [21]. Huffman coding has been widely used in computer, data encryption, and communication
fields because of its high efficiency. Huffman coding is a prefix code, which minimizes the average
coding length [22]. The symbols with high probability are represented by short code words, while the
symbols with low probability are represented by long code words. So, Huffman coding depends on
the occurring probability of symbols. The closer the probability of each symbol appears, the higher the
average coding length of Huffman coding is. For a symbol sequence, the ACLHC can be obtained as
follows [23,24].

Step 1: Count the occurring probability
{
p1, p2, · · · , pm

}
of each symbol in the symbol sequence.

Construct the binary tree set F = {T1, T2, · · · , Tm} based on the statistical probability
{
p1, p2, · · · , pm

}
.

In each binary tree Ti, there is only one root node with the probability pi. The left and right subtrees of
the binary tree are empty;

Step 2: The two trees with minimum root node probability in the binary tree set F are selected as
the left and right subtrees to construct a new binary tree. The probability of the root node of the new
binary tree is the sum of the probabilities of the left and right root nodes of the subtree;

Step 3: Delete the two trees with the minimum probability in the binary tree set F and add the
new binary tree to F;

Step 4: Repeat Step 2 and Step 3 until there is only one tree in the binary tree set F;
Step 5: After the Huffman tree is constructed, the left child nodes of each father node are coded

as 1 (0) and the right child nodes of each father node are coded as 0 (1). Search forward from the
last binary tree, the Huffman coding of each symbol {H1, H2, · · · , Hm} is the set of all codes on the
corresponding path;

Step 6: The average coding length of Huffman coding is obtained according to the length of the
Huffman coding of each symbol and the corresponding probability, as follows:

ACL =
m∑

i=1

pi · length(Hi), (1)

where ACL is the average coding length of Huffman coding, length(Hi) is the number of 0 or 1 contained
in Hi.

To better illustrate the calculation process of ACLHC, suppose a probability sequence {0.35, 0.30,
0.15, 0.10, 0.10}, the Huffman tree and corresponding Huffman coding is shown in Figure 1.
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The average coding length of the probability sequence is calculated by (1). Therefore, the average
coding length of the probability sequence is 2.2:

ACL = 0.35 · 1 + 0.30 · 2 + 0.15 · 3 + 0.10 · 4 + 0.10 · 4 = 2.2.

2.2. The Theory of SAX-LZ

The Lempel-Ziv complexity, which was proposed by Lempel and Ziv [25], has been widely used
to recognize the fault severity of bearing, because signals of bearing with different fault severities have
different complexities. In general, the LZ indicator is calculated based on a 0–1 sequence [26]. However,
the application of SAX to code the time series in the calculation of LZ cannot only describe the details of
time series, but also improve the computational efficiency. For a given time series X = {x1, x2, · · · , xn},
the process of the SAX-LZ is given as follows [27].

Step 1: The time series is normalized according to the equation, as follows:

NX =
X − µ
σ

, (2)

where NX is the normalized series of X, µ is the mean of the time series, and σ is its standard deviation;
Step 2: According to the below equation, the normalized time series is represented by the average

of each segment, which is divided according to Piecewise Aggregate Approximation (PAA):

xi =
N
n

n
N i∑

j= n
N (i−1)+1

x j, (3)

where xi is the average of the ith segment, x j is one point of time series X, j is the sequence number for
each segment, N is the number of equal sized segments;

Step 3: According to Table 1, determine the breakpoints βi according to the equiprobable regions
α of the distribution space to be divided;
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Table 1. The lookup table of breakpoints.

β

α
3 4 5 6 7 8 9 10

β1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28
β2 0.43 0 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84
β3 0.67 0.25 0 −0.18 −0.32 −0.43 −0.52
β4 0.84 0.43 0.18 0 −0.14 −0.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Step 4: The symbolic sequence {si}
N
i=1 is obtained based on the symbol which is assigned according

to the region divided by the breakpoints;
Step 5: Initialization, set Sv,0 = {}, Q0 = {}, CN = 0, r = 1;
Step 6: Take Qr = (Qr−1sr) and judge whether Qr belongs to Sv,r−1 =

{
Sv,r−2sr−1

}
. If not, Qr = {},

then CN(r) = CN(r− 1) + 1, r = r + 1. If so, Qr = (Qr−1sr), CN(r) = CN(r− 1), r = r + 1, and repeat
this step until symbolic sequence is completely covered;

Step 7: The Lempel-Ziv complexity is normalized by:

0 ≤ CnN =
CN(N)

CUL
≤ 1, (4)

where,

CUL = lim
N→∞

CN(N) = lim
N→∞

N
(1− β) logk N

≈
N

logk N
, (5)

where k is the number of the alphabets (for binary string, k = 2).

3. The Proposed Method

SAX-LZ can effectively recognize the fault severity of a bearing. Nevertheless, the noise in the
vibration signal limits the accuracy of SAX-LZ in the fault severity recognition of bearing. However,
the ACLHC can effectively highlight the mutation components caused by bearing fault in the signal
and reduce the noise in the signals. Therefore, the ACLHC can be effectively used to process the
vibration signal of bearings to highlight the impact components and reduce the interference of noise.
The recognition accuracy of SAX-LZ can be effectively improved after processing by ACLHC.

Given a signal X = {x1, x2, · · · , xn}, the SAX-LZ of the signal processed by ACLHC is calculated
as follows:

Step 1: According to Equation (6), transform the signal amplitude to the positive value
X′ = {x′1, x′2, · · · , x′n}:

x′i = xi −min(X); (6)

Step 2: Then, the signal X′ = {x′1, x′2, · · · , x′n} is divided into different segments
SX =

{
sx1, sx2, · · · , sxn−l+1

}
according to the sliding window. Where sxi =

{
x′i, x′i+1, · · · , x′i+l−1

}
, l is

the length of the sliding window;
Step 3: Normalized segment data SP =

{
P1, P2, · · · , Pn−l+1

}
are calculated by Equation (7), where

Pi =
{
pi, pi+1, · · · , pi+l−1

}
:

pi =
x′i

max(sxi)
; (7)

Step 4: Calculate the ACLHC C =
{
c1, c2, · · · , cn−l+1

}
of the normalized segment data

SP =
{
P1, P2, · · · , Pn−l+1

}
according to Section 2.1;
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Step 5: The ACLHC C is normalized to obtain the normalized series NC =
{
Nc1, Nc2, · · · , Ncn−l+1

}
by the Equation (2);

Step 6: The SAX-LZ of the normalized series NC is obtained according to the description in
Section 2.2.

The calculation process is illustrated in Figure 2.
To illustrate the characteristics of the ACLHC in the description of impact, two sets of simulation

signals with different SNR are constructed, as follows:

X(t) = x(t) + n(t), (8)

where X(t) is the simulation signal with different signal-to-noise ratios (SNR), the waveform of the
X(t) with SNR of 13dB is shown in Figure 3b, while that with SNR of 3dB is shown in Figure 4b. n(t) is
the noise, x(t) is the simulation signal without noise, the x(t) is shown as follows:

x(t) =

 +∞∑
k=−∞

d · δ(t− zTo) ∗ e(t)

 · sin(2π fn), (9)

where d is the intensity of the impact forces, δ(t) is the unit impact function, z is the number of
the impacts, To = 1/ fo is the interval between two impacts, fo is the characteristic frequency of the
bearing, e(t) is the attenuation function, fn is the resonance frequency. The waveform of x(t) is shown
in Figures 3a and 4a.
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Figure 2. The calculation process of the proposed method.

In order to better illustrate the effect of ACLHC in noise reduction, the ACLHC was compared
with other three frequency band selection methods (protrugram, sparsogram, and genetic algorithm
sparsogram (GA-sparsogram)). The results of the simulation signals processed by the above four
methods are shown in Figures 3 and 4.
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Figure 3. The waveforms at the signal-to-noise ratio (SNR) of 13dB. (a) Impact signal; (b) the
impact signal with noise; (c) average coding length of Huffman coding (ACLHC); (d) protrugram;
(e) sparsogram; (f) genetic algorithm sparsogram (GA-sparsogram).

For the simulation signal with high SNR, as shown in Figure 3a,c, as the amplitude of the signal
was more dispersed when the impact occurred, the probability of the signal was dispersed at this
time. So, the ACLHC of the impact component is lower than that of other components when there
are impacts in the signals. Although there are some differences between Figure 3a,c, the location of
each impact can be restored by ACLHC well. However, although the approximate shape of the impact
could be restored by GA-sparsogram, as shown in Figure 3f, the number of impacts was less than that
of the impact signal in Figure 3a. In addition, the location and shape of the impact in Figure 3d,e were
completely different from that in Figure 3a. Therefore, compared with protrugram, sparsogram, and
GA-sparsogram, the ACLHC can effectively restore the location of the impact and highlight the impact
components of signal.

For the simulation signal with low SNR, the time-domain waveforms and frequency spectrums of
the simulation signal processed by different methods are shown in Figure 4.
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Figure 4. The waveforms and frequency spectrums at the SNR of 3 dB. (a) Impact signal; (b) the
impact signal with noise; (c) average coding length of Huffman coding (ACLHC); (d) protrugram;
(e) sparsogram; (f) genetic algorithm sparsogram (GA-sparsogram).

As shown in Figure 4b, due to the noise interference, the impact signal was completely submerged
in the noise in the time-domain waveform. Besides this, the obvious characteristic frequency of the
impact signal also could not be found in the frequency spectrum. The additional frequency component
of 40 Hz was introduced by the noise. Although the obvious impact component cannot be found
in the time-domain waveform by ACLHC in Figure 4c, the obvious characteristic frequency of the
impact signal can already be found in the frequency spectrum. However, the characteristic frequency
of the impact signal could not be found by protrugram, sparsogram, and GA-sparsogram, as shown in
Figure 4d–f. Besides this, the high-frequency part of the frequency spectrum was also lost, while the
frequency spectrum of ACLHC contained the whole frequency components. The information after
400 Hz of the frequency band processed by protrugram and GA-sparsogram was lost, as shown in
Figure 4d,f. After 600 Hz, the frequency band processed by Sparsogram was lost, as shown in Figure 4e.
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Therefore, the ACLHC not only highlights the impact components of the signal, but also retains the
whole frequency components of signal.

Altogether, compared with protrugram, sparsogram, and GA-sparsogram, the ACLHC can
effectively restore the location of impact in the signal when the SNR is high. Even if the ACLHC cannot
obviously restore the location of impact in the signal when the SNR is low, it can also effectively reflect
the characteristic frequency of the impact in the frequency spectrum.

4. Result and Discussion

4.1. The Description of the Datasets

4.1.1. Case Study 1

The data are from the Konstruktions-und Antriebstechnik (KAt), in the school of Mechanical
Engineering at University Paderborn [28]. The bearing test rig is shown in Figure 5a (II). The modular
test rig consisted of an electric motor, a torque-measurement shaft, a rolling bearing test module,
a flywheel, and a load motor. The bearings 6203—with different types of damage caused by an
accelerated lifetime test on the apparatus, as shown in Figure 5a (I)—were mounted in the bearing test
module (as shown in Figure 5a (II)) to generate the experimental data. The severity of the damage was
described by the percentage of length relative to pitch circumference. The three levels for 6203 are
shown in Table 2 [28].
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Figure 5. The bearing test rig. (a) The test rig of Konstruktions-und Antriebstechnik (Kat); (b) The test
rig of Dynamic and Identification Research Group (DIRG): (I) apparatus for accelerated life time test
to obtain the damaged bearings; (II) modular test rig to obtain the vibration signals under different
working conditions: (1) an electric motor; (2) a torque-measurement shaft; (3) a rolling bearing test
module; (4) a flywheel; and (5) a load motor.

Table 2. The damage levels to determine the severity of damage.

Damage Level Percentage Values Limits for Bearing 6203

1 0–2% ≤ 2 mm
2 2–5% > 2 mm
3 5–15% > 4.5 mm

The information of the test bearings with real damages caused by the accelerated lifetime test is
shown in Table 3. The rotational speed of the drive system, the radial force onto the test bearing, and
the load torque in the drive train were the main operating parameters. The parameters were defined as
shown in Table 4. All three parameters were kept constant for the time of each measurement.
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Table 3. The test bearings with real damages caused by accelerated lifetime test.

Severity of Damage Location of Fault Characteristic of Damage Arrangement Damage

1 Inner race Single point No repetition Fatigue: pitting
2 Inner race Single point No repetition Fatigue: pitting
3 Inner race Single point No repetition Fatigue: pitting

Table 4. The operating parameters.

No. Rotational Speed (rpm) Load Torque (Nm) Radial Force (N) Name of Setting

1 900 0.7 1000 N09-M07-F10
2 1500 0.7 400 N15-M07-F04

4.1.2. Case Study 2

The experimental data came from the Dynamic and Identification Research Group (DIRG), in the
Department of Mechanical and Aerospace Engineering at Politecnico di Torino [29]. The bearing test
rig is shown in Figure 5b. The test rig mainly contained three major parts: a high-speed spindle, a load
cell, and a lubrication part. The bearings of the spindle, for which the main geometrical properties
of the bearings are listed in Table 5, were grease lubricated and their temperature was limited by
a liquid (glycol/water) refrigeration circuit. Two accelerometers were installed on the key position.
The sampling frequency was 51,200 Hz.

Table 5. The main properties of the rolling bearings.

Pitch Diameter D
(mm)

Rollers Diameter
D (mm)

Contact Angle Φ

(◦) Rolling Elements Z

Size 40.5 9.0 0 10

The bearing fault with artificial damage occurred on the inner race. The diameter of an indentation
on the inner race was 150, 250, and 450 µm. The application of the static load was 1000, 1400, and
1800 N. The rotational frequency of the shaft increased from 100 Hz to 400 Hz with steps 100 Hz. The
speed–load combinations of the bearing data used below are shown in Table 6.

Table 6. The list of the used load and speed cases.

Nominal Load (N) Nominal Speed (Hz)

1000 100 200 300 400
1400 - 200 300 400
1800 100 200 300 -

4.2. Fault Severity Recognition by the Proposed Method

In order to verify the effectiveness of the proposed method in fault severity recognition, the
proposed method was used to calculate the complexity of the above bearing datasets. The results of
LZ and SAX-LZ were also used to compare with the proposed method. The calculated results of the
two datasets are shown in Figures 6 and 7, respectively.
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According to Yan [4], the complexity value should decrease with an increase in the fault severity of
the bearing inner race. However, as shown in Figures 6 and 7, the complexity values of the traditional
LZ method did not decrease with the increase in the fault severity of bearing inner race. Although the
complexity values of the SAX-LZ decreased with the increase in the fault severity of bearing inner race
under most working conditions, there were also some non-monotonous trends in the complexity values
obtained by SAX-LZ, such as the N09-M07-F10 in KAt datasets and the 100 Hz and 200 Hz in DIRG
datasets. However, the complexity values of the proposed method showed all monotonous decreasing
trends under all working conditions. Therefore, for the problem of fault severity recognition, although
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the monotonicity of SAX-LZ was better than that of LZ, that of SAX-LZ was also affected by noise and
interference. However, the SAX-LZ could effectively recognize the fault severity of bearing after the
signal was processed by ACLHC.

Therefore, the ACLHC can effectively reduce the influence of noise and interference and highlight
the fault information. The proposed method can be effectively used to recognize the fault severity
of bearings.

4.3. Comparison with Other Frequency Band Selection Methods

In order to further illustrate the advantages of the proposed method in the fault severity recognition
of bearings, the SAX-LZ of the bearing vibration signals processed by three frequency band selection
methods (protrugram, sparsogram, and GA-sparsogram) was employed to compare with the proposed
method. The calculated results of the two datasets are shown in Figures 8 and 9.
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As shown in Figures 8 and 9, compared with SAX-LZ, although the monotonicity of SAX-LZ could
be improved by the three frequency band selection methods in some cases, the overall monotonicity
was not better than that of SAX-LZ without treatment. The reason for this could be that although the
above frequency band selection methods could effectively select the frequency band which contained
the most fault information, some useful information was also lost. Therefore, the calculated results
based on the frequency band selection methods might not be better than those of SAX-LZ without
treatment. However, the ACLHC did not need to select the frequency band of the signal in the process
of reducing the influence of noise and highlighting the impact components of signal. Therefore, the
signals processed by ACLHC cannot only reduce the influence of noise, but also contain all the fault
information. The calculated results of the proposed method were better than those of the SAX-LZ of
the bearing vibration signals processed by the three frequency band selection methods. Therefore, the
signals processed by ACLCH can effectively improve the recognition results of bearing fault severity.
The proposed method can be effectively used to recognize the fault severity of bearings under different
working conditions.
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5. Conclusions

This paper proposed an improved method for fault severity recognition. This paper, for the
first time, proposed a noise reduction method based on ACLHC for processing bearing vibration
signals. The main finding was that, compared with the frequency band selection methods, the ACLHC
did not need to select the frequency band of the signal in the process of reducing the influence of
noise and highlighting the impact components of signal. Therefore, the signals processed by ACLHC
could not only reduce the influence of noise, but also contained all the fault information. Then, the
modulation information of the processed vibration signal, which is an essential fault characteristic
of bearing, was reflected by SAX. Finally, the complexity of the symbol sequence coded by SAX was
calculated by the LZ indicator. Through the verification of the single-point fault dataset of KAt and
that of DIRG, it was proven that the ACLHC can reduce the influence of noise and highlight the
impact components of signal without losing the fault information. Also, the signals processed by
ACLHC can effectively improve the recognition results of bearing fault severity. In conclusion, the
proposed method can effectively improve the recognition results of fault severity by reducing noise
while retaining all frequency band information, and can be used in different working conditions.

Although some important problems associated with the proposed method have been investigated
in this paper, there are still a few questions that are worthy of further consideration, such as the
application scope of ACLHC.
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